Machine Learning Platforms Digital Catapult

Total Page:16

File Type:pdf, Size:1020Kb

Machine Learning Platforms Digital Catapult Machine Learning Platforms Learning Machine Machine Digital Catapult www.papis.io 101 Euston Road London NW1 2RA Learning 0300 1233 101 www.digicatapult.org.uk Platforms Digital Catapult Digital Using, extending and creating platforms to accelerate machine learning efforts and generate growth Research report 2019 Report contents Choosing machine learning platforms and filling the gaps 2 Introduction 48. 5 Machine learning deployment platforms 2 About machine learning platforms 48 Packaging models 4 Who is the report written for? 49 Case study: serving predictions 4 Outline of this report with Flask on Floyd 5 Scope of this report 50 Case study: A/B testing models in production with Amazon SageMaker 51 Serverless model serving platforms 8. 1 Pre-trained models as a service platforms 52 Example model management 9 Giving machine intelligence superpowers platform: Seldon Deploy to software via APIs 10 Platforms as a service to leverage pre-trained models 56. 6 Choosing machine learning platforms and filling the gaps 57 Evaluating predictions 14. 2 Vertical machine learning as a service (MLaaS) platforms 57 Preparing prediction APIs for usage in production 15 Case study: building a custom fraud detection model with the Sift API 58 Performance monitoring and model lifecycle management 16 MLaaS platforms for predictive customer relationship management 60 Example architecture of machine learning system components 17 Other example platforms 61 Finding the right type of platform to use 64 Platform selection criteria 20. 3 Semi-specialised machine learning as a service (MLaaS) platforms 65 Scaling to many use cases: building proprietary platforms 20 Case study: building a custom vision model with the Clarifai API 24 Example Vision and Language platforms 68 Conclusions 25 Behind the scenes: automated ML (‘AutoML’) and transfer learning 70 Footnotes 28 4. Machine learning development platforms 74 About 29 High-level platforms as a service 74 Digital Catapult/Machine Intelligence Garage 34 Self-hosted studios 74 PAPIs 38 Cloud machine learning integrated 74 Author development environments (IDEs) 43 Adding featurisation to machine learning pipelines Machine learning platforms 1 Introduction Machine learning (ML) platforms reduce ABOUT MACHINE LEARNING PLATFORMS the time and cost of integrating ML into Gartner defines ML platforms as “software products that data scientists use to help them develop and deploy their software applications, for organisations own data science and machine-learning solutions”1. For of all levels of ML maturity. ML platforms the purpose of this report this definition is extended to can be ready-made or custom-built. include products that can be used by software developers too. This report focuses on the integration of ML into This report provides a survey of ready-made software, for the purpose of creating machine intelligence, platforms, grouped into different types and rather than on building scientific knowledge from data. presented from starting with those that are ML platforms can come in different formats, as they can be based on open source or commercial software, and can aimed at general users, all the way to run on-premises or in the cloud. Some of these platforms platforms that enable machine learning are made available “as a service”, which Wikipedia2 defines experimentation and optimisation. It shows as “a category of cloud computing services3 that provides a how startups and larger organisations can platform4 allowing customers to develop, run, and manage applications without the complexity of building and benefit from utilising these platforms, and maintaining the infrastructure typically associated with what can be their limitations. developing and launching an app”. This model has the following advantages: This report can also inspire the design of – There are no set-up costs (which is ideal for startups custom-built platforms, which can serve and for pilot projects) two different purposes: – Users pay for the functionality they are interested in (not for hosting), according to usage 1. Internal usage to accelerate ML efforts – There’s nothing to install 2. Selling access to generate economic growth – Users do not need to worry about where the application program interface (API) and the models are running, for example, which processor to use (CPU/GPU), how to scale up or down as the volume of prediction requests evolves 2 Machine learning platforms Introduction Introduction “ We believe most people will begin their AI journeys using cloud services rather than creating and managing million-node neural networks in their own data centres. Even if you eventually outgrow a publicly available AI cloud service, your experience using it will help inform the design and scaling of your own AI infrastructure.” Andreessen Horowitz — AI Playbook5 Introduction Machine learning platforms 3 Introduction WHO IS THE REPORT WRITTEN FOR? OUTLINE OF THIS REPORT This paper has been written predominantly for users The different types of ML platforms are presented and