Supercomputers: Government Plans and Policies

Total Page:16

File Type:pdf, Size:1020Kb

Supercomputers: Government Plans and Policies Supercomputers: Government Plans and Policies March 1986 NTIS order #PB86-205218 Recommended Citation: U.S. Congress, Office of Technology Assessment, Supercomputers: Government Plans & Policies–A Background Paper, OTA-BP-CIT-31 (Washington, DC: U.S. Government Printing Office, March 1986). Library of Congress Catalog Card Number 86-600508 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402 Foreword Supercomputers: Government Plans and Policies, presents a review of the Fed- eral Government’s large-scale computing programs and examines the network- ing and software programs within selected agencies. Certain management and institutional questions pertinent to the Federal efforts are also raised and discussed. This background paper was requested by the House Committee on Science and Technology. Within the past 2 years, there has been a notable expansion in the Federal supercomputer programs and this increase prompted the committee’s request for a review of issues of resource management, networking, and the role of supercomputers in basic research. OTA gratefully acknowledges the contributions of the many experts, within and outside the government, who served as workshop participants, contractors, and reviewers of this document. As with all OTA reports, however, the content is the responsibility of OTA and does not necessarily constitute the consensus or endorsement of the workshop participants or the Technology Assessment Board. Director .,. Ill OTA Project Staff—Supercomputers: Government Plans and Policies John Andelin, Assistant Director, OTA Science, Information, and Natural Resources Division Frederick W. Weingarten, Communication and Information Technologies Program Manager Project Staff Prudence S. Adler, Study Director Contractor Susan P. Walton, Editor Administrative Staff Elizabeth A. Emanuel Shirley Gayheart* Patricia M. Keville Audrey Newman *Deceased, Dec. 1 I, 1985. iv Supercomputers Workshop Participants Kent K. Curtis Paul Schneck Director Director Division of Computer Research Supercomputing Research Center National Science Foundation Institute for Defense Analyses James Decker Jacob Schwartz Deputy Director Director U.S. Department of Energy Division of Computer Sciences Courant Institute of Mathematical Sidney Fernbach Sciences Consultant New York University Control Data Corp. Joe Wyatt Robert Gillespie Chancellor Gillespie, Folkner & Associates Vanderbilt University Contractors Ira Fuchs Robert Gillespie Educom Gillespie, Folkner, & Associates Reviewers Albert Brenner Sidney Fernbach Director Consultant Consortium for Scientific Computing Control Data Corp. John Connolly Craig Fields Director Deputy Director Office of Advanced Scientific Computing Engineering Applications Office National Science Foundation Defense Advanced Research Projects Agency Kent K. Curtis Director Robert Gillespie Division of Computer Research Gillespie F’olkner & Associates National Science Foundation Randy Graves James Decker Deputy Director Deputy Director Aerodynamics Division U.S. Department of Energy National Aeronautics and Space Administration Earl Dowdy Research Analyst Dennis Jennings Program Director for Networking David J. Farber National Science Foundation Department of Electrical Engineering University of Delaware Sid Karin Jacob Schwartz Director Director Advanced Scientific Computer Center Division of Computer Science Courant Institute of Mathematical Lawrence Landweber Sciences Department of Computer Science New York University University of Wisconsin, Madison Joe Wyatt Lewis Peach Chancellor Numerical Aerodynamics Simulation Vanderbilt University Program National Aeronautics and Space Administration Paul Schneck Director Supercomputing Research Center Institute for Defense Analyses vi Contents Page INTRODUCTION. 1 PRINCIPAL FINDINGS . 4 NATIONAL POLICY . 6 NATIONAL GOALS . 8 CURRENT FEDERAL PROGRAMS . .......11 National Science Foundation . .......11 National Aeronautics and Space Administration . .13 Department of Energy . .......14 Supercomputing Research Center, National Security Agency . .. .....15 Defense Advanced Research Projects Agency. ...16 NETWORKS . .......17 National Science Foundation . .17 Department of Energy . ...18 National Aeronautics and Space Administration . .19 SOFTWARE DESIGN AND DEVELOPMENT . .......20 National Science Foundation . ....21 National Aeronautics and Space Administration . .21 Supercomputing Research Center . .......21 Department of Energy . ...21 ISSUES:MANAGEMENT AND INSTITUTIONAL QUESTIONS ......22 Coordination. .......22 Center Management . .....23 Problems and Prospects for Software Development . .......25 Network Design and Development . .......27 Tables Table No. Page l. Partial List of Problems/Applications That Will Benefit From Use of Large-Scale Facilities . 9 2. NSF/OASC Budget. .....11 3. NAS Development Budget . .......14 4.DOE Budget . .......15 5. Defense Advanced Research Projects Agency Budget. ..16 6.DOE Network Budget . .19 ‘7.NASA Network NAS Budget . .......19 Figures Figure No. Page l. Current and Projected Supercomputers, 1960-90 . 