Agnesi, Bakgrund Och Matematik

Total Page:16

File Type:pdf, Size:1020Kb

Agnesi, Bakgrund Och Matematik U.U.D.M. Project Report 2021:25 Agnesi, bakgrund och matematik Moa Örnberg Examensarbete i matematik, 15 hp Handledare: Anders Öberg Examinator: Veronica Crispin Quinonez Juni 2021 Department of Mathematics Uppsala University Agnesi, bakgrund och matematik Moa Ornberg¨ VT 2021 1 Sammanfattning Maria Gaetana Agnesi var en av 1700-talets mest framg˚angsrika matematiker. Hon v¨axteupp i en f¨orm¨ogenfamilj i Milano d¨arhennes spr˚akligabeg˚avninguppt¨acktes tidigt. Hennes far fi- nansierade b¨astam¨ojligaprivata undervisning i form av Milanos mest framst˚aendeintellektuella pr¨asteroch professorer och anordnade akademiska kv¨allari hemmet d¨arden unga Maria Gaetana underh¨ollprestigefulla g¨astermed disputationer i en rad vetenskapliga ¨amnen. Hennes utbildning inom filosofi avslutades med publikationen Philosophical Propositions 1738 som genom sina 191 propositioner presenterade Agnesis omfattande utbildning samt den matematikfilosofi som kom att p˚averka hennes kommande arbete. Senare ¨agnadesig Agnesi helt ˚atmatematik och kom att f¨ordjupa sig i infinitesimalkalkylen, d¨arhon var en av de f¨orstaatt f¨orespr˚aka undervisning i denna. Hon var en del av en reformr¨orelseunder upplysningen i Lombardiet som syftade att introducera moderna analystekniker inom f¨altet,men som samtidigt v¨ardesattedisciplinens traditionella gr¨anser. 1748 publicerade Agnesi det f¨orstamatematiska verket skrivet av en kvinna: Analytical Institutions, en tidig systematisering av differential- och integralkalkylen som blev v¨alk¨andoch hyllad f¨ordess tyd- lighet och grundlighet. Innan publikationen hade Agnesi valts in i Academia delle Scienze i Bologna och verket v¨alkomnades ¨aven med v¨ardefulla g˚avor fr˚ankejsarinnan Maria Theresa av Osterrike,¨ samt av Benedict XIV med en stol som hedersprofessor vid Universitetet i Bologna. Analytical Insti- tutions presenterar en kurva som fortfarande idag kopplas samman med Agnesis namn i form av en fel¨overs¨attning;Agnesis h¨axa.Kurvan ˚aterfinns ¨aven idag som en omskalad version i till¨ampningar s˚asomCauchyf¨ordelningenst¨athetsfunktionoch Runges fenomen. Efter publikationen av Analytical Institutions drog sig Agnesi tillbaka fr˚ansin f¨orm¨ogenhetoch publika tillvaro f¨oratt ¨agnaresten av sitt liv ˚atteologistudier och volont¨ararbete i syfte att hj¨alpaMilanos sjuka, fattiga och beh¨ovande. Genom Agnesis liv och arbete reflekteras en tydlig bild av 1700-talets upplysning i Lombardiet, en bild f¨orest¨allandede begr¨ansningaroch m¨ojligheterAgnesi m¨otte,samt de f¨or¨andringaroch reformer hon var en del av. Hennes arbete resulterade i ett uppm¨arksammandeav kvinnors r¨atttill utbild- ning, en bredare tillg¨anglighettill l¨aromedeli matematik, en formulering av ett matematiskt spr˚ak p˚aitalienska samt b¨attref¨oruts¨attningarf¨orMilanos mest utsatta. Nyckelord Maria Gaetana Agnesi, 1700-tal, Analytical Institutions, Witch of Agnesi, Cauchyf¨ordelningens t¨athetsfunktion,Runges fenomen 2 Inneh˚all 1 Inledning 4 2 Biografi: uppv¨axtoch utbildning 6 2.1 Tidig uppv¨axt. .6 2.1.1 Ursprung . .6 2.1.2 Familjen Agnesis akademiska kv¨allar. .6 2.2 Utbildning . .8 2.3 F¨ordjupningi matematiken . .9 3 Arbete i vetenskapens v¨arld 11 3.1 Philosophical Propositions . 11 3.2 En del av upplysningens reformer . 12 3.3 Analytical Institutions . 14 4 The Witch of Agnesi, d˚aoch nu 16 4.1 The Witch of Agnesi . 16 4.2 Till¨ampningar. 22 4.2.1 Cauchyf¨ordelningenst¨athetsfunktion. 22 4.2.2 Runges fenomen . 