Anatomy, Physiology and Pathology of the Thyroid Gland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Download PDF Version
FIG. 4–1 Dorsal aspect of the 10-somite embryo. 24 IV the fourth week of life somite and neural tube period I. EMBRYO PROPER caudal openings of the tube are called neuropores. The rostral neuropore closes between 18 and 20 somites. The caudal neuro- A. EXTERNAL APPEARANCE pore closes at 25 somites. Figs. 4–1, 4–2 1. The specimens measure approximately 1 to 3.5 mm in length Brain and have 1 to 29 pairs of somites. Three brain subdivisions are present in the cranial portion of the 2. The head and tail folds move the attachment of the amnion tube and are named, from cranial to caudal, the prosencephalon, to the ventral side of the head and tail regions, respectively. mesencephalon and rhombencephalon. The boundary between the The lateral body folds move the amnion attachment to the pros- and mesencephalon is demarcated by a ventral bend, called ventrolateral surface in the midportion of the embryo. the cephalic flexure. An external groove and a prominent swelling 3. The head region is elevated above the yolk sac by the large on the medial surface of the neural plate may also demarcate the pericardial sac, the midportion lies upon the yolk sac and the boundary. The boundary between the mes- and rhombencephalon caudal region is curved toward the yolk sac. is distinguished by a groove on the medial and lateral surfaces of 4. The embryo possesses somites, which are apparent through the neural plate or tube. the ectoderm. 5. The neural tube develops from the neural plate and remains Prosencephalon open at each end for 2 to 4 days. -
Embryology of Branchial Region
TRANSCRIPTIONS OF NARRATIONS FOR EMBRYOLOGY OF THE BRANCHIAL REGION Branchial Arch Development, slide 2 This is a very familiar picture - a median sagittal section of a four week embryo. I have actually done one thing correctly, I have eliminated the oropharyngeal membrane, which does disappear sometime during the fourth week of development. The cloacal membrane, as you know, doesn't disappear until the seventh week, and therefore it is still intact here, but unlabeled. But, I've labeled a couple of things not mentioned before. First of all, the most cranial part of the foregut, that is, the part that is cranial to the chest region, is called the pharynx. The part of the foregut in the chest region is called the esophagus; you probably knew that. And then, leading to the pharynx from the outside, is an ectodermal inpocketing, which is called the stomodeum. That originally led to the oropharyngeal membrane, but now that the oropharyngeal membrane is ruptured, the stomodeum is a pathway between the amniotic cavity and the lumen of the foregut. The stomodeum is going to become your oral cavity. Branchial Arch Development, slide 3 This is an actual picture of a four-week embryo. It's about 5mm crown-rump length. The stomodeum is labeled - that is the future oral cavity that leads to the pharynx through the ruptured oropharyngeal membrane. And I've also indicated these ridges separated by grooves that lie caudal to the stomodeum and cranial to the heart, which are called branchial arches. Now, if this is a four- week old embryo, clearly these things have developed during the fourth week, and I've never mentioned them before. -
Endocrine Pathology Crines… Molecular Signaling Endocrine Pathology Endocrine Pathology
Endocrine Pathology Crines… Molecular signaling Autocrine Paracrine Endocrine Endocrine Pathology Endocrine Pathology Cell signaling system Too much hormone activity Surface receptors Too little hormone activity cAMP and tyrosine kinase system Autoimmune destruction Cytoplasmic receptors Inflammatory destruction Penetrate cell membrane Tumor or vascular destruction Gene activation -> transcription -> translation Space occupying lesions (tumors) Intranuclear receptors Malignant Gene activation -> transcription -> translation Benign 1 Endocrine Pathology Endocrine Pathology All parts of the endocrine system interconnect. All parts of the endocrine system interconnect Pituitary Pathology Too much Too little Especially space occupying lesions The Basics Pituitary Vascular Signaling proteins Anterior are release in hypothalmus. Comes from GI Travel by blood to Controlled by hypothalmus anterior pituitary Cause release of Posterior many activating Hormones orginate hormones further up. System of amplification 2 Pituitary Control Space Occupying Lesions Tumors Embryonic rests Squeeze gland out of existence. Generalized failure Visual field changes Visual Fields Loss of temporal fields. Nasal retina Damage to decusating optic nerve fibers 3 Acromegaly Pituitary Adenomas Rare Growth hormone excess after closing Make nothing or of epiphyses. Prolactin Periosteal bone ACTH, GH,TSH are very rare growth. More often end up with pituitary Diabetes failure. Prognathism Squeeze the daylights out of the -