potential users of ML platforms, including: in the order below: – Software developers and product managers, who – Pre-trained models as a service: platforms that give will be adding machine intelligence superpowers access to predictions from pre-trained models, aimed to their applications at product teams (including domain experts and software developers) – Data scientists, who will be shipping ML models in production, and extending toolkits to run ML experiments – Vertical ML as a service: platforms that allow the creation and deployment of custom predictive models for a specific – Data and ML engineers, extending these platforms type of business problem, aimed at product teams or creating new ones – Semi-specialised machine learning as a service (MLaaS): – Domain experts, exploring ideas of new ML use cases, platforms that allow the creation and deployment of assessing their feasibility, and building prototypical custom predictive models for a specific type of input solutions to business problems and task, aimed at product teams This report will also be of interest to managers, analysts, – ML development platforms: platforms that include an and consultants who have heard that machine learning experimentation component facilitating the creation can help improve products, software applications, and of predictive models, used by data scientists as well processes, who are trying to figure out the right way for as experts in the domain where ML is applied their organisation to make the most of ML, but who do not have the time to go through all the options. – ML deployment platforms: platforms that simplify the deployment of models created by data scientists, used by data engineers and data scientists This report ends with recommendations on how to choose the best platforms for individual use cases, and how to fill their gaps in the creation of production machine learning systems. 4 Machine learning platforms Introduction Introduction SCOPE OF THIS REPORT The number of vertical ML platforms is expected to VentureScanner segments US AI startups into 13 groups, continue to grow. David Kelnar of MMC Ventures remarks including Machine Learning Platforms, which had 357 that nine in ten AI startups in Europe are vertical7, and it is startups at the end of Q1 2019, and Computer Vision anticipated that many of them could benefit from offering Platforms, which had 234 startups in the same period. platforms for others to build on. Bradford Cross of Data Collective Venture Capital sees vertical AI startups as The objective of this report is not to provide an exhaustive providing fully-integrated solutions to business problems8, list of platforms, but to give a broad overview of the types which are powered by predictive models. However, the of products and services that are available. It provides authors of Prediction Machines9 argue that it could be examples of platforms with different characteristics, more advantageous in some cases to give access to the from which to extract general principles, ideas and models’ raw predictions, as illustrated with an example recommendations. The examples that are discussed in the medical sector. The vertical platforms that are here were chosen for illustration purposes, and this presented here provide both business solutions and report is not intended to provide a benchmark. It does, access to raw predictions. however, provide advice to create individual benchmarks and to help readers to find or create the best ML platform, This report is written to inspire organisations not only for their own needs or those of their customers. to use existing ML platforms, but to build on them and create their own vertical platforms, for their customers The number of ML platforms quoted above could be even to use and to build on. bigger, if vertical ML platforms are considered. Indeed, some of these were listed by VentureScanner in the Machine Learning Applications group, including Sift6, a startup that allows users to build custom fraud detection models and to access them in a production application via a prediction API. Introduction Machine learning platforms 5 Contents 8 Pre-trained models as a service platforms 9 Giving machine intelligence superpowers to software via APIs 10 Platforms as a service to leverage pre-trained models 6 Machine learning platforms Pre-trained models as a service platforms 1. Pre-trained models as a service platforms Pre-trained models as a service platforms Machine learning platforms 7 1. Pre-trained models as a service platforms This example relates to developers of a To add further context and examples: imagine developing software application that can be improved a customer support application for a global company. It wants to improve the app to reduce the average response with predictive features. This could be a time and increase customer satisfaction. When receiving a food delivery app, for instance (think new support ticket, the first step towards an answer is to UberEats), to which predicted delivery assign a representative based on the customer’s language. times could be added. Predictions would This step could be automated with a language detection model.
