Transglutaminase 3: the Involvement in Epithelial Differentiation and Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Transglutaminase 3: the Involvement in Epithelial Differentiation and Cancer cells Review Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer Elina S. Chermnykh * , Elena V. Alpeeva and Ekaterina A. Vorotelyak Koltzov Institute of Developmental Biology Russian Academy of Sciences, 119334 Moscow, Russia; [email protected] (E.V.A.); [email protected] (E.A.V.) * Correspondence: [email protected] Received: 1 June 2020; Accepted: 26 August 2020; Published: 30 August 2020 Abstract: Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations. Keywords: transglutaminase; hair follicle; epidermis; cornification; carcinoma 1. Introduction Many physiologically important protein cross-linking reactions in mammals are orchestrated by transglutaminases (TGMs). These enzymes catalyze the formation of the protein network by introducing isopeptide bonds between lysine and glutamine residues of the target proteins [1,2]. TGMs are also engaged in the deamidation reaction of glutamine residues, the covalent conjugation of polyamines and the lipid esterification [3,4]. The primary purpose of TGM-mediated posttranslational protein modification is the formation of stabilized and insoluble protein polymer structures, such as a cornified cell envelope (CCE), a hair fiber, bones, or a fibrin clot [2]. Some TGMs may function as atypical GTPases and ATPases, protein disulfide isomerases, protein kinases, and also have non-enzymatic functions associated with cell signaling and cell–matrix interactions [5,6]. Depending on the distribution in organs and tissues, TGMs are classified into separate groups known as TGM types. In humans, nine types of TGMs, TGM1-7, Factor XIII and Band 4.2, have been documented and characterized. These enzymes fulfill a variety of physiological functions and are related to different pathological processes [2,6]. All mammalian TGMs have structural homology, although they can display the differences in their N- and C-terminal domains [7,8]. All TGMs except Band 4.2 were found to be expressed in the integument system at the mRNA level [9,10]; however, the contribution to the skin development of three of them (TGM4, TGM7, Factor XIII) remains to be investigated. TGM4 is thought to be exclusively involved in prostate gland morphogenesis and is present in the seminal plasma [11]. The function of TGM7, Cells 2020, 9, 1996; doi:10.3390/cells9091996 www.mdpi.com/journal/cells Cells 2020, 9, 1996 2 of 19 showingCells 20 widespread20, 9, x FOR PEER distribution REVIEW in different tissues with high expression pattern restricted2 toof 20 testes and lungs, remains unclear [12]. Factor XIII was unequivocally confirmed to play a role in the fibrin clot stabilizationpresent in [13 the], butseminal recent plasma studies [11]. suggest The function it to be involvedof TGM7, inshowing corneal widespread epithelium distribution maintenance in and cornealdifferent wound tissues healing with process high expression [14]. As for pattern the Band restricted 4.2, it to is testes related and to thelungs, regulation remains ofunclear the shape [12]. and mechanicalFactor XIII properties was unequivocally of erythrocytes confirmed [15]. to The play remaining a role in the five fibrin TGMs clot stabilization are determined [13], but to berecent of great importancestudies forsuggest epidermal it to be and involved hair follicle in corneal morphogenesis epithelium (Tablemaintenance1) playing and mainly corneal a wound structural healing role and process [14]. As for the Band 4.2, it is related to the regulation of the shape and mechanical properties are distributed in all epidermal layers (Figure1). Mutations in some of them result in dermatological of erythrocytes [15]. The remaining five TGMs are determined to be of great importance for epidermal pathologies. TGM1 makes a predominant contribution to CCE formation. The inborn error in TGM1 and hair follicle morphogenesis (Table 1) playing mainly a structural role and are distributed in all geneepidermal in mice results layers in(Figure an absence 1). Mutations of CCE in and some impaired of them skinresult barrier in dermatological function [16 pathologies.]