11 Hormonal Coordination Table 1 the Main Roles of Hormones Produced by the Different Endocrine Glands
B 11 Hormonal ■ B11 Hormonal coordination Table 1 The main roles of hormones produced by the different endocrine glands Endocrine gland Role of the hormones coordination Pituitary Controls growth in children Stimulates the thyroid gland to make thyroxine to control the rate of metabolism 11.1 Principles of hormonal control In women – stimulates the ovaries to produce and release eggs and make the female sex hormone oestrogen Learning objectives In Chapter B 10 you discovered how the nervous system acts to coordinate In men – stimulates the testes to make sperm and the male sex After this topic, you should know: and control your body, reacting in seconds to changes in your internal and hormone testosterone external environments. However, it is very important that your body acts as Thyroid Controls the metabolic rate of the body ● what a hormone is a coordinated whole, not just from minute to minute but from day to day Pancreas Controls the levels of glucose in the blood Figure 2 It isn’t just humans who need ● the main organs of the endocrine and year to year throughout your life. You have a second coordination and hormones – without the hormones from system Adrenal Prepares the body for stressful situations – ‘fight or flight’ response control system to help with this – the endocrine system. their thyroid glands, these tadpoles will ● the role of the pituitary gland. Ovaries Controls the development of the female secondary sexual characteristics and is involved in the menstrual cycle never become frogs The endocrine system Testes Controls the development of the male secondary sexual The endocrine system is made up of glands that secrete chemicals called characteristics and is involved in the production of sperm hormones directly into the bloodstream. -
BGD B Lecture Notes Docx
BGD B Lecture notes Lecture 1: GIT Development Mark Hill Trilaminar contributions • Overview: o A simple tube is converted into a complex muscular, glandular and duct network that is associated with many organs • Contributions: o Endoderm – epithelium of the tract, glands, organs such as the liver/pancreas/lungs o Mesoderm (splanchnic) – muscular wall, connective tissue o Ectoderm (neural crest – muscular wall neural plexus Gastrulation • Process of cell migration from the epiblast through the primitive streak o Primitive streak forms on the bilaminar disk o Primitive streak contains the primitive groove, the primitive pit and the primitive node o Primitive streak defines the body axis, the rostral caudal ends, and left and right sides Thus forms the trilaminar embryo – ectoderm, mesoderm, endoderm • Germ cell layers: o ectoderm – forms the nervous system and the epidermis epithelia 2 main parts • midline neural plate – columnar epithelium • lateral surface ectoderm – cuboidal, containing sensory placodes and skin/hair/glands/enamel/anterior pituitary epidermis o mesoderm – forms the muscle, skeleton, and connective tissue cells migrate second migrate laterally, caudally, rostrally until week 4 o endoderm – forms the gastrointestinal tract epithelia, the respiratory tract and the endocrine system cells migrate first and overtake the hypoblast layer line the primary yolk sac to form the secondary yolk sac • Membranes: o Rostrocaudal axis Ectoderm and endoderm form ends of the gut tube, no mesoderm At each end, form the buccopharyngeal -
Development Of, Tongue, Thyroid, Sinus and Salivary Glands
Development of, tongue, thyroid, sinus and salivary glands Development of tongue • 1st ,2nd, 3rd, 4th pharyngeal arches • Median swelling- tuberculum impar • Two lateral swellings –lingual • Caudal medial swelling- hypobrachial eminence Anterior 2/3 of the tongue: • Formation: median and lateral tongue buds that arise from the floor of the 1st pharyngeal arch and then grow rostrally. • thus it is formed by fusion of -- • tuberculum impar , • two lingual swellings • The tongue buds are then invaded by occipital myoblasts that form the intrinsic muscles of the tongue. • Thus anterior 2/3rd of tonguer is supplied by lingual branch of mandibular nerve ,(post trematic nerve of this arch) and chorda tympani nerve( pretrematic nerve of arch) • posterior 1/3rd of tongue is supplied by glossopharyngeal nerve ( nerve of 3rd arch) • Most posterior 1/3rd of tongue is supplied by superior laryngeal nerve ( nerve of 4th arch) • Musculature of tongue is derived from occipital myotomes --explains nerve supply by hypoglossal nerve, nerve of these myotomes. Posterior 1/3rd of tongue • formed from cranial part of hypobranchial eminence ( copula) • the second arch mesoderm gets buried below the surface . • the third arch mesoderm grows over it to fuse with mesoderm of first arch . • posterior one third of tongue thus formed by third arch mesoderm. • posterior most part of tongue is derived from fourth arch • Thus swellings from the floor of the 3rd and 4th pharyngeal arches overgrow the 2nd arch and fuse with the anterior 2/3 of the tongue. • posterior 1/3 of the tongue is derived from the 3rd and 4th arches • Intrinsic musculature is also derived from occipital myoblasts. -