Recommended publications
  • Machine Learning Is Driving an Innovation Wave in Saas Software
    Machine Learning is Driving an Innovation Wave in SaaS Software By Jeff Houston, CFA [email protected] | 512.364.2258 SaaS software vendors are enhancing their soluti ons with machine learning (ML) algorithms. ML is the ability of a computer to either automate or recommend appropriate actions by applying probability to data with a feedback loop that enables learning. We view ML as a subset of artificial intelligence (AI), which represents a broad collection of tools that include/leverage ML, such as natural language processing (NLP), self-driving cars, and robotics as well as some that are tangent to ML, such as logical rule-based algorithms. Although there have been multiple “AI Winters” since the 1950s where hype cycles were followed by a dearth of funding, ML is now an enduring innovation driver, in our opinion, due in part to the increasing ubiquity of affordable cloud-based processing power, data storage—we expect the pace of breakthroughs to accelerate. automation, customer support, marketing, and human resources) through both organic and M&A These innovations will make it easier for companies initiatives. As for vertical-specific solutions, we think to benefit beyond what is available with traditional that a new crop of vendors will embrace ML and business intelligence (BI) solutions, like IBM/ achieve billion-dollar valuations. VCs are making big Cognos and Tableau, that simply describe what bets that these hypotheses will come to fruition as happened in the past. New ML solutions are demonstrated by the $5B they poured into 550 amplifying intelligence while enabling consistent and startups using AI as a core part of their solution in better-informed reasoning, behaving as thought 20162.
    [Show full text]
  • WORLD FINTECH REPORT 2018 Contents 4 Preface
    in collaboration with WORLD FINTECH REPORT 2018 Contents 4 Preface 8 Executive Summary FinTechs Are Redefining the Financial Services Customer Journey 13 Competition and Rising Expectations Spur 14 Customer-Centricity Push – Identify gaps left by traditional Financial Services providers and explore changing customer expectations. Emerging Technologies Enable Customer 19 Journey Transformation – Data and insights are reshaping personalized experiences through automation and distributed ledger technology. Alignment with Customer Goals, Creation of 27 Trust, and Delivery of Digital, Agile, and Efficient Processes Are Catalysts for Success – Firms are driving innovation and operational excellence through agile and digital teams. World FinTech Report 2018 The Symbiotic Relationship between FinTechs and Traditional Financial Institutions 35 FinTech and Incumbent Firms’ Respective 36 Competitive Advantages and Shortcomings Make Collaboration a Logical Fit – A partnership ecosystem of FinTechs, incumbents, and other vendors fosters a win-win for stakeholders. Finding the Right Partners for Collaboration 44 Is Essential – Maintaining and accelerating scale is a common FinTech firm struggle, so the right collaboration partner is critical. Successful Collaboration Requires Commitment 49 and Agility from FinTechs and Incumbents – Selection of the appropriate engagement model boosts FinTech scale-up efforts. The Path Forward: An Impending Role for BigTechs? 60 – BigTechs could have massive impact on the Financial Services industry. Preface Once rather homogenous and somewhat staid, the financial services marketplace has transformed into a dynamic milieu of bar-raising specialists. These new-age professionals are devoted to meeting and exceeding the expectations of consumers who have become accustomed to personalized services from industries such as retail, travel, and electronics. Financial services customers no longer rely on one or two firms.