23 5 Biografi: efter matematiken 24 6 Slutord 25 7 Referenslista 27 3 1 Inledning Under ˚arhundradena efter romarrikets fall syntes en generell nedg˚angi l¨arandeoch civilisation, men n˚agramindre centrum av kultur utvecklades f¨orsti en del av Europa, sedan i en annan. Italien var ett av dessa intellektuella centrum. Kring ¨overg˚angenfr˚anantiken till medeltiden var kristendomen i Europa starkt p˚averkad av misogyna str¨omningar,som inte minskade f¨orr¨anren¨assansenb¨orjade. De flesta samh¨allennekade kvinnor ¨aven den mest grundl¨aggandeutbildning, som att l¨asaoch skriva, och ocks˚ai de mest upplysta centrum fanns en stark opposition till all form av h¨ogreutbildning f¨orkvinnor. L¨arandevar fr¨amstbegr¨ansattill kloster, d¨ardistrikten bevakade matematikens 'he- liga mysterier', d¨arendast de som f¨oljdepr¨asternasreligi¨osatro gavs tilltr¨ade. Dessa skolor var generellt den enda m¨ojlighetentill utbildning f¨orflickor under medeltiden, och vid ett f˚atalav dessa kunde kvinnor betraktas som forskare. Med boktryckarkonstens framv¨axtunder slutet av 1400-talet ¨oppnadesnya m¨ojligheterf¨orutbildning genom dess spridning av tryckt kunskap till den bredare massa som inte hade tillg˚angtill formell utbildning. I Italien bestod traditionen om den relativt fria romerska husmodern, men i ¨ovrigadelar av Europa ¨andradeskvinnans status v¨aldigtl˚angsamt ¨aven efter ren¨assansen.Tillf¨alligtvislyftes en kvinnas beg˚avningeller genialitet, men dessa kvinnor stod i kontrast mot den stora massan som inte hade n˚agontillg˚angtill ens den fundamentalaste formen av utbildning. I Italien, d¨arren¨assansen har sitt ursprung, hade vissa kvinnor tr¨attin i den akademiska v¨arlden,¨aven innan slutet av medeltiden. Vissa hade doktorerat och blivit f¨orel¨asareoch profes- sorer p˚auniversiteten i Bologna och Pavia. Ren¨assansensstart har pekats ut som en tid n¨arm˚anga italienska kvinnor ˚aterv¨andetill en aktiv roll inom utbildningens utveckling. Som f¨oljdav denna upplysta attityd florerade stor beg˚avningoch genialitet; kvinnor blev ber¨omdainom konst, medicin, litteratur, filosofi, vetenskap och spr˚ak,och ¨aven inom matematik fanns viktiga kvinnor under 1600- och 1700-talet. Bland dessa fanns Maria Gaetana Agnesi, en av de mest extraordin¨arakvinnliga forskarna genom tiderna. (Osen, 1974, s. 33-39) Under en tid d¨arf˚aformella m¨ojlighetertill ut- bildning fanns, kan framg˚angoch utveckling f¨orMaria Gaetana Agnesi och andra tidiga kvinnliga matematiker, s˚asomHypatia, Ch^atelet,Germain, Somerville och Lovelace, betraktas som starkt knutet till ett sammanfl¨odeav s¨arskildaomst¨andigheter.I f¨orordet till Women of mathematics, a Biobiblibographic Sourcebook uttrycker Laduke att de kan betraktas som kvinnliga matematiker i undantag; de bar b˚adeovanlig beg˚avningoch ovanliga m¨ojligheteratt utveckla denna beg˚avning. (LaDuke, 1987, s. xvii-xviii) Findlen diskuterar kvinnors v¨axandebetydelse under den italienska upplysningen, och lyfter fram att kvinnor fick kunskap att cirkulera: de f¨ormedladekunskap genom att formulera och ¨overs¨attavik- tiga vetenskapliga verk och undervisade i ny vetenskap vid akademier och universitet. Denna r¨orelse var starkast i Italien. Landet utbildade flest kvinnor i Europa och n¨arap˚avarje italiensk stad med kulturellt anspr˚akhade en vetenskapligt utbildad kvinna. Bland dessa fanns Maria Gaetana Agnesi, men ¨aven Laura Bassi, professor i newtoniansk fysik och matematik i Bologna, och Cristina Rocatti, som undervisade patricier i fysik. Under slutet av 1600-talet och vidare in i 1700-talet blev en begr¨ansadgrupp kvinnor antagna till akademier, de studerade och tog universitetsexamen, och gick vidare till att undervisa i vetenskapliga ¨amnenvid dessa inr¨attningar. Dessa kvinnor, som var bland de b¨astafysikerna och matematikerna i Italien, utgjorde undantagen till den generella uppfattningen om att kvinnor inte var kapabla till att inta abstrakt kunskap. (Findlen, 1995) 1700-talet