Endocrine System with Special Reference to Thyroid Gland
Odisha Review December - 2012 Endocrine System With Special Reference to Thyroid Gland Soma Mishra Endocrine system consisting of a group of ductless glands viz. pituitary, thyroid, parathyroid, pineal, thymus, gonads, pancreas, adrenal etc. plays a very vital role in governing human behavior. Thyroid is one of the most important glands that control body’s metabolism and calcium level. It secretes iodothyronines that are (tri-iodo- thyronine, thyroxine) and calcitonin. Its secretion is mainly regulated by TRH (thyrotropin releasing hormone) and TSH (thyroid stimulating hormone). It helps in growth (physical, sexual, mental) – development- metamorphosis and calorigenesis- metabolism. The status of thyroid gland may be Euthyroid or Hypothyroid or Hyperthyroid. Hypothyroidism includes cretinism in children and myxoedema in adults. Common causes of hyperthyroid state are Grave’s disease, multinodular goiter, thyroiditis, etc. Any enlargement of thyroid gland, regardless of cause, is called goiter. Some common investigations for Introduction thyroid diseases are estimation of serum T3, T4 The endocrine system or hormonal system and TSH, cholesterol, radioiodine uptake, thyroid is a complex system composed of a group of imaging, etc. Common drug used in ductless glands known as endocrine glands that hypothyroidism is eltroxin, hyperthyroidism is pour their secretions i.e. hormones directly into carbimazole and iodine supplementation in goiter. blood for passage to different body organs known This paper presents a full picture of thyroid gland, as target organs in order to control their its functioning, disorders, and treatments which is functioning, metabolism, cell permeability, growth, very significant for human survival. differentiation and stress conditions. 54 December - 2012 Odisha Review The endocrine system includes the Diseases of the endocrine system result pituitary gland, thyroid gland, parathyroid glands, from too much or too little hormone secretion or adrenal gland, pancreas, ovaries and testes. -
Pelipatan Tubuh, Perkembangan Sistem Pernafasan Dan Pencernaan
Pelipatan tubuh, Perkembangan Sistem Pernafasan dan Pencernaan Lab. Embriologi FKH-IPB Isi • Pendahuluan Perkembangan usus primitif (Endoderm) • Pelipatan tubuh embrio (embryonic folding) dan pembentukan rongga tubuh • Perkembangan daerah faring • Perkembangan saluran pernafasan • Perkembangan saluran pencernaan • Contoh-contoh malformasi kongenital Pendahuluan • Pelipatan tubuh embrio (embryonic folding) - Embrio flat silinder - Membentuk usus primitif (mulut sampai anus) - Reposisi struktur, mis: posisi jantung 1. Pelipatan cranial 2. Pelipatan caudal 3. Pelipatan lateral Pendahuluan ENDODERM USUS PRIMITIF: 1.TRACT. DIGESTIVUS (ORGAN PENCERNAAN) 2. TRACT. RESPIRATORIUS (ORGAN PERNAFASAN) Pendahuluan USUS PRIMITIF: USUS DEPAN = FOREGUT STOMODEUM USUS TENGAH = MIDGUT KANTUNG KUNING TELUR USUS BELAKANG = HINDGUT KLOAKA PELIPATAN TUBUH (PEMBENTUKAN RONGGA TUBUH) Pelipatan Tubuh Embrio Perk. Usus primitif Usus depan (foregut) Usus belakang (hindgut) Usus tengah (mid gut) Stomodeum (rongga mulut) Membran oropharyngeal Proctodeum Membran anal Endoderm Endoderm Pelipatan endoderm (usus depan) buluh endoderm (usus depan) Mesenterium Perk. Usus primitif Penggantung usus (mesenterium) Meso- Meso- Meso- gastricum duodenum duodenum Diafragma Perk. Diafragma Septum transversum Membran pleuroperitoneal Esophageal mesoderm Dinding tubuh (paraxial mesoderm) Rongga Pleura Perk. Rongga Pleura Intraembryonic coelom Pleuropericardial fold Pleura cavity Pericardial cavity Oesophagus Rongga pleura Tunas paru-paru PERKEMBANGAN PHARYNX -
Dual Thyroid Ectopia (Lingual and Subhyoid)