2 2. Range of Federal Policies Possible With a Supercomputer 200 Times the Current Capabilities . ..10 vii INTRODUCTION The Office of Technology Assessment (OTA) the von Neumann design. Called “vector” ma- recently completed a report entitled Informa- chines, they gain their speed by breaking up tion Technology R&D: Critical Trends and Is- computational tasks (such as addition and mul- sues. This report explored the structure and tiplication) into separate “pipelines,” which al- orientation of selected foreign programs, is- lows certain problems to be executed far faster. sues of manpower, institutional change, new (See figure 1.) research organizations developing out of Bell Most computer scientists have concluded Laboratories, and trends in science and tech- nology policy. Four specific areas of research: that the sequential, von Neumann design can no longer sustain the rapid growth to which advanced computer architecture, artificial in- we have become accustomed (though compo- telligence, fiber optics, and software engineer- ] ing were also examined. To supplement this nent speeds will continue to improve). They are looking elsewhere for new design ideas, and earlier work, the House Committee on Science their interest has turned to parallelism. In a and Technology requested that OTA examine parallel machine, rather than one processor issues of resource management, networking, working sequentially on the steps of solving and the role of supercomputers in basic re- a problem, many processors work simultane- search. This background paper will explore is- sues raised in the earlier R&D assessment and ously on the computation. This interest in par- allel design is based on three propositions: examine new and ongoing Federal programs in large-scale computer research. 1. the parallel computer will theoretically be far more powerful than the current von Supercomputer is the term applied to the Neumann design; class of the most powerful computers available 2. the parallel multiprocessor could be less at any particular time. The cost/performance ratio of all classes of computers, from the costly for a given task, especially when largest to the smallest, continues to decrease utilizing mass production technologies; and rapidly, and today’s desk-top computer has parallel architectures will achieve higher the power that years ago was available only 3. — computational speeds. in mainframes. Speed is gained both by im- proving the logical design of the computer and As the Federal Government sponsors more by making electronic components of the ma- and more research in parallel computation, it chine operate faster. Hence, each generation is important to recognize this new design of supercomputers has tested many new de- direction as a key component of the govern- sign ideas and component technologies that ment’s computer research effort. At the same were later introduced in smaller, less expen- time, it must be recognized that computer sive machines. scientists and mathematicians are only begin- ning to understand how to use optimally the Since the 1950s most large computers have types of highly parallel designs that computer shared an architecture named for John von architects are exploring. Because of the grow- Neumann, a prominent mathematician who ing importance of parallel computation, the played a major role in the invention and de- terms “largescale computing” and “advanced velopment of the digital computer. In the von scientific computing’ refer in this background Neumann architecture, data and program in- structions both reside in memory, and instruc- paper to both current vector supercomputers tions are acted on one by one, sequentially by that employ von Neumann architecture and the “processor” (other parts are the “control” systems based on multiprocessor technologies. and the ‘‘memory’ ‘). Many of the supercom- ‘U.S. Congress, office of TechnoIog~ Assessment, ,llicro- puters now popular, such as the Cray 1 and electronics Research and De\.elopment —A Background Paper, OTA-BP-CIT-40 (Washington, DC: [J. S, Government Printing the Cyber 205, are still based on variations of office, March 1986). 2 Figure l.— Current and Projected Supercomputers, 1960-90 I I I I I I 10’ ~ -Denelcc HEP 2 10’ ..,1 v Cray X-MP148 Cray-” 10 Approximate year of introduction ( I I 1 I 10 I r I 1 I 1 1960 1965 1970 1975 1980 1985 1990 2005 SOURCE Sidney Fernbach 3 Federal interest in largescale computing
Recommended publications
  • Annual Reports of FCCSET Subcommittee Annual Trip Reports To
    Annual Reports of FCCSET Subcommittee Annual trip reports to supercomputer manufacturers trace the changes in technology and in the industry, 1985-1989. FY 1986 Annual Report of the Federal Coordinating Council on Science, Engineering and Technology (FCCSET). by the FCCSET Ocnmittee. n High Performance Computing Summary During the past year, the Committee met on a regular basis to review government and industry supported programs in research, development, and application of new supercomputer technology. The Committee maintains an overview of commercial developments in the U.S. and abroad. It regularly receives briefings from Government agency sponsored R&D efforts and makes such information available, where feasible, to industry and universities. In addition, the committee coordinates agency supercomputer access programs and promotes cooperation with particular emphasis on aiding the establish- ment of new centers and new communications networks. The Committee made its annual visit to supercomputer manufacturers in August and found that substantial progress had been made by Cray Research and ETA Systems toward developing their next generations of machines. The Cray II and expanded Cray XMP series supercomputers are now being marketed commercially; the Committee was briefed on plans for the next generation of Cray machines. ETA Systems is beyond the prototype stage for the ETA-10 and planning to ship one machine this year. A ^-0 A 1^'Tr 2 The supercomputer vendors continue to have difficulty in obtaining high performance IC's from U.S. chip makers, leaving them dependent on Japanese suppliers. In some cases, the Japanese chip suppliers are the same companies, e.g., Fujitsu, that provide the strongest foreign competition in the supercomputer market.
