Atlantic Salmon (Salmo Salar), Inner Bay of Fundy Populations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flood Frequency Analyses for New Brunswick Rivers Canadian Technical Report of Fisheries and Aquatic Sciences 2920
Flood Frequency Analyses for New Brunswick Rivers Aucoin, F., D. Caissie, N. El-Jabi and N. Turkkan Department of Fisheries and Oceans Gulf Region Oceans and Science Branch Diadromous Fish Section P.O. Box 5030, Moncton, NB, E1C 9B6 2011 Canadian Technical Report of Fisheries and Aquatic Sciences 2920 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. -
Canada 21: Shepody Bay, New Brunswick
CANADA 21: SHEPODY BAY, NEW BRUNSWICK Information Sheet on Ramsar Wetlands Effective Date of Information: The information provided is taken from text supplied at the time of designation to the List of Wetlands of International Importance, May 1987 and updated by the Canadian Wildlife Service - Atlantic Region in October 2001. Reference: 21st Ramsar site designated in Canada. Name and Address of Compiler: Canadian Wildlife Service, Environment Canada, Box 6227, 17 Waterfowl Lane, Sackville, N.B, E4L 1G6. Date of Ramsar Designation: 27 May 1987. Geographical Coordinates: 45°47'N., 64°35'W. General Location: Shepody Bay is situated at the head of the Bay of Fundy, 50 km south of the City of Moncton, New Brunswick. Area: 12 200 ha. Wetland Type (Ramsar Classification System): Marine and coastal wetlands: Type A - marine waters; Type D - rocky marine shores and offshore islands; Type F - estuarine waters; Type G -intertidal mud, sand, and salt flats; Type H - intertidal marshes. Altitude: Range is from - 6 to 6 m. Overview (Principle Characteristics): The area consists of 7700 ha of open water, 4000 ha of mud flats, 800 ha of salt marsh and 100 ha of beach. Physical Features (Geology, Geomorphology, Hydrology, Soils, Water, Climate): The area is situated at the head of the Bay of Fundy, an area with the largest tidal range in the world (up to 14 m in Shepody Bay). Shepody Bay is a large tidal embayment surrounded by low, rolling upland. A narrow band of salt marsh occurs along the western shore, whereas the eastern side is characterised by a rocky, eroding coastline with sand- gravel beaches. -
EIA Final Report (PDF)
YB299A ENVIRONMENTAL IMPACT ASSESSMENT REPORT FOR MODIFICATIONS TO THE PETITCODIAC RIVER CAUSEWAY Submitted to: New Brunswick Department of Supply and Services Fredericton, New Brunswick Submitted by: AMEC Earth & Environmental, A Division of AMEC Americas Limited Fredericton, New Brunswick September 30, 2005 TE23520.4 NB Department of Supply and Services EIA Report Modifications to the Petitcodiac River Causeway September 2005 EXECUTIVE SUMMARY Background This document is the Environmental Impact Assessment (EIA) Report for the Modifications to the Petitcodiac River Causeway Project. The Petitcodiac River causeway (“causeway”) is a gated dam structure with an installed vertical slot fishway that was built across the Petitcodiac River between the City of Moncton and the Town of Riverview. Figure 1 shows the location of the Petitcodiac River and Figure 2 shows an aerial view of the causeway. Completed in 1968, the causeway was intended to create a second transportation link between the two communities, offer flood protection for farmland between the causeway and the head of tide at Salisbury, and create a freshwater headpond with potential for recreation and as an industrial water source. A bridge would have achieved the transportation objective, but not the other benefits. As early as 1961, it was recognized by Fisheries and Oceans Canada (“DFO”) that fish passage would be an issue if a causeway was built across the Petitcodiac River. Consequently, DFO required that a fishway be included in the structure. However, the construction of the causeway with the fishway resulted in fish passage issues from the outset. The fishway proved ineffective for all fish species that require passage for life cycle purposes, including the Inner Bay of Fundy Atlantic salmon that is now also protected under the Species at Risk Act because of declining numbers. -