    [Show full text]
  • Economic and Social Impacts of Google Cloud September 2018 Economic and Social Impacts of Google Cloud |
    Economic and social impacts of Google Cloud September 2018 Economic and social impacts of Google Cloud | Contents Executive Summary 03 Introduction 10 Productivity impacts 15 Social and other impacts 29 Barriers to Cloud adoption and use 38 Policy actions to support Cloud adoption 42 Appendix 1. Country Sections 48 Appendix 2. Methodology 105 This final report (the “Final Report”) has been prepared by Deloitte Financial Advisory, S.L.U. (“Deloitte”) for Google in accordance with the contract with them dated 23rd February 2018 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of assessment of the economic and social impacts of Google Cloud as set out in the Contract. It should not be used for any other purposes or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Final Report is provided exclusively for Google’s use under the terms of the Contract. No party other than Google is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than Google in respect of the Final Report and any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. The information contained in the Final Report has been obtained from Google and third party sources that are clearly referenced in the appropriate sections of the Final Report.
    [Show full text]
  • Youtube-8M Video Classification
    YouTube-8M Video Classification Alexandre Gauthier and Haiyu Lu Stanford University 450 Serra Mall Stanford, CA 94305 [email protected] [email protected] Abstract metadata. To this end, Google has released the YouTube- 8M dataset [1]. This set of over 8 million labeled videos al- Convolutional Neural Networks (CNNs) have been lows the public to train algorithms to learn how to associate widely applied for image classification. Encouraged by labels with YouTube videos, helping to solve the problem these results, we apply a CNN model to large scale video of video classification. classification using the recently published YouTube-8M We use multilayer convolutional neural networks to clas- dataset, which contains more than 8 million videos labeled sify YouTube-8M videos. The input to our algorithm is with 4800 classes. We study models with different archi- pre-processed video data taken from individual frames of tectures, and find best performance on a 3-layer spatial- the videos. We then use a CNN to output a score for each temporal CNN ([CNN-BatchNormzliation-LeakyReLU]3- label in the vocabulary. We briefly tried LSTM and fully- FullyConnected). We propose that this is because this connected models, but found that convolutional models per- model takes both feature and frame information into ac- form better. count. By optimizing hyperparameters including learning rate, we achieve a Hit@1 of 79.1%, a significant improve- 2. Related Work ment over the 64.5% for the best model Google trained in Large-scale datasets such as ImageNet [2] have played their initial analysis. Further improvements may be achiev- a crucial role for the rapid progress of image recognition able by incorporating audio information into our models.
    [Show full text]
  • Student Resume Book
    Class of 2019 STUDENT RESUME BOOK [email protected] CLASS OF 2019 PROFILE 46 48% WOMEN CLASS SIZE PRIOR COMPANIES Feldsted & Scolney 2 Amazon.com, Inc Fincare Small Finance Bank American Airlines Group General Electric Co AVERAGE YEARS American Family Insurance Mu Sigma, Inc PRIOR WORK Bank of New York, Qualtrics LLC EXPERIENCE Melloncorp Quantiphi Inc Brookhurst Insurance Skyline Technologies Services TechLoss Consulting & CEB Inc Restoration, Inc Cecil College ThoughtWorks, Inc Darwin Labs US Army Economists, Inc UCSD Guardian United Health Group, Inc PRIOR DEGREE Welch Consulting, Ltd CONCENTRATIONS ZS Associates Inc & BACKGROUND* MATH & STATISTICS 82.61% ENGINEERING 32.61% ECONOMICS 30.43% COMPUTER SCIENCE & IT 19.57% SOCIAL SCIENCES 13.04% HUMANITIES 10.87% BUSINESS 8.70% OTHER SCIENCES 8.70% *many students had multiple majors or OTHER 8.70% specializations; for example, of the 82.61% of students with a math and/or statistics DATA SCIENCE 2.17% background, most had an additional major or concentration and therefore are represented in additional categories. 