var en period d˚amatematiken pr¨agladesav anpassning till de stora genombrotten som gjorts under ˚arhundradet dessf¨orinnan. En ¨okad kunskap inom analytiska geometrin och dif- ferentialkalkylen l¨amnadesvallv˚agori form av ett behov av en metodologisk systematisering och sammanst¨allningav uppt¨ackterna. Ett flertal discipliner, s˚asomanalys, algebra, mekanik och san- nolikhetsteori, beh¨ovdeformuleras precist f¨oratt sedan kunna spridas till v¨arlden. I denna tid utm¨arker sig Maria Gaetana Agnesi f¨orsin insats. Hon var bland de f¨orstakvinnorna att erh˚allaen professorstitel inom matematik, vilket f¨orbleven hederstitel och inte en faktisk l¨arostolhon tog i be- sittning. (Betti & De Tullio, 2018, s. 93) Hon var ¨aven den f¨orstakvinnan att publicera en bok inom 4 matematik, en tidig avhandling inom infinitesimalkalkylen, publicerad 1748 i Milano, d˚ahuvudstad i en liten stat under ¨osterrikisktstyre. N¨arverket, Analytical Institutions, publicerades var det den mest omfattande och tydligt skrivna texten om vad som fortfarande var en sv˚artillg¨angligdel av den matematiska vetenskapen. Verket gjorde Agnesi till n˚agotav en celebritet, eller, som Mazzotti ut- trycker det i The world of Maria Gaetana Agnesi, Mathematician of God, en "curiosity"1 (Mazzotti, 2007, xi). I kommande b¨ocker inom matematikhistoria ¨agnadesett f˚atalrader till Agnesi, ofta en kortfattad och abstrakt biografi som i olika publikationer varierade n˚agot,vanligen tillsammans med ett mystiskt portr¨att.Det ¨arinte f¨orr¨annyligen som ytterligare information publicerats om hennes liv. Agnesis verk kan s¨agasha en liten betydelse inom matematikens anor, vilket demonstreras av det faktum att ingen specifik sats eller konceptuella framsteg associeras med hennes arbete, utan bara, i Mazzottis ord; en "ganska oanv¨andbarkurva"2(Mazzotti, 2007, s. xi). Agnesis namn var dock betydande i andra kontexter och av andra anledningar, en f¨orbindelsesom ovan n¨amndaMazzotti unders¨okti sin studie av den katolska upplysningen, det vill s¨agaden m˚angfacetteradekulturella och religi¨osar¨orelsesom ¨agderum under b¨orjanoch mitten av 1700-talet, och dess p˚averkan p˚a modern vetenskap
Recommended publications
  • Maria Gaetana Agnesi Melissa De La Cruz
    Maria Gaetana Agnesi Melissa De La Cruz Maria Gaetana Agnesi's life Maria Gaetana Agnesi was born on May 16, 1718. She also died on January 9, 1799. She was an Italian mathematician, philosopher, theologian, and humanitarian. Her father, Pietro Agnesi, was either said to be a wealthy silk merchant or a mathematics professor. Regardless, he was well to do and lived a social climber. He married Anna Fortunata Brivio, but had a total of 21 children with 3 female relations. He used his kids to be known with the Milanese socialites of the time and Maria Gaetana Agnesi was his oldest. He hosted soires and used his kids as entertainment. Maria's sisters would perform the musical acts while she would present Latin debates and orations on questions of natural philosophy. The family was well to do and Pietro has to make sure his children were under the best training to entertain well at these parties. For Maria, that meant well-esteemed tutors would be given because her father discovered her great potential for an advanced intellect. Her education included the usual languages and arts; she spoke Italian and French at the age of 5 and but the age of 11, she also knew how to speak Greek, Hebrew, Spanish, German and Latin. Historians have given her the name of the Seven-Tongued Orator. With private tutoring, she was also taught topics such as mathematics and natural philosophy, which was unusual for women at that time. With the Agnesi family living in Milan, Italy, Maria's family practiced religion seriously.