    [Show full text]
  • The Paramountcy of Reconfigurable Computing
    Energy Efficient Distributed Computing Systems, Edited by Albert Y. Zomaya, Young Choon Lee. ISBN 978-0-471--90875-4 Copyright © 2012 Wiley, Inc. Chapter 18 The Paramountcy of Reconfigurable Computing Reiner Hartenstein Abstract. Computers are very important for all of us. But brute force disruptive architectural develop- ments in industry and threatening unaffordable operation cost by excessive power consumption are a mas- sive future survival problem for our existing cyber infrastructures, which we must not surrender. The pro- gress of performance in high performance computing (HPC) has stalled because of the „programming wall“ caused by lacking scalability of parallelism. This chapter shows that Reconfigurable Computing is the sil- ver bullet to obtain massively better energy efficiency as well as much better performance, also by the up- coming methodology of HPRC (high performance reconfigurable computing). We need a massive cam- paign for migration of software over to configware. Also because of the multicore parallelism dilemma, we anyway need to redefine programmer education. The impact is a fascinating challenge to reach new hori- zons of research in computer science. We need a new generation of talented innovative scientists and engi- neers to start the beginning second history of computing. This paper introduces a new world model. 18.1 Introduction In Reconfigurable Computing, e. g. by FPGA (Table 15), practically everything can be implemented which is running on traditional computing platforms. For instance, recently the historical Cray 1 supercomputer has been reproduced cycle-accurate binary-compatible using a single Xilinx Spartan-3E 1600 development board running at 33 MHz (the original Cray ran at 80 MHz) 0.
    [Show full text]
  • High Performance Computing for Science
    Index Algorithms: 8, 15, 21, 24 Design, high-performance computers: 21 Applications programs: 8 Digital libraries and archives: 8 ARPANET: 5, 10 Digital libraries, Global Digital Library: 8 Artificial intelligence: 8, 26 Education: 8, 10, 13 Bardon/Curtis Report: 9 EDUCOM, Networking and Telecommunications Bibliographic services: 10 Task Force: 10 Black hole: 5, 6 Electronic Bulletin boards: 4, 6, 10, 11, 12 information technologies: 4, 5, 6 Journals: 6 California Institute of Technology: 29 mail: 6, 10, 12 Central processing units (CPU): 22,24, 30 Executive Office of the President: 11 Committee on Science, Engineering, and Public Policy (COSEPUP): 9 Federal Coordinating Council for Science, Engineering, Computational science: 21, 22 and Technology (FCCSET): 1, 3 Computer Federal Government Alliant: 6 budget and funding: 12, 17, 18, 19, 20, 22 Apple Macintosh: 31 funding, individual research: 12, 19 connection machines: 31 policy: 12, 16, 20, 23, 26 Control Data ETA: 22 procurement regulations: 16 Control Data 6600: 26 research and development (R&D): 3, 4, 5, 8, 11, 15, 16, Cray 1: 31 17, 18, 24,25, 26, 32 Cray X-MP computer: 7, 19 responsibilities, 11, 13, 15 data flow processors: 31 FederaI High Performance Computing and Communications design: 22, 28, 29, 30, 32 Program (HPCC): 2, 18 fuzzy logic: 31 Fifth Generation Project: 2 hypercube: 29, 31 Floating point operations (FLOPS): 31 IBM Stretch: 27 Florida State University (FSU): 7, 18 IBM 3090: 30 Fluid flow: 6 IBM 3090 computer: 6 IBM 360: 27 Gallium Arsenide: 28-29 manufacture: 22
    [Show full text]
  • Nvidia Tesla Gpu Computing Processor Ushers in The