0 20 40 60 80 100 Class of 2019 SAURABH ANNADATE ALICIA BURRIS ALEX BURZINSKI TED CARLSON IVAN CHEN ANGELA CHEN CARSON CHEN HARISH CHOCKALINGAM SABARISH CHOCKALINGAM TONY COLUCCI JD COOK SOPHIE DU JAMES FAN MICHAEL FEDELL JOYCE FENG NATHAN FRANKLIN TIAN FU ELLIOT GARDNER MAX HOLIBER NAOMI KADUWELA MATT KEHOE JOE KUPRESANIN MICHEL LEROY JONATHAN LEWYCKYJ Class of 2019 HENRY PARK KAREN QIAN FINN QIAO RACHEL ROSENBERG SHREYAS SABNIS SURABHI SETH TOVA SIMONSON MOLLY SROUR
    [Show full text]
  • Implementation of Machine Learning with Google Cloud Platform
    Cloud Computing Implementation of Machine learning with Google cloud platform Referent : Prof. Dr. Christian Baun Submitted by: Ammar Albaalbaki(1267651) Anish Joys Yesuadimai Michael(1280214) Eigenständigkeitserklärung Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde. __________________ Ammar Albaalbaki Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde. ------------------------------ Anish joys yesuadimai michael Table of Contents 1 Introduction 1 1.1 Motivation 1 1.2 Purpose 1 1.3 The aim of the work 2 2 Fundamental 4 2.1 Google Cloud 4 2.2 Machine Learning 5 2.2.1 Supervised Learning 6 2.3 Image Processing 7 2.4 Webhosting 8 2.4.1 Basic of response and request 9 2.4.2 Describe PHP 9 2.4.3 Putty to connection with host 10 3 Implementation 11 3.1 Log in Google Cloud 11 3.2 Google Cloud Storage 11 3.3 Datalab for implementing image processing 14 3.4 Create Web Host 19 4 Evaluation and results 23 5 Summary and outlook 24 5.1 Summary 24 5.2 outlook 24 List of Figures I List of tables II References III Page I 1 Introduction Cloud computing is a very hot and booming topic in the current era, lots of companies have already moved to cloud computing technologies and many companies are urging to move to cloud.
    [Show full text]
  • Kubernetes & AI with Run:AI, Red Hat & Excelero
    Kubernetes & AI with Run:AI, Red Hat & Excelero AI WEBINAR Date/Time: Tuesday, June 9 | 9 am PST What’s next in technology and innovation? Kubernetes & AI with Run:AI, Red Hat & Excelero AI WEBINAR Your Host: Presenter: Presenter: Presenter: Tom Leyden Omri Geller Gil Vitzinger William Benton VP Marketing CEO & Co-Founder Software Developer Engineering Manager Kubernetes for AI Workloads Omri Geller, CEO and co-founder, Run:AI A Bit of History Needed flexibility Reproducibility and and better utilization portability Bare Metal Virtual Machines Containers Containers scale easily, they’re lightweight and efficient, they can run any workload, are flexible and can be isolated …But they need orchestration 2 Enter Kubernetes Track, Create Efficient Execute Across Schedule and Cluster Different Operationalize Utilization Hardware 3 Today, 60% of Those Who Deploy Containers Use K8s for Orchestration* *CNCF 4 Now let’s talk about AI Computing Power Fuels Development of AI Deep Learning Classical Machine Learning Manual Engineering 6 Artificial Intelligence is a Completely Different Ballgame New Distributed Experimentation accelerators computing R&D 7 Data Science Workflows and Hardware Accelerators are Highly Coupled Data Hardware scientists accelerators Constant Workflow Under-utilized hassles Limitations GPUs 8 This Leads to Frustration on Both Sides Data Scientists are IT leaders are frustrated – speed and frustrated – GPU productivity are low utilization is low 9 AI Workloads are Also Built on Containers NGC – Nvidia pre-trained models for
    [Show full text]
  • CNCF Webinar Taming Your AI/ML Workloads with Kubeflow