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Prerequisites for Calculus
    5128_Ch01_pp02-57.qxd 1/13/06 8:47 AM Page 2 Chapter 1 Prerequisites for Calculus xponential functions are used to model situations in which growth or decay change Edramatically. Such situations are found in nuclear power plants, which contain rods of plutonium-239; an extremely toxic radioactive isotope. Operating at full capacity for one year, a 1,000 megawatt power plant discharges about 435 lb of plutonium-239. With a half-life of 24,400 years, how much of the isotope will remain after 1,000 years? This question can be answered with the mathematics covered in Section 1.3. 2 5128_Ch01_pp02-57.qxd 1/13/06 8:47 AM Page 3 Section 1.1 Lines 3 Chapter 1 Overview This chapter reviews the most important things you need to know to start learning calcu- lus. It also introduces the use of a graphing utility as a tool to investigate mathematical ideas, to support analytic work, and to solve problems with numerical and graphical meth- ods. The emphasis is on functions and graphs, the main building blocks of calculus. Functions and parametric equations are the major tools for describing the real world in mathematical terms, from temperature variations to planetary motions, from brain waves to business cycles, and from heartbeat patterns to population growth. Many functions have particular importance because of the behavior they describe. Trigonometric func- tions describe cyclic, repetitive activity; exponential, logarithmic, and logistic functions describe growth and decay; and polynomial functions can approximate these and most other functions. 1.1 Lines What you’ll learn about Increments • Increments One reason calculus has proved to be so useful is that it is the right mathematics for relat- • Slope of a Line ing the rate of change of a quantity to the graph of the quantity.
    [Show full text]
  • Elements of the Differential and Integral Calculus
    Elements of the Differential and Integral Calculus (revised edition) William Anthony Granville1 1-15-2008 1With the editorial cooperation of Percey F. Smith. Contents vi Contents 0 Preface xiii 1 Collection of formulas 1 1.1 Formulas for reference . 1 1.2 Greek alphabet . 4 1.3 Rules for signs of the trigonometric functions . 5 1.4 Natural values of the trigonometric functions . 5 1.5 Logarithms of numbers and trigonometric functions . 6 2 Variables and functions 7 2.1 Variables and constants . 7 2.2 Intervalofavariable.......................... 7 2.3 Continuous variation. 8 2.4 Functions................................ 8 2.5 Independent and dependent variables. 8 2.6 Notation of functions . 9 2.7 Values of the independent variable for which a function is defined 10 2.8 Exercises ............................... 11 3 Theory of limits 13 3.1 Limitofavariable .......................... 13 3.2 Division by zero excluded . 15 3.3 Infinitesimals ............................. 15 3.4 The concept of infinity ( ) ..................... 16 ∞ 3.5 Limiting value of a function . 16 3.6 Continuous and discontinuous functions . 17 3.7 Continuity and discontinuity of functions illustrated by their graphs 18 3.8 Fundamental theorems on limits . 25 3.9 Special limiting values . 28 sin x 3.10 Show that limx 0 =1 ..................... 28 → x 3.11 The number e ............................. 30 3.12 Expressions assuming the form ∞ ................. 31 3.13Exercises ...............................∞ 32 vii CONTENTS 4 Differentiation 35 4.1 Introduction.............................. 35 4.2 Increments .............................. 35 4.3 Comparison of increments . 36 4.4 Derivative of a function of one variable . 37 4.5 Symbols for derivatives . 38 4.6 Differentiable functions .