    For further information, contact: Andrew Humber NVIDIA Corporation (408) 486 8138 [email protected] FOR IMMEDIATE RELEASE: NVIDIA TESLA GPU COMPUTING PROCESSOR USHERS IN THE ERA OF PERSONAL SUPERCOMPUTING New NVIDIA Tesla Solutions Bring Unprecedented, High-Density Parallel Processing to the HPC Market “NVIDIA Tesla™ is going to make discovery of huge oil reserves possible through faster and more accurate interpretation of geophysical data.” —Steve Briggs, Headwave, Inc. “NVIDIA Tesla will give us a 100-fold increase in some of our programs, and this is on desktop machines where previously we would have had to run these calculations on a cluster.” —John Stone, University of Illinois Urbana-Champaign “NVIDIA Tesla has opened up completely new worlds for computational electromagnetics.” — Ryan Schneider, Acceleware SANTA CLARA, CA—JUNE 20, 2007—High-performance computing in fields like the geosciences, molecular biology, and medical diagnostics enable discoveries that transform billions of lives every day. Universities, research institutions, and companies in these and other fields face a daunting challenge—as their simulation models become exponentially complex, so does their need for vast computational resources. NVIDIA took a giant step in meeting this challenge with its announcement of a new class of processors based on a revolutionary new GPU. Under the NVIDIA® Tesla™ brand, NVIDIA will offer a family of GPU computing products that will place the power previously available only from supercomputers in the hands of every scientist and engineer. Today’s workstations will be transformed into “personal supercomputers.” “Today’s science is no longer confined to the laboratory; scientists employ computer simulations before a single physical experiment is performed.
    [Show full text]
  • A Personal Supercomputer for Climate Research
    CSAIL Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology A Personal Supercomputer for Climate Research James C. Hoe, Chris Hill In proceedings of SuperComputing'99, Portland, Oregon 1999, August Computation Structures Group Memo 425 The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139 A Personal Sup ercomputer for Climate Research Computation Structures Group Memo 425 August 24, 1999 James C. Ho e Lab for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 jho [email protected] Chris Hill, Alistair Adcroft Dept. of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge, MA 02139 fcnh,[email protected] To app ear in Pro ceedings of SC'99 This work was funded in part by grants from the National Science Foundation and NOAA and with funds from the MIT Climate Mo deling Initiative[23]. The hardware development was carried out at the Lab oratory for Computer Science, MIT and was funded in part by the Advanced Research Pro jects Agency of the Department of Defense under the Oce of Naval Research contract N00014-92-J- 1310 and Ft. Huachuca contract DABT63-95-C-0150. James C. Ho e is supp orted byanIntel Foundation Graduate Fellowship. The computational resources for this work were made available through generous donations from Intel Corp oration. We acknowledge Arvind and John Marshall for their continuing supp ort. We thank Andy Boughton and Larry Rudolph for their invaluable technical input. A Personal Sup ercomputer for Climate Research James C. Ho e Chris Hill, Alistair Adcroft Lab for Computer Science Dept. of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Massachusetts Institute of Technology Cambridge, MA 02139 Cambridge, MA 02139 jho [email protected] fcnh,[email protected] August 24, 1999 Abstract We describ e and analyze the p erformance of a cluster of p ersonal computers dedicated to coupled climate simulations.
