PDF) S2 Table
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Variants Reveal Differential Evolutionary Constraints on Human Transglutaminases and Point Towards Unrecognized Significance of Transglutaminase 2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Debrecen Electronic Archive RESEARCH ARTICLE Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2 Kiruphagaran Thangaraju1, RoÂbert KiraÂly1, MaÂte A. DemeÂny1, JaÂnos AndraÂs MoÂtyaÂn1, a1111111111 Mo nika Fuxreiter1,2, LaÂszlo FeÂsuÈs1,3* a1111111111 a1111111111 1 Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, a1111111111 Debrecen, Hungary, 2 MTA-DE Momentum Laboratory of Protein Dynamics, Faculty of Medicine, University a1111111111 of Debrecen, Debrecen, Hungary, 3 MTA-DE Stem cell, Apoptosis and Genomics Research Group of Hungarian Academy of Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary * [email protected] OPEN ACCESS Abstract Citation: Thangaraju K, KiraÂly R, DemeÂny MA, AndraÂs MoÂtyaÂn J, Fuxreiter M, FeÂsuÈs L (2017) Transglutaminases (TGMs) catalyze Ca2+-dependent transamidation of proteins with speci- Genomic variants reveal differential evolutionary constraints on human transglutaminases and point fied roles in blood clotting (F13a) and in cornification (TGM1, TGM3). The ubiquitous TGM2 towards unrecognized significance of has well described enzymatic and non-enzymatic functions but in-spite of numerous studies transglutaminase 2. PLoS ONE 12(3): e0172189. its physiological function in humans has not been defined. We compared data on non-syn- doi:10.1371/journal.pone.0172189 onymous single nucleotide variations (nsSNVs) and loss-of-function variants on TGM1-7 Editor: Richard L. Eckert, University of Maryland and F13a from the Exome aggregation consortium dataset, and used computational and School of Medicine, UNITED STATES biochemical analysis to reveal the roles of damaging nsSNVs of TGM2. -
TGM6 L517W Is Not a Pathogenic Variant for Spinocerebellar Ataxia Type 35
ARTICLE OPEN ACCESS TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35 Yanxing Chen, MD, PhD, Dengchang Wu, MD, PhD, Benyan Luo, MD, PhD, Guohua Zhao, MD, PhD, and Correspondence Kang Wang, MD, PhD Dr. Zhao [email protected] Neurol Genet 2020;6:e424. doi:10.1212/NXG.0000000000000424 or Dr. Wang [email protected] Abstract Objective To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6. Methods Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype. Results The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals. Conclusions The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35. From the Department of Neurology (Y.C., G.Z.), the Second Affiliated Hospital, School of Medicine, Zhejiang University; and Department of Neurology (D.W., B.L., K.W.), the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. -
Neurologic Outcomes in Friedreich Ataxia: Study of a Single-Site Cohort E415
Volume 6, Number 3, June 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort e415 ARTICLE Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort e440 ARTICLE Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy e428 ARTICLE Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases e434 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E. -
B Inhibition in a Mouse Model of Chronic Colitis1
The Journal of Immunology Differential Expression of Inflammatory and Fibrogenic Genes and Their Regulation by NF-B Inhibition in a Mouse Model of Chronic Colitis1 Feng Wu and Shukti Chakravarti2 Fibrosis is a major complication of chronic inflammation, as seen in Crohn’s disease and ulcerative colitis, two forms of inflam- matory bowel diseases. To elucidate inflammatory signals that regulate fibrosis, we investigated gene expression changes under- lying chronic inflammation and fibrosis in trinitrobenzene sulfonic acid-induced murine colitis. Six weekly 2,4,6-trinitrobenzene sulfonic acid enemas were given to establish colitis and temporal gene expression patterns were obtained at 6-, 8-, 10-, and 12-wk time points. The 6-wk point, TNBS-w6, was the active, chronic inflammatory stage of the model marked by macrophage, neu- trophil, and CD3؉ and CD4؉ T cell infiltrates in the colon, consistent with the idea that this model is T cell immune response driven. Proinflammatory genes Cxcl1, Ccl2, Il1b, Lcn2, Pla2g2a, Saa3, S100a9, Nos2, Reg2, and Reg3g, and profibrogenic extra- cellular matrix genes Col1a1, Col1a2, Col3a1, and Lum (lumican), encoding a collagen-associated