    [Show full text]
  • Decision Theory Meets the Witch of Agnesi
    Decision theory meets the Witch of Agnesi J. McKenzie Alexander Department of Philosophy, Logic and Scientific Method London School of Economics and Political Science 26 April 2010 In the course of history, many individuals have the dubious honor of being remembered primarily for an eponym of which they would disapprove. How many are aware that Joseph-Ignace Guillotin actually opposed the death penalty? Another noteable case is that of Maria Agnesi, an Italian woman of privileged, but not noble, birth who excelled at mathematics and philosophy during the 18th century. In her treatise of 1748, Instituzioni Analitche, she provided a comprehensive summary of the current state of knowledge concerning both integral calculus and differential equations. Later in life she was elected to the Balogna Academy of Sciences and, in 1762, was consulted by the University of Turin for an opinion on the work of an up-and-coming French mathematician named Joseph-Louis Lagrange. Yet what Maria Agnesi is best remembered for now is a geometric curve to which she !! lent her name. That curve, given by the equation ! = , for some positive constant !, was !!!!! known to Italian mathematicians as la versiera di Agnesi. In 1801, John Colson, the Cambridge Lucasian Professor of Mathematics, misread the curve’s name during translation as l’avversiera di Agnesi. An unfortunate mistake, for in Italian “l’avversiera” means “wife of the devil”. Ever since, that curve has been known to English geometers as the “Witch of Agnesi”. I suspect Maria, who spent the last days of her life as a nun in Milan, would have been displeased.
    [Show full text]
  • Maria Gaetana Agnesi)
    Available online at www.sciencedirect.com Historia Mathematica 38 (2011) 248–291 www.elsevier.com/locate/yhmat Calculations of faith: mathematics, philosophy, and sanctity in 18th-century Italy (new work on Maria Gaetana Agnesi) Paula Findlen Department of History, Stanford University, Stanford, CA 94305-2024, USA Available online 28 September 2010 Abstract The recent publication of three books on Maria Gaetana Agnesi (1718–1799) offers an opportunity to reflect on how we have understood and misunderstood her legacy to the history of mathematics, as the author of an important vernacular textbook, Instituzioni analitiche ad uso della gioventú italiana (Milan, 1748), and one of the best-known women natural philosophers and mathematicians of her generation. This article discusses the work of Antonella Cupillari, Franco Minonzio, and Massimo Mazzotti in relation to earlier studies of Agnesi and reflects on the current state of this subject in light of the author’s own research on Agnesi. Ó 2010 Elsevier Inc. All rights reserved. Riassunto La recente pubblicazione di tre libri dedicati a Maria Gaetana Agnesi (1718-99) è un’occasione per riflettere su come abbiamo compreso e frainteso l’eredità nella storia della matematica di un’autrice di un importante testo in volgare, le Instituzioni analitiche ad uso della gioventù italiana (Milano, 1748), e una fra le donne della sua gener- azione più conosciute per aver coltivato la filosofia naturale e la matematica. Questo articolo discute i lavori di Antonella Cupillari, Franco Minonzio, e Massimo Mazzotti in relazione a studi precedenti, e riflette sullo stato corrente degli studi su questo argomento alla luce della ricerca sull’Agnesi che l’autrice stessa sta conducendo.
    [Show full text]
  • A B C D 317 E F G H I