    [Show full text]
  • 1. Types of Computers Contents
    1. Types of Computers Contents 1 Classes of computers 1 1.1 Classes by size ............................................. 1 1.1.1 Microcomputers (personal computers) ............................ 1 1.1.2 Minicomputers (midrange computers) ............................ 1 1.1.3 Mainframe computers ..................................... 1 1.1.4 Supercomputers ........................................ 1 1.2 Classes by function .......................................... 2 1.2.1 Servers ............................................ 2 1.2.2 Workstations ......................................... 2 1.2.3 Information appliances .................................... 2 1.2.4 Embedded computers ..................................... 2 1.3 See also ................................................ 2 1.4 References .............................................. 2 1.5 External links ............................................. 2 2 List of computer size categories 3 2.1 Supercomputers ............................................ 3 2.2 Mainframe computers ........................................ 3 2.3 Minicomputers ............................................ 3 2.4 Microcomputers ........................................... 3 2.5 Mobile computers ........................................... 3 2.6 Others ................................................. 4 2.7 Distinctive marks ........................................... 4 2.8 Categories ............................................... 4 2.9 See also ................................................ 4 2.10 References
    [Show full text]
  • Intellectual Personal Supercomputer for Solving R&D Problems
    ISSN 2409-9066. Sci. innov. 2016, 12(5): 15—27 doi: https://doi.org/10.15407/scine12.05.015 Khimich, O.M., Molchanov, I.M., Mova, V.І., Nikolaichuk, О.O., Popov, O.V., Chistjakova, Т.V., Jakovlev, M.F., Tulchinsky, V.G., and Yushchenko, R.А. Glushkov Institute of Cybernetics, the NAS of Ukraine, 40, Glushkov Av., Кyiv, 03187, Ukraine, tel.: +38 (044) 526-60-88, fax: +38 (044) 526-41-78 INTELLECTUAL PERSONAL SUPERCOMPUTER FOR SOLVING R&D PROBLEMS New Ukrainian intelligent personal supercomputer of hybrid architecture «Inparcom-pg» has been developed for mod- eling in defense industry, engineering, construction, etc. Intelligent software for automated analysis and numeric solution of computational problems with approximate data has been developed. It has been used for implementation of simulation applications in construction, welding, and underground filtration. Keywords: modeling, simulation, intelligent computer, hybrid architecture, computational mathematics, and approxi- mate data. Mathematical modeling and associated com- computer capabilities despite the multi-core pro- puter experiment is currently among the main cessors. GPGPU technology (from General-Pur- tools for studying various natural phenomena pose Graphic Processing Units) meets the de- and processes in society, economy, science and mand of accelerating calculations on multi-core technology. Simulation significantly reduces the computers for big numbers of similar arithmetic development time and cost of new objects in en- operations. It means general purpose computing ergy and resource-saving. It increases efficiency on video cards. of real test planning and makes it possible to con- The approach has bumped the development of sider several variants to select the best.
    [Show full text]
  • Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
    Bissland, Lesley (1996) Hardware and software aspects of parallel computing. PhD thesis http://theses.gla.ac.uk/3953/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Hardware and Software aspects of Parallel Computing BY Lesley Bissland A thesis submitted to the University of Glasgow for the degree of Doctor of Philosophy in the Faculty of Science Department of Chemistry January 1996 © L. Bissland 1996 Abstract Parallel computing has developed in an attempt to satisfy the constant demand for greater computational power than is available from the fastest processorsof the time. This has evolved from parallelism within a single Central ProcessingUnit to thousands of CPUs working together.The developmentof both novel hardware and software for parallel multiprocessor systemsis presentedin this thesis. A general introduction to parallel computing is given in Chapter 1. This covers the hardware design conceptsused in the field such as vector processors,array processors and multiprocessors. The basic principles of software engineering for parallel machines (i. e. decomposition, mapping and tuning) are also discussed.