proteoglycan, were up-regulated at the active/chronic inflammatory stages. Rectal administration of the NF-B p65 antisense oligonucleotide reduced but did not abrogate inflammation and fibrosis completely. The antisense oligonucleotide treatment reduced total NF-B by 60% and down- regulated most proinflammatory genes. However, Ccl2, a proinflammatory chemokine known to promote fibrosis, was not down- regulated. Among extracellular matrix gene expressions Lum was suppressed while Col1a1 and Col3a1 were not. Thus, effective treatment of fibrosis in inflammatory bowel disease may require early and complete blockade of NF-B with particular attention to specific proinflammatory and profibrogenic genes that remain active at low levels of NF-B. -
Gene Ontology Functional Annotations and Pleiotropy
Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question -
Comprehensive Comparison of Three Commercial Human Whole-Exome
Asan et al. Genome Biology 2011, 12:R95 http://genomebiology.com/2011/12/9/R95 RESEARCH Open Access Comprehensive comparison of three commercial human whole-exome capture platforms Asan2,3*†,YuXu1†, Hui Jiang1†, Chris Tyler-Smith4†, Yali Xue4, Tao Jiang1, Jiawei Wang1, Mingzhi Wu1, Xiao Liu1, Geng Tian1, Jun Wang1, Jian Wang1, Huangming Yang1* and Xiuqing Zhang1* Abstract Background: Exome sequencing, which allows the global analysis of protein coding sequences in the human genome, has become an effective and affordable approach to detecting causative genetic mutations in diseases. Currently, there are several commercial human exome capture platforms; however, the relative performances of these have not been characterized sufficiently to know which is best for a particular study. Results: We comprehensively compared three platforms: NimbleGen’s Sequence Capture Array and SeqCap EZ, and Agilent’s SureSelect. We assessed their performance in a variety of ways, including number of genes covered and capture efficacy. Differences that may impact on the choice of platform were that Agilent SureSelect covered approximately 1,100 more genes, while NimbleGen provided better flanking sequence capture. Although all three platforms achieved similar capture specificity of targeted regions, the NimbleGen platforms showed better uniformity of coverage and greater genotype sensitivity at 30- to 100-fold sequencing depth. All three platforms showed similar power in exome SNP calling, including medically relevant SNPs. Compared with genotyping and whole-genome sequencing data, the three platforms achieved a similar accuracy of genotype assignment and SNP detection. Importantly, all three platforms showed similar levels of reproducibility, GC bias and reference allele bias. Conclusions: We demonstrate key differences between the three platforms, particularly advantages of solutions over array capture and the importance of a large gene target set. -
Genetic Background of Ataxia in Children Younger Than 5 Years in Finland E444
Volume 6, Number 4, August 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Genetic background of ataxia in children younger than 5 years in Finland e444 ARTICLE Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene e448 ARTICLE Somatic SLC35A2 mosaicism correlates with clinical fi ndings in epilepsy brain tissuee460 ARTICLE Synonymous variants associated with Alzheimer disease in multiplex families e450 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E. Post, MBA, CAE article. Alternatively, send an email to [email protected]. -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
W O 2019/200163 Al 17 October 2019 (17.10.2019) W IPO I PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property (1) Organization11111111111111111111111I1111111111111i1111liiili International Bureau (10) International Publication Number (43) International Publication Date W O 2019/200163 Al 17 October 2019 (17.10.2019) W IPO I PCT (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12N15/869 (2006.01) A61P17/00 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C07K14/46 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2019/027079 pM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 11 April 2019 (11.04.2019) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regionalprotection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (26)PublicationLanguage: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/656,768 12 April 2018 (12.04.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: KRYSTAL BIOTECH, INC. -