    318 Index dot notation, 130 alternating, 269 Leibniz notation, 47 Hooke’s Law, 209 second, 111, 112 hyperbolic cosine, 100 difference quotient, 30 hyperbolic sine, 100 differentiable, 53 hypercycloid, 248 differential, 142 hypocycloid, 248 discrete probability, 220 divergence test, 262 I divergent sequence, 255 Index divergent series, 260 implicit differentiation, 87 domain, 21 implicit function, 88 dot notation, 130 improper integral, 217 convergent, 217 E diverges, 217 indefinite integral, 157 ellipse independent variable, 22 area, 313 inflection point, 113 equation of, 314 integral ellipsoid, 236 improper, 217 error estimate, 183 indefinite, 157 A completing the square, 313 escape velocity, 219 of sec x, 173 composition of functions, 25, 43, 65 of sec3 x, 173 absolute extremum, 117 exp function, 83 concave down, 112 expected value, 221 properties of, 161 algebraic precedence, 313 concave up, 112 exponential distribution, 225 integral sign, 153 alternating harmonic series, 269 cone exponential function, 80 integral test, 266 antiderivative, 153 lateral area, 314 Extreme Value Theorem, 119 integration arc length, 230 surface area, 314 by parts, 175 arccosine, 94 volume, 314 Intermediate Value Theorem, 53 arcsine, 92 continuous, 53 F interval of convergence, 280 area convergent sequence, 255 inverse function, 80 Fermat’s Theorem, 106 between curves, 189 convergent series, 260 inverse sine, 92 frustum, 232 under curve, 149 coordinates involute, 248 asymptote, 21, 114 Cartesian, 237 function, 20 bounded, 51 converting rectangular to polar, 238
    [Show full text]
  • Mathematics and Statistics at the University of Vermont
    MATHEMATICS AND STATISTICS AT THE UNIVERSITY OF VERMONT: 1800–2000 Two Centuries of Achievement March 2018 Overleaf: Lord House at 16 Colchester Avenue, main office of the Department of Mathematics and Statistics since the 1980s. Copyright c UVM Department of Mathematics and Statistics, 2018 Contents Preface iii Sources iii The Administrative Support Staff iv The Context of UVM Mathematics iv A Digression: Who Reads an American Book? iv Chapter 1. The Early Years, 1800–1825 1 1. The Curriculum 2 2. JamesDean,1807–1814and1822–1825 4 3. Mathematical Instruction 20 4. Students 22 Chapter2. TheBenedictineEra,1825–1854 23 1. George Wyllys Benedict 23 2. George Russell Huntington 25 3. Farrand Northrup Benedict 25 4. Curriculum 26 5. Students 27 6. The Mathematical Environment 28 7. The Williams Professorship 30 Chapter3. AGenerationofStruggle,1854–1885 33 1. The Second Williams Professor 33 2. Curriculum 34 3. The University Environment 35 4. UVMBecomesaLand-grantInstitution 36 5. Women Come to UVM 37 6. UVM Reaches Out to Vermont High Schools 38 7. A Digression: Religion at UVM 39 Chapter4. TheBeginningsofGrowth,1885–1914 41 1. Personnel 41 2. Curriculum 45 3. New personnel 46 Chapter5. AnotherGenerationofStruggle,1915–1954 49 1. Other New Personnel 50 2. Curriculum 53 3. The Financial Situation 54 4. The Mathematical Environment 54 5. The Kenney Award 56 i ii CONTENTS Chapter6. IntotheMainstream:1955–1975 57 1. Personnel 57 2. Research. Graduate Degrees 60 Chapter 7. Statistics Comes to UVM 65 Chapter 8. UVM in the Worldwide Community: 1975–2000 67 1. Reorganization. Lecturers 67 2. Reorganization:ResearchGroups,1975–1988 68 3.
    [Show full text]
  • MAT 296 Problem Set 1 Summer 2016 Problem 1
    MAT 296 Problem Set 1 Summer 2016 Problem 1: Sequences Determine if the following sequences converge; if so, find their limit: 5n2 + n − 1 (a) a = n 2n3 + 2n2 − 5n − 2 3n4 + 1 (b) b = n 10n3 + 16n2 + 35n + 29 2n2 − n + 5 (c) c = n 3n2 + n − 6 3n+4 (d) d = n 5n−1 nπ (e) e = cos n 2 5 5 (f) fn = ln(3n − 2) − ln(2n + n − 2) π n (g) g = n 4 Problem 2: More Sequences Find the limits of the following sequence, if they converge. You may want to make reference to the previous problem. π n 2n2 − n + 5 (a) p = + n 4 3n2 + n − 6 2n2 − n + 5 nπ (b) q = cos n 3n2 + n − 6 2 3n+4 2n2 − n + 5 (c) r = · n 5n−1 3n2 + n − 6 3n+4 nπ (d) s = · cos n 5n−1 2 5n2 + n − 1 3n+4 nπ (e) t = ln(3n5 − 2) + + · cos − ln(2n5 + n − 2) n 2n3 + 2n2 − 5n − 2 5n−1 2 Problem 3: Divergence Test For each of the sequences from Problem 1, form an infinite series using each of them. For example, 1 X 5n2 + n − 1 the series for (a) would be . Of these newly formed series, to which do the 2n3 + 2n2 − 5n − 2 n=1 Divergence Test apply? Explain. 1 of 5 Problem 4: The Theory of Infinite Series 1 X (a) Does the following series converge: (−1)n n=0 1 X (b) Does the following series converge: (−1)n+1 n=0 1 X (c) Does the following series converge: (−1)n + (−1)n+1 n=0 (d) Is the following equality true? 1 1 1 X ? X X (−1)n + (−1)n+1 = (−1)n + (−1)n+1 n=0 n=0 n=0 Explain why or why not.