    [Show full text]
  • Guide to Building Your Own Tesla Personal Supercomputer System Print PDF
    Guide to Building Your Own Tesla Personal Supercomputer System Print PDF This guide is to help you build a Tesla Personal Supercomputer. If you have experience in building systems/workstations, you may want to build your own system. Otherwise, the easiest thing is to buy an off-the-shelf Tesla Personal Supercomputer from one of these resellers. As with building any system, it is at your own risk and responsibility. There are many possible components to choose from when you build such a system. NVIDIA provides general guidance, but cannot test every configuration and combination of components. Minimum Specifications of Main Components These minimum specifications are for folks who want to label their system a “Tesla Personal Supercomputer”. You can of course build a workstation with fewer Tesla GPUs in it. 3x Tesla C1060 Quad-core CPU: 2.33 GHz (Intel or AMD) 12 GB of system memory (4GB of system memory per Tesla C1060) Linux 64-bit or Windows XP 64-bit System acoustics < 45 dBA 1200 W power supply Example of Complete 4 Tesla C1060 System Configuration This is a list of suggested components to build a 4x Tesla C1060 PSC. Several of these components such as the memory, CPU, power supply, case, can be substituted with an appropriate equivalent and suitable component. We do not certify any components for the PSC; this is left to the system builders. 4 Tesla C1060 Configuration Motherboard Tyan S7025 PCI-e bandwidth 4x PCI-e x16 Gen2 slots Tesla GPUs 4x Tesla C1060 On-board graphics (works with Linux, Windows requires NVIDIA GPU in Graphics
    [Show full text]
  • The Cydra 5 Departmental Supercomputer Design Philosophies, Decisions, and Trade-Offs
    The Cydra 5 Departmental Supercomputer Design Philosophies, Decisions, and Trade-offs B. Ramakrishna Rau, David W.L. Yen, Wei Yen, and Ross A. Towle Cydrome, Inc. 1 groups or departments of scien- work done at TRW Array Processors and tists and engineers.’ It costs about the To meet at ESL (a subsidiary of TRW). The poly- same as a high-end superminicomputer cyclic architecture3 developed at ($500,000 to $1 million), but it can achieve price-performance TRW/ESL is a precursor to the directed- about one-third to one-half the perfor- targets for a new dataflow architecture developed at mance of a supercomputer costing $10 to Cydrome starting in 1984. The common $20 million. This results from using high- minisupercomputer, a theme linking both efforts is the desire to speed, air-cooled, emitter-coupled logic team of computer support the powerful and elegant dataflow technology in a product that includes model of computation with as simple a many architectural innovations. scientists conducted hardware platform as possible. The Cydra 5 is a heterogeneous multi- The driving force behind the develop- processor system. The two types of proces- an exhaustive-and ment of the Cydra 5 was the desire for sors are functionally specialized for the enlightening- increased performance over superminis on different components of the work load numerically intensive computations, but found in a departmental setting. The investigation into the with the following constraint: The user Cydra 5 numeric processor, based on the should not have to discard the software, company’s directed-dataflow architec- relative merits of the set of algorithms, the training, or the ture,* provides consistently high perfor- available techniques acquired over the years.
    [Show full text]
  • Embedded Graphics Processing Units
    Embedded Graphics Processing Units by Patrick H. Stakem (c) 2017 Number 18 in the Computer Architecture Series 1 Table of Contents Introduction......................................................................................4 Author..............................................................................................5 The Architectures.............................................................................5 The ALU......................................................................................5 The FPU......................................................................................6 The GPU......................................................................................6 Graphics Data Structure........................................................11 Graphic Operations on data..................................................11 Massively Parallel Architectures....................................................14 Supercomputer on a Module..........................................................16 Embedded Processors....................................................................19 CUDA.......................................................................................23 GPU computing.........................................................................24 Massively Parallel Systems ...........................................................27 Interconnection of CPU/GPU's and memory on a single chip..27 Embedded GPU Products..............................................................28 Nvidia
    [Show full text]
  • Supercomputer at Affordable Price
    November 10, 2008 Supercomputer at Affordable Price Supermicro Cost-effective Personal Supercomputer in Volume Production SAN JOSE, Calif., Nov 10, 2008 /PRNewswire-FirstCall via COMTEX News Network/ -- Super Micro Computer, Inc. (Nasdaq: SMCI), a leader in application-optimized, high performance server solutions, today announced the addition of the world's most affordable personal supercomputer to its SuperBlade(R) family. Supermicro's new 10-blade server system based on the SBI-7125C-T3 blade provides the industry's most cost-effective blade solution, while also being the greenest personal supercomputer and office computing solution. Based on Supermicro's Server Building Block Solutions(R) architecture, the SBI-7125C-T3 can also be optimized for 14-blade configurations which are ideal for HPC and datacenter applications. (Photo: http://www.newscom.com/cgi-bin/prnh/20081110/CLM907 ) "Our new SuperBlade(R) solution can be a very cost-effective supercomputer. Now our customers can affordably enable a personal supercomputer next to their desks with the same computing power previously only available via large server installations," said Charles Liang, CEO and president of Supermicro. "This optimized blade solution features 93%* power supply efficiency, innovative and highly efficient thermal and cooling system designs, and industry-leading system performance-per-watt (290+ GFLOPS/kW*), making it the greenest, most power-saving blade solution." At an affordable price point, the highly efficient SuperBlade(R) minimizes operating costs to provide the best total cost of ownership (TCO) solution available. This solution will particularly enable customers with a limited budget who need high- performance computing. This supercomputer is ideal for scientists and researchers in life science, bioinformatics, physics, chemistry and similar fields of engineering and science.
    [Show full text]