Homozygous Mutations in PXDN Cause Congenital Cataract, Corneal Opacity, and Developmental Glaucoma
REPORT Homozygous Mutations in PXDN Cause Congenital Cataract, Corneal Opacity, and Developmental Glaucoma Kamron Khan,1,2,11 Adam Rudkin,3,11 David A. Parry,1,11 Kathryn P. Burdon,3 Martin McKibbin,1,2 Clare V. Logan,1 Zakia I.A. Abdelhamed,1,4 James S. Muecke,5 Narcis Fernandez-Fuentes,1 Kate J. Laurie,3 Mike Shires,1 Rhys Fogarty,3 Ian M. Carr,1 James A. Poulter,1 Joanne E. Morgan,1 Moin D. Mohamed,1,6 Hussain Jafri,7 Yasmin Raashid,8 Ngy Meng,9 Horm Piseth,10 Carmel Toomes,1 Robert J. Casson,5 Graham R. Taylor,1 Michael Hammerton,5 Eamonn Sheridan,1 Colin A. Johnson,1 Chris F. Inglehearn,1 Jamie E. Craig,3,11,* and Manir Ali1,11,* Anterior segment dysgenesis describes a group of heterogeneous developmental disorders that affect the anterior chamber of the eye and are associated with an increased risk of glaucoma. Here, we report homozygous mutations in peroxidasin (PXDN) in two consanguineous Pakistani families with congenital cataract-microcornea with mild to moderate corneal opacity and in a consanguineous Cambodian family with developmental glaucoma and severe corneal opacification. These results highlight the diverse ocular phenotypes caused by PXDN mutations, which are likely due to differences in genetic background and environmental factors. Peroxidasin is an extracellular matrix-associated protein with peroxidase catalytic activity, and we confirmed localization of the protein to the cornea and lens epithe- lial layers. Our findings imply that peroxidasin is essential for normal development of the anterior chamber of the eye, where it may have a structural role in supporting cornea and lens architecture as well as an enzymatic role as an antioxidant enzyme in protecting the lens, trabecular meshwork, and cornea against oxidative damage. -
Network Analysis of Potential Risk Genes for Psoriasis Huilin Wang, Wenjun Chen, Jin He, Wenjuan Xu and Jiangwei Liu*
Wang et al. Hereditas (2021) 158:21 https://doi.org/10.1186/s41065-021-00186-w RESEARCH Open Access Network analysis of potential risk genes for psoriasis Huilin Wang, Wenjun Chen, Jin He, Wenjuan Xu and Jiangwei Liu* Abstract Background: Psoriasis is a complex chronic infammatory skin disease. The aim of this study was to analyze potential risk genes and molecular mechanisms associated with psoriasis. Methods: GSE54456, GSE114286, and GSE121212 were collected from gene expression omnibus (GEO) database. Diferentially expressed genes (DEGs) between psoriasis and controls were screened respectively in three datasets and common DEGs were obtained. The biological role of common DEGs were identifed by enrichment analysis. Hub genes were identifed using protein–protein interaction (PPI) networks and their risk for psoriasis was evalu- ated through logistic regression analysis. Moreover, diferentially methylated positions (DMPs) between psoriasis and controls were obtained in the GSE115797 dataset. Methylation markers were identifed after comparison with the common genes. Results: A total of 118 common DEGs were identifed, which were mainly involved in keratinocyte diferentiation and IL-17 signaling pathway. Through PPI network, we identifed top 10 degrees as hub genes. Among them, high expres- sion of CXCL9 and SPRR1B may be risk factors for psoriasis. In addition, we selected 10 methylation-modifed genes with the higher area under receiver operating characteristic curve (AUC) value as methylation markers. Nomogram showed that TGM6 and S100A9 may be associated with an increased risk of psoriasis. Conclusion: This suggests that immune and infammatory responses are active in keratinocytes of psoriatic skin. CXCL9, SPRR1B, TGM6 and S100A9 may be potential targets for the diagnosis and treatment of psoriasis. -
WO 2016/041614 Al 24 March 2016 (24.03.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/041614 Al 24 March 2016 (24.03.2016) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 39/395 (2006.01) G01N 33/574 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/EP20 15/00 1699 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 18 August 2015 (18.08.2015) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/05 1,530 17 September 2014 (17.09.2014) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: MERCK PATENT GMBH [DE/DE]; Frank LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, furter Strasse 250, 64293 Darmstadt (DE).