    CNCF Webinar Taming Your AI/ML Workloads with Kubeflow The Journey to Version 1.0 David Aronchick (Microsoft) - @aronchick Elvira Dzhuraeva (Cisco) - @elvirafortune Johnu George (Cisco) - @johnugeorge SNARC Maze Solver Minsky / Edmonds (1951) 2000 3 2006 4 2007 5 2008 6 2010 7 2013 8 2014 9 2015 10 Today 11 One More ML ???Solution??? 12 One More ML ???Solution??? 13 14 GitHub Natural Language Search Prototype MVP With Demo In Jupyter Demo with front-end mockup with Experiments.Github.Com: +3 Months Notebook: 2 Weeks blog post: +3 Days https://github.com/hamelsmu/code_search https://towardsdatascience.com/semantic-code-se https://experiments.github.com/ arch-3cd6d244a39c 15 Resource Provisioning Numpy Scheduling Experiment Tracking Jupyter Access Control Declarative Deployment TF.Transform Drivers HP Tuning TF.Estimator Orchestration Profiling Docker Lifecycle Management Validation Seldon Networking KubeCon 2017 17 Resource Provisioning Numpy Scheduling Experiment Tracking Jupyter Access Control Declarative Deployment TF.Transform Drivers HP Tuning TF.Estimator Orchestration Profiling Docker Lifecycle Management Validation Seldon Networking Mission (2017) Make it Easy for Everyone to Develop, Deploy and Manage Portable, Distributed ML on Kubernetes 20 Kubeflow 2018 Mission (2018) Make it Easy for Everyone to Develop, Deploy and Manage Portable, Distributed ML on Kubernetes 23 Kubeflow 2019 Mission (2019) Make it Easy for Everyone to Develop, Deploy and Manage Portable, Distributed ML on Kubernetes 26 Mission (2020) Make it Easy for Everyone
    [Show full text]
  • Kubeflow: End to End ML Platform Animesh Singh
    Kubeflow: End to End ML Platform Animesh Singh Jupyter Notebooks MXNet KFServing Tensorflow Seldon Core Serving Pytorch TFServing, + Training Operators XGBoost, + MPI Metadata Kale Workflow Building HP Tuning Fairing Tensorboard Tools Prometheus KF Pipelines Pipelines TFX Your Speaker Today: CODAIT 2 Animesh Singh Kubeflow STSM and Chief Architect - Data and AI Open Source github.com/kubeflow Platform o CTO, IBM RedHat Data and AI Open Source Alignment o IBM Kubeflow Engagement Lead, Kubeflow Committer o Chair, Linux Foundation AI - Trusted AI o Chair, CD Foundation MLOps Sig o Ambassador, CNCF o Member of IBM Academy of Technology (IBM AoT) © 2019 IBM Corporation Kubeflow: Current IBM Contributors Untrained Model Christian Kadner Weiqiang Zhuang Tommy Li Andrew Butler Prepared Preparedand Trained AnalyzedData Model Data Deployed Model Jin Chi He Feng Li Ke Zhu Kevin Yu IBM is the 2nd Largest Contributor IBM is the 2nd Largest Contributor IBMers contributing across projects in Kubeflow Kubeflow Services kubectl apply -f tfjob High Level Kubernetes API Server Services Notebooks Low Level APIs / Services Pipelines TFJob PyTorchJob Pipelines CR KFServing Argo Jupyter CR MPIJob Katib Seldon CR Study Job Spark Job Istio Mesh and Gateway Kubebench TFX Developed By Kubeflow Developed Outside Kubeflow Adapted from Kubeflow Contributor Summit 2019 talk: Kubeflow and ML Landscape (Not all components are shown) Community is growing! 8 Multi-User Isolation ML Lifecycle: Build: Development, Training and HPO Untrained Model Prepared Preparedand Trained
    [Show full text]
  • Machine Learning in Google Drive
    Senior Staff Software Engineer, Google Google I/O Extended Boulder 8-May-2018 #io18extended ...like space :) #spaceishard Spaceflight is unforgiving and complicated. But it’s not a miracle. It can be done #intelligenceishard ● Fundamentals of machine learning are complicated; ML is easily misapplied ● Doing “toy” things with ML is easy. ○ Doing useful things is a lot harder How to get there from here? ● Start small, but real ● Measure. Be rigorous. Make sure you’re helping ● Have a compelling UX ● Launch. Iterate. Improve. ● Never forget the user #io18extended Drive Quick Access Main Idea: Prominently show the user's documents and files they likely want to open right now Benefit 1: Save Users Time ● Quick Access gets users to their files 50% faster… and with less cognitive friction Benefit 2: Enable users to make better business decisions ● Show users relevant documents to their pending business decisions, including documents they may not be aware of. (The right information at the right time.) #io18extended Drive Quick Access: Mobile (Android and iOS) #io18extended What we’ve learned: Quick Access Feature Intelligence works ● Training and using Machine Learning models results in improved metrics beyond a simple “Most Recently Used” across all metrics Quick Access saves users time ● About 50% of opens come from QA, each one saves 50% on “finding time” Starting Point for Future Work ● Quick Access has proven out our machine learning infrastructure for Drive and provides a framework for future intelligence features. #io18extended Quick Access