MCP No 02-E.Cdr
Silica Natural Resources Lands, Minerals and Petroleum Division Mineral Commodity Profile No. 2 ilicon (Si) is the second most common element on Earth after World Production and Reserves Soxygen. Si does not occur naturally in its pure state but instead is found chiefly in mineral form as either silica (SiO2) or silicates. Silica Silica deposits occur, and are mined, in most and/or silicate minerals are a constituent of nearly every rock type in countries. Global silica output is estimated at Earth's crust. roughly 120 Mt to 150 Mt per year (Dumont 2006). The most familiar silica mineral is quartz. In commodity terms, silica About 5.9 Mt of ferrosilicon were produced also refers to geological deposits enriched in quartz and/or other silica worldwide in 2006. The major contributors were minerals. Silica resources include 1) poorly consolidated quartzose China, Russia, United States, Brazil and South sand and gravel, 2) quartz sand/pebbles in consolidated rock (e.g. Africa (U.S. Geological Survey [USGS] 2006). quartzose sandstone), 3) quartzite , and 4) quartz veins. Global production of silicon metal reportedly Uses approached 1.2 Mt in 2006, almost half of which came from China (USGS 2006). Other important Silica is hard, chemically inert, has a high melting point, and functions producers are the United States, Brazil, Norway, as a semiconductor—characteristics that give it many industrial France, Russia, South Africa and Australia. applications. Silica deposits generally must be processed to remove iron, clay and other impurities. The most valuable resources contain Silica Consumption in Canada (Total = 2.57 Mt) >98% SiO2 and can be readily crushed into different sizes for the various end products. -
Cast) Smolt-To- Adult Supplementation (Sas) Experiment Proposal (Phase 1: 2018-2022)
Canadian Science Advisory Secretariat National Capital Region Science Advisory Report 2018/014 REVIEW OF RISKS AND BENEFITS OF COLLABORATION FOR ATLANTIC SALMON TOMORROW'S (CAST) SMOLT-TO- ADULT SUPPLEMENTATION (SAS) EXPERIMENT PROPOSAL (PHASE 1: 2018-2022) The Miramichi River in New Brunswick, Canada, highlighting the two main sub-watersheds associated with the SAS experiments. Figure Smolt-to-adult supplementation (SAS) in the life courtesy of the CAST SAS Experiment Proposal: cycle of Atlantic salmon Phase 1 (2018-2022) (Linnansaari et al. 2017). Context: Recent broad-scale declines in marine survival suggest that the most substantial threat(s) to wild Atlantic salmon in eastern Canada are found in the marine environment, and that the resulting high marine mortality is the primary constraint to the recovery of Atlantic salmon populations (COSEWIC 2010). Smolt-to-adult supplementation (SAS) has been proposed by Collaboration for Atlantic Salmon Tomorrow (CAST), a multi-stakeholder group, as an activity to circumvent low marine survival and to increase the number of spawners and freshwater juvenile production in the Northwest Miramichi River system (New Brunswick). SAS would be a precedent-setting activity for supplementation of Atlantic salmon populations in DFO’s Gulf region, where populations are showing decline but are not yet at immediate risk of extinction. CAST has developed a SAS Experiment Proposal with the goals of determining if SAS is a functional conservation strategy that can be used to supplement Atlantic salmon populations in situations where conservation objectives are not being met due to high at-sea mortality, and to answer identified scientific knowledge gaps regarding the SAS conservation strategy. -
Support for Delineation of Inner Bay of Fundy Salmon Marine Critical Habitat Boundaries in Minas Basin and Chignecto