. TGM2, inTGM1 contrast, is thoughtmakes a to predominant play a minor contribution role in keratinocyte to CCE formation. CCE assembly,The inborn sinceerror in mice TGM1 lacking gene in TGM2 mice results are viable, phenotypicallyin an absence normal, of CCE and and do impaired not show skin skin barrier barrier function defects [16]. [17 TGM2,]. According in contrast, tosome is thought authors, to play TGM2 a is constitutivelyminor role expressed in keratinocyte in all epidermalCCE assembly, layers since [18]; mice however, lacking other TGM2 authors are wereviable, able phenotypically to detect TGM2 onlynormal, in basal and keratinocytes do not show under skin barrier specific defects conditions, [17]. According such as to wound some authors, healing TGM2 and repair is constitutively (Figure1) [ 19]. Althoughexpressed TGM2 in all does epidermal not seem layers to play[18]; however, the central other role authors in the were epidermis, able to itdetect has beenTGM2 recently only in basal revealed as a mediatorkeratinocytes of the under epidermal specific conditions, inflammatory such response as wound to healing UV irradiation and repair [(Figure18]. TGM2 1) [19]. is alsoAlthough localized in dermalTGM2 fibroblastsdoes not seem and to contributes play the central to extracellular role in the epidermis, matrix formation it has been via recently binding revealed fibronectin as a and mediator of the epidermal inflammatory response to UV irradiation [18]. TGM2 is also localized in collagens together [20]. TGM2 is found in numerous tissues and is implicated in multiple processes, dermal fibroblasts and contributes to extracellular matrix formation via binding fibronectin and including wound healing, proliferation, apoptosis, cell adhesion, and migration [21,22]. TGM5 plays an collagens together [20]. TGM2 is found in numerous tissues and is implicated in multiple processes, importantincludin roleg wound in keratinocyte healing, proliferation, differentiation apoptosis, and the cell cornification adhesion, and of themigration epidermis, [21,22]. since TGM5 its epidermalplays expressionan important is altered role in in diseases keratinocyte related differentiation to abnormal keratinization,and the cornification such as of psoriasis the epidermis, and ichthyosis since its [23]. TGM6epidermal is associated expression with neuronalis altered in differentiation diseases related [24 to], abnormal but its high keratinization, expression such was alsoas psoriasis detected and in the skinichthyosis [25]. TGM6 [23]. was TGM6 mapped is associated in close with proximity neuronal to TGM3differentiation on chromosome [24], but its 20 high in humans expression and was shares morealso than detected a 50% in sequence the skin similarity[25]. TGM6 to was it. mapped The donor in close substrates proximity of TGM6 to TGM3 and on Ca chromosome++-binding 20 sites in are similarhumans to those and ofshares TGM3 more [25 ].than This a 50% signature sequence allows similarity us to to suggest it. The TGM6donor substrates involvement of TGM6 in epidermal and differentiation.Ca++-binding TGM1,sites are TGM3, similar TGM5, to those and of TGM6TGM3 [25]. are widelyThis signature expressed allows in epidermalus to suggest keratinocytes TGM6 beinginvolvement mainly responsible in epidermal for differentiation. the cross-linking TGM1, of proteinsTGM3, TGM5, to form and CCE TGM6 in are the widely skin epidermis expressed andin to epidermal keratinocytes being mainly responsible for the cross-linking of proteins to form CCE in the strengthen hair fiber [26–28]. skin epidermis and to strengthen hair fiber [26–28]. FigureFigure 1. Distribution1. Distribution of of transglutaminases transglutaminases (TGMs) (TGMs) in in the the epidermis. epidermis. The mainThe main focus focus of this of reviewthis revi isew TGM3, is TGM3, also also referred referred to as to epidermal as epidermal TGM. TGM. This This enzyme enzyme was was initially discoveredinitially indiscovered the hair fiberin the and hair hair fiber follicle and hair [29 follicle,30], and [29,30], was subsequentlyand was subsequently found infound