    [Show full text]
  • Maria Gaetana Agnesi: Female Mathematician and Brilliant Expositor of the Eighteenth Century
    1 Samantha Reynolds Maria Gaetana Agnesi: Female Mathematician and Brilliant Expositor of the Eighteenth Century University of Missouri—Kansas City Supervising Instructor: Richard Delaware [email protected] 9837 N. Highland Pl. Kansas City, MO 64155 Maria Gaetana Agnesi: Female Mathematician and Brilliant Expositor of the Eighteenth Century 2 Maria Gaetana Agnesi: Female Mathematician and Brilliant Expositor of the Eighteenth Century Drawing by Benigno Bossi (1727-1792) Courtesy of the Biblioteca Ambrosiana Maria Gaetana Agnesi: Female Mathematician and Brilliant Expositor of the Eighteenth Century 3 Introduction Maria Gaetana Agnesi is credited as being the first female mathematician of the Western world, which is quite an accomplishment considering that the time period in which she flourished was during the mid 1700s. The title is much deserved, as she is the author of the second Calculus textbook ever written. Yet much of her mathematical work is surrounded by conflicting opinions. An analysis of this text, Analytical Institutions, which includes authentic examples from which the reader may draw his or her own conclusions, will be presented later. Equally misunderstood are Agnesi’s intentions for entering the field of mathematics. In fact, this career of Maria’s came to a sudden halt in 1752. Clifford Truesdell perhaps says it best in that “the rule of Maria Gaetana’s life,… was passionate obedience” [8, p. 141]. This so clearly encapsulates her life and her motives for all that she did because at no matter what age she is spoken of, it is never Maria who comes first. Early Years Born May 16, 1718, Agnesi grew up in Milan, Italy, in what would today be considered an extremely upper-middle class household.
    [Show full text]
  • Maria Agnesi: Female Mathematician of 18Th‐Century Italy
    Watson 1 MARIA AGNESI: FEMALE MATHEMATICIAN OF 18TH‐CENTURY ITALY A RESEARCH PAPER SUBMITTED TO DR. SLOAN DESPEAUX DEPARTMENT OF MATHEMATICS WESTERN CAROLINA UNIVERSITY BY HANNAH WATSON Watson 2 In the eighteenth century, Italy seems to have been the place for change, especially for great female minds like Maria Gaetana Agnesi. It was during this century that much of what had previously shaped the lives of not only Italian women, but also women across Europe, began to shift. So who was Maria Agnesi, and what role did she play in this social and professional transformation in Italy? More specifically, how could she as a woman become a distinguished mathematician and author of a calculus textbook, at a time when women were not supposed to work outside the home? To answer this, it is necessary to delve into the history of her life and compare her story to that of the lives around her. Research shows that in fact, her success is due to a combination of factors, one being her father’s position at a university, which predisposed Maria to a life of education, curiosity, and a surplus of academic mentors. She was also fortunate to live and work at the time of an international debate about women’s rights, that also played a large role in the Catholic Enlightenment.1 Maria’s unique circumstances, in conjunction with her own brilliance, help to explain how she was able to achieve so much and raise the bar for all women. To fully understand the context of Maria’s accomplishments, one should investigate what the norm for females in Europe was prior to the start of the eighteenth century.
    [Show full text]
  • Notes on Vector Valued Functions and Curves
    CURVES AND MOTION VIA VECTOR VALUED FUNCTIONS A. HAVENS 0. Notes on these Notes These notes cover material spanning several lectures, focusing on curves and functions whose outputs are viewed as position vectors. The notes also contain a few additional remarks on curves and examples that could not be covered in class, as well as some good exercises. A separate, optional, and more challenging set of notes has been made to illuminate the meanings of various geometric objects associated to curves, such as vector and scalar curvature, torsion, and natural frames: see Curvature, Natural Frames, and Acceleration for Plane and Space Curves as linked on the course website. 1. Vector Valued Functions and Curves 1.1. Describing Curves Parametrically. One often first encounters plane curves as graphs of continuous, single variable real-valued functions, and subsequently is introduced to implicit curves. For example, you are probably familiar with the `[' shape of the graphs of functions y = x2n, 2 n = 1; 2 :::, and you have surely encountered the unit circle as the locus of all points (x; y) 2 R satisfying x2 + y2 = 1, which is likely the first implicitly defined curve to become familiar to you. One can also take another approach: introduce a parameter, and describe each of the constituent entries of the ordered pair (x; y) as functions of this common parameter, resulting in a parametric description of a curve. For example, the unit circle can be described by many parameterizations, but perhaps the simplest descriptions are x(θ) = cos θ ; y(θ) = sin θ ; 0 ≤ θ ≤ 2π ; or x(t) = sin(t) ; y(t) = cos(t) ; t 2 R : Exercise 1.1.
    [Show full text]