Canadian Science Advisory Secretariat Maritimes Region Science Response 2015/035 SUPPORT FOR DELINEATION OF INNER BAY OF FUNDY SALMON MARINE CRITICAL HABITAT BOUNDARIES IN MINAS BASIN AND CHIGNECTO BAY Context In April 2014, the Fisheries and Oceans Canada (DFO) Species at Risk Management Division (SARMD) in the Maritimes Region requested information from DFO Science to assist with the delineation of boundaries for critical habitat (CH) being considered for Inner Bay of Fundy (IBOF) Atlantic Salmon within Chignecto Bay and Minas Basin, specifically: to assist with the delineation of the boundary between estuarine and marine habitat for several large, tidal estuaries (i.e., Petitcodiac River, Avon River, Salmon River Colchester, Shubenacadie River estuary and Cumberland Basin). DFO Science had previously provided advice on the characteristics and general location of important marine and estuarine habitat for IBOF salmon (DFO 2008; DFO 2013); however, additional information was requested to assist in delineating the precise boundaries of important marine habitat within Chignecto Bay and Minas Basin in order to subsequently propose, describe and map these as CH within an amended Recovery Strategy for IBOF salmon. Once identified in the Recovery Strategy, measures will be taken to protect this marine CH under the Species at Risk Act (SARA). This Science Response Report results from the Science Response Process of 11 July 2014 on Support for Delineation of Inner Bay of Fundy Salmon Marine Critical Habitat Boundaries. Background The inner Bay of Fundy populations of Atlantic salmon (Salmo salar) are listed as Endangered under the Species at Risk Act, and SARA requires the identification of CH for endangered species within a Recovery Strategy (or Action Plan). -
To Download the PDF File
The Dispossession of the Míkmaq Indians from Chignecto to Elsipogtog1: A Case Study Analysis of the Health Determinants of the Physical Environment by Patrick J. Augustine A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Indigenous and Canadian Studies Carleton University Ottawa, Ontario © 2021, Patrick J. Augustine 1 The community uses the Pacifique orthography, while the Francis-Smith system spells it L’sipuktuk (Sable & Francis, 2012). Abstract Traditionally, the Míkmaq enjoyed an interconnected relationship with the land, harvesting what they needed from the earth and the ocean, guided by the concept of Netukulimk, the practice of sustainability. Upon the arrival of European settlers, new trade practices were introduced, and what was once plentiful was quickly depleted. Although the original inhabitants were assured that their lands would be protected by agreements and treaties, these assurances proved to be false, and the traditional relationship with the land was threatened, as the Míkmaq—presaging the fate of most Indigenous Peoples in Canada—were dispossessed of their historical lands and forced to live on reserves; many of them far away from the environments to which they had had biological and spiritual ties. Land is central to our understanding of current Indigenous health issues; centering around how the Míkmaq traditionally employed land and resources, what changes in that relationship were brought about by colonization, and how their removal to reserves influenced their relationship vis-à-vis their environment. In addressing the ways that land policies, post-first contact, were developed and implemented over time, it is possible and necessary to juxtapose that history with the story of the forced mobilization of the Míkmaq and examine the effects that the dispossession of land had upon their livelihood and economic activity. -
Seasonal Variability of Total Suspended Matter in Minas Basin, Bay of Fundy
SEASONAL VARIABILITY OF TOTAL SUSPENDED MATTER IN MINAS BASIN, BAY OF FUNDY by Jing Tao Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia July 2013 © Copyright by Jing Tao, 2013 For my parents, who encouraged me all the way long. I love them forever. ii TABLE OF CONTENTS LIST OF TABLES .............................................................................................................. v LIST OF FIGURES ........................................................................................................... vi ABSTRACT ................................................................................................................ viii LIST OF ABBREVIATIONS AND SYMBOLS USED ................................................... ix ACKNOWLEDGEMENTS ............................................................................................... xi CHAPTER 1 INTRODUCTION ..................................................................................... 1 1.1 Background ........................................................................................................... 1 1.2 Geology of Minas Basin ....................................................................................... 2 1.3 Literature Review .................................................................................................. 4 1.3.1 Point Measurements ....................................................................................... 4 1.3.2 Satellite Measurements -
2748 English
-B N 37 ’ M RUNSWICK OUVEAU DU ARCHÉOLOGIE L SUR ANUSCRITS H K RISTMANSON ELEN A SHORT HISTORY OF BEAUMONT, NEW BRUNSWICK : PAR BY: -B N B B RUNSWICK OUVEAU AU EAUMONT E ITRQEDE HISTORIQUE REF HELEN KRISTMANSON NEW BRUNSWICK MANUSCRIPTS IN ARCHAEOLOGY 37 A Short History of Beaumont, New Brunswick NEW BRUNSWICK MANUSCRIPTS IN ARCHAEOLOGY 37 By Helen Kristmanson Culture and Sport Secretariat 2 New Brunswick Manuscripts in Archaeology 37 A Short History of Beaumont, New Brunswick 3 This series is designed to facilitate the distribution of manuscripts relating to New Brunswick archaeology. They will be published in small quantities and will generally be available by special request only. © Helen Kristmanson and the Province of New Brunswick New Brunswick Manuscripts in Archaeology 37, 2004. Published and edited by: Archaeological Services, Heritage Branch Culture and Sport Secretariat P.O. Box 6000 Fredericton, N.B. E3B 5H1, Canada ISBN 1-55396-559-0 Printed in Canada CNB 2748 2 New Brunswick Manuscripts in Archaeology 37 A Short History of Beaumont, New Brunswick 3 Table of Contents List of Figures. 4 Abstract. 5 Acknowledgements . 5 Introduction . 7 The Mi’kmaq. 7 The Chapel . 9 Related Sites: A Network of Mi’kmaq Communities . 10 Beaumont: Part of a Larger Community . 11 Fort Folly Point . 11 Industry . 13 Boudreau Quarry . 14 Beaumont Quarry . 15 Beaumont Brickyard . 16 Conclusions . 16 References . 17 4 New Brunswick Manuscripts in Archaeology 37 A Short History of Beaumont, New Brunswick 5 List of Figures 1. General location map . 6 2. St. Anne’s Chapel Exterior . 9 3. St. Anne’s Chapel Interior . -
Celebrating the Life of Mary Majka President's Message
The Nature Trust of New Brunswick | La Fondation pour la protection des sites naturels du Nouveau-Brunswick RefugeConserve. Steward. Educate. Vol. 22, No. 4 | Spring 2014 Celebrating the life of Mary Majka IN THIS ISSUE: P1 Celebrating the life of Mary Majka P1 President's Message P2 Seven Days Work Cliff - officially conserved! P2 Project Updates: LSJR Conservation Planning P3 Project Updates Conservation on Canvas P3 A new look for NTNB P3&4 Stewardship Update P4 On the Rise Invitation Mary Majka and NTNB President Lynn MacKinnon in November 2013. (Photo credit: Jessica Bradford) NTNB is celebrating the life of Mary Majka, site for a variety of seabirds and birds of prey, a dedicated naturalist and pioneer of New which was protected as a nature preserve in President's Message Brunswick’s environmental movement, who 2010. She was also a major part of a stewardship As you read this article, I hope these passed away on February 12, 2014 at the age of coalition for the preserve called the ‘Friends of longer days will have you thinking 90 years old. Since arriving in the province in the Grindstone Island.’ Mary was also a long-time abut spring! Coinciding with 1960s, Mary was involved with many conservation, steward of Cape Enrage Nature Preserve, along spring is the Nature Trust’s second education, heritage, and environmental advocacy with David Christie (member of her extended annual On The Rise fundraising initiatives and projects, including the founding family and fellow naturalist). event on March 22 (see page 4 for of NTNB and the establishment of several of the invitation). -
Observations on the Geology of Southern New Brunswick, Made During the Summer of 1864
A*SS'^A*SSS*A**^ AS s+S+Jfr <f»AV AAAS AO OBSERVATIONS ' QUEEN'S y>m GEOLOGY OP SOUTHERN R1W BRUNSWICK, ADE PRINCIPALLY DURING THE SUMMER OF 1S64 BY PROF. L. W. BAI'LEY, MESSRS. GEO. F. MATTHEW AND C. F. HARTT, PREPARED AND ARRANGED, WITH- A GEOLOGICAL MAP, BY L. ¥. BAILEY, A. M. PROFESSOR OF CHEMISTRY, &C. IN THE UNIVERSITY OF NEAV BRUNSWICK, PATRON OF THE BOSTON NATURAL HISTORY SOCIETY, AND CORRESPONDING MEMBER OF- THS NATURAL HISTORY SOCIETY OF MONTREAL. PRINTED BY ORDER OF THE HOUSE OF ASSEMBLY. FREDERICTON. G. E. FEXETY, PRINTER TO THE QUEEN'S MOST EXCELLENT MAJESTY. 1865. i////<///^///^/«/// FRQK ) ptaija! |istorg £oqi<;tg OF BRUNSWICK. m , NEW The EDITF COLLECTl f Queen's L JAL MAP 'HE iNGS QUEENS, AND ALBERT; J& EXTENT OF EACH FORMATION, FROM THE CARBONIFEROUS BASIH TO THE COAST. .W.BAILEY ANO Mr. G. F. MATTH E W, 1804. OBSERVATIONS ON THE GEOLOGY Off SOUTHERN NIW BRUNSWICK, MADE PRINCIPALLY DURING THE SUMMER OF 1864 BY PROF. L. W. BAILEY MESSRS. GEO. F. MATTHEW AND C. F. HARTT, PREPARED AND ARRANGED, WITH A GEOLOGICAL MAP, BY L. W. BAILEY, A.M. PROFESSOR OF CHEMISTRY, &C. IN THE UNIVERSITY OF NEW BRUNSWICK, PATRON OF THE BOSTON NATURAL HISTORY SOCIETY, AND CORRESPONDING MEMBER OF THE NATURAL HISTORY SOCIETY OF MONTREAL. PRINTED BY ORDER OF THE HOUSE OF ASSEMBLY. FREDERICTOtf. G. E. FENETY, PRINTER TO THE QUEEN'S MOST EXCELLENT MAJESTY, fsoto - Bi V : I. diversity of New Brunswick, Frcderlctoii, February, 1865. Sir, I have the honor to transmit herewith, to be laid before His Excellency the Lieutenant Governor and the Legislature, a Report of Observations on the Geology of Southern New Brunswick, made during the Summer of 1864, 1 have the honor to be, Sir, Your obedient servant, L. -
Brook Floater ( Alasmidonta Varicosa)
COSEWIC Assessment and Status Report on the Brook Floater Alasmidonta varicosa in Canada SPECIAL CONCERN 2009 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2009. COSEWIC assessment and status report on the Brook Floater Alasmidonta varicosa in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 79 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Katherine A. Bredin and André L. Martel for writing the status report on the Brook Floater Alasmidonta varicosa in Canada, prepared under contract with Environment Canada, overseen and edited by Janice Smith and Dr. Dwayne Lepitzki, COSEWIC Molluscs Specialist Subcommittee Co-chairs For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’alasmidonte renflée (Alasmidonta varicosa) au Canada. Cover photo: Brook Floater — Provided by the author. Her Majesty the Queen in Right of Canada, 2009. Catalogue No. CW69-14/580-2009E-PDF ISBN 978-1-100-12944-0 Recycled paper COSEWIC Assessment Summary Assessment Summary – April 2009 Common name Brook Floater Scientific name Alasmidonta varicosa Status Special Concern Reason for designation A medium-sized freshwater mussel that is confined to 15 widely scattered watersheds in Nova Scotia and New Brunswick. This mussel was never abundant, usually representing only 1-5% of the total freshwater mussel fauna present.