Recommended publications
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Differential Roles of P63 Isoforms in Epidermal Development: Selective Genetic Complementation in P63 Null Mice
    Cell Death and Differentiation (2006) 13, 1037–1047 & 2006 Nature Publishing Group All rights reserved 1350-9047/06 $30.00 www.nature.com/cdd Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice E Candi1, A Rufini1, A Terrinoni1, D Dinsdale2, M Ranalli1, The skin consists of two compartments, the dermis and the A Paradisi1, V De Laurenzi2, LG Spagnoli1, MV Catani1, epidermis. The latter is a multilayered, stratified epithelium S Ramadan1, RA Knight2 and G Melino*,1,2 continuously regenerated by terminally differentiating keratino- cytes, a process called cornification1–3 (Figure 1a and b). 4 1 Biochemistry Laboratory, IDI-IRCCS, c/o University of Rome ‘Tor Vergata’, Recent evidence demonstrates a major role for p63, a 00133 Rome, Italy member of the p53 family,5–8 in this process as mutations in 2 Medical Research Council, Toxicology Unit, Leicester University, Leicester the TP63 gene cause limb and skin defects in humans,9 and LE1 9HN, UK p63À/À mice have no epidermis, no limbs and die at birth * Corresponding author: G Melino, Medical Research Council, Toxicology Unit, owing to dehydration.10,11 Hodgkin Building, Leicester University, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK. Tel: þ 44 116 252 5616; Fax: þ 44 116 252 5551; The expression of p63 proteins originates from two E-mail: [email protected] promoters, giving rise to TAp63 and DNp63 isoforms. In addition, both isoforms undergo alternative splicing at the Received 03.3.06; revised 08.3.06; accepted 08.3.06; published online 07.4.06 C-terminus producing three different TAp63 and DNp63 Edited by P Vandenabeele isoforms (a, b and g).
    [Show full text]
  • Loss-Of-Function Mutations in the Gene Encoding Filaggrin Cause Ichthyosis
    LETTERS Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris Frances J D Smith1, Alan D Irvine2, Ana Terron-Kwiatkowski1, Aileen Sandilands1, Linda E Campbell1, Yiwei Zhao1, Haihui Liao1, Alan T Evans3, David R Goudie4, Sue Lewis-Jones5, Gehan Arseculeratne5, Colin S Munro6, Ann Sergeant6, Gra´inne O’Regan2, Sherri J Bale7, John G Compton7, John J DiGiovanna8,9, Richard B Presland10,11, Philip Fleckman11 & W H Irwin McLean1 Ichthyosis vulgaris (OMIM 146700) is the most common composed of the 400-kDa protein profilaggrin. Following a short, inherited disorder of keratinization and one of the most unique N-terminal domain, most of the profilaggrin molecule consists frequent single-gene disorders in humans. The most widely of 10–12 repeats of the 324-residue filaggrin sequence6. Upon terminal cited incidence figure is 1 in 250 based on a survey of differentiation of granular cells, profilaggrin is proteolytically cleaved 1 B http://www.nature.com/naturegenetics 6,051 healthy English schoolchildren . We have identified into 37-kDa filaggrin peptides and the N-terminal domain contain- homozygous or compound heterozygous mutations R501X and ing an S100-like calcium binding domain. Filaggrin rapidly aggregates 2282del4 in the gene encoding filaggrin (FLG) as the cause of the keratin cytoskeleton, causing collapse of the granular cells into moderate or severe ichthyosis vulgaris in 15 kindreds. In flattened anuclear squames. This condensed cytoskeleton is cross- addition, these mutations are semidominant; heterozygotes linked by transglutaminases during formation of the cornified cell show a very mild phenotype with incomplete penetrance. envelope (CCE). The CCE is the outermost barrier layer of the skin The mutations show a combined allele frequency of B4% which not only prevents water loss but also impedes the entry of in populations of