    [Show full text]
  • The Big Analytics Book Project Is an Aggregation of Articles That Best Represent Thoughts by Some of the Leading Minds in the Data Analytics Industry
    The Big Analytics Leaders Collaborative Book Project For, Of, and By the Data Analytics Leaders and Influencers Compiled by Deeksha Joshi & Vishal Kumar Contents SECTION A: STRATEGY FOR THE DATA ANALYTICS LEADERS ................................................... 8 1. Rise of Data Capital by Paul Sonderegger ........................................................................................ 9 2. Investing in Big Data by Bill Pieroni .............................................................................................. 13 3. From Data to Insight: Seven Tips for a Great Data Strategy by Anne Russell ........................ 16 4. Data is Not Always a Substitute for Strategy by Steven Sinofsky ............................................. 20 5. Understand How Your Company Creates Value by Cary Burch ............................................... 26 6. Act Like an Analyst, Think Like a Strategist by Dr. Justin Barclay .......................................... 28 7. The Last Mile of Intuitive Decision Making by Vishal Kumar ................................................. 31 8. Three BIG Reasons Companies are Failing with Big Data Analytics by Ian St. Maurice ..... 36 9. How to Leverage Power of Big Data Analytics in Making Strategic Decisions by Ankush Chopra ........................................................................................................................................................... 40 10. How to Hire the Best Analytics Leaders: And it’s not the way you think! by Tony Branda 43 11. Big Decisions
    [Show full text]
  • HBSAAL Newsletter December 2019
    HBSAAL Newsletter December 2019 INTRODUCTION Dear Friends and Members, It is my pleasure to share with you the first HBS Alumni Angels of London (HBSAAL) newsletter. With over 5,000 alumni in London we play an important role in helping foster an increasingly vibrant and economically important start-up ecosystem. Our local Alumni chapter was launched in 2011, and in that time our members have made investments totalling £7.2M (excluding secondary investments) in over 40 companies. We all know that angel investing requires patience and a portfolio mindset, so we are delighted with notable exits such as Stupeflix and DogBuddy along with significant up-rounds from recent investments such as FlatFair, Seldon, Urban and Pavegen. This past July five companies that received investment from our members were shortlisted for the UK British Angel Association (UKBAA) awards. HBS alum Romi Savova of PensionBee won Best High Growth Woman Founder. Our investors bring more than just cash they also bring a strong network and valuable business experience. We are all committed to life-long learning and our educational events have covered topics ranging from thematic investing in artificial intelligence and fintech to practical tips on angel investing. We had a successful pitch event on Nov 19th, and on Nov 27th we hosted a panel discussion with some of the most successful angel investors in the UK. This was hosted at McKinsey & Co’s new UK headquarters. We will also shortly be introducing you to the wider HBS Alumni Global organisation where you can gain access to syndicated deals from HBSAA Chapters, such as New York, Silicon Valley, Beijing, Paris and Brazil along with access to global educational webinars.
    [Show full text]