Case Report Mohammed H. Al-Akeely, MBBS, ABS. ABSTRACT Ectopic thyroid gland is a rare embryological fault of thyroid development. Dual ectopic thyroid is even more rare and only 8 cases have been reported in the literature. The author presents a case of dual ectopic thyroid in a 16-year-old boy with an anterior neck mass, which is gradually growing in size particularly in the last 2 years. The initial diagnosis was thyroglossal duct cyst. Thyroid function test revealed elevated thyroid-stimulating hormone. Ultrasound of the neck did not show thyroid gland in its normal pretracheal position. Thyroid scan (Technetium 99) revealed the diagnosis of dual thyroid ectopia (lingual and subhyoid). Saudi Med J 2003; Vol. 24 (9): 1021-1023 n the third to fourth weeks of embryonic life, the Case Report. A 16-year-old boy was admitted I thyroid gland appears as a midline diverticulum in the electively with a 3 x 3 cm firm swelling in the subhyoid pharyngeal wall between the first and second branchial region, which was present for 6 years but has grown arches.1 The anterior two thirds of the tongue develops larger in the past 2 years (Figure 1). He had no pressure from the tuberculum impar while the posterior one third symptoms (dyspnea, dysphagia, dysphonia). His thyroid develops from the hypobranchial eminence and the function test revealed normal triiodothyronine (T3) and junction forms the future foramen caecum at which the thyroxine (T4) but elevated thyroid-stimulating hormone thyroid gland develops.1 The thyroid diverticulum (TSH) 9 mmol (NR 0.27-4.2 mmol). -
Endocrine System
Human Body Series Endocrine System Quiz Answer Key 1. List five functions of the endocrine system: Any five of the following: regulating mood, growth and development; tissue function; the fight or flight response; metabolism; blood glucose levels; sexual function and reproductive processes. 2. In general, the endocrine system is in charge of body processes that happen slowly, such as cell growth. Faster processes like breathing and body movement are controlled by the nervous system . 3. The brain contains these three glands: pituitary gland, hypothalamus , pineal gland (or pineal body) . 4. Hormones are chemical messengers that transfer information and instructions from one set of cells to another. 5. Once a hormone is secreted, it travels from the endocrine gland that produced it through the bloodstream to the cells designed to receive its message. These cells are called target cells . 6. The pancreas produces two important hormones, insulin and glucagon . 7. If the pancreas doesn’t produce enough insulin, the result is diabetes . 8. Parathyroid hormone controls the level of calcium in the blood. 9. The thyroid gland is involved in metabolism , the process by which the fuel in the food we eat is converted into cellular energy. 10. When hormone levels reach a certain normal amount in the blood, the endocrine system has a built-in turnoff process. It is called negative feedback system . 11. Endocrine glands release more than 20 major hormones directly into the bloodstream. 12. The pineal gland secretes melatonin . 13. If the pituitary glands release hormones that stimulate the gonads to produce sex hormones too early, some kids may experience precocious puberty and begin to go through puberty at a very young age. -
The Endocrine System Dr
The Endocrine System Dr. Ali Ebneshahidi Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Endocrine System . The endocrine system interacts with the nervous system to coordinate and integrate body activities by means of hormones . Endocrine tissues and organs secrete hormone into body fluids (mainly blood and lymph) directly using diffusion. Exocrine tissues, such as salivary glands, and sebaceous glands, secrete chemical substances through ducts into an open space. Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Five major functions of hormones . a) Regulate metabolic processes (e.g. thyroid hormones). b) Control the rate of chemical reactions (e.g. growth hormone). c) Aid in the transport of substances across the cell membrane of target cells (e.g. insulin and glucagon). d) Regulate water and electrolyte balances (e.g. antidiurectic hormone, calcitonin, and aldosterone). e) Play a vital role in reproduction, growth and development (e.g. estrogens , progesterone, and testosterone). Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Major Endocrine Organs Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Chemistry of Hormones . Hormones are organic compounds secreted by endocrine glands, that have a potent effect in target cells Two types of hormones: . a) Protein hormones: made of amino acids joined by peptide bonds. fat – insoluble; as a result cannot diffuse across the membrane of target cells . most hormones belong to this group except hormones secreted by the gonads (testis and ovary) and the adrenal cortex. b) Steroid hormones: made of fatty acids using cholesterol as a functional group. Fat-soluble; as a result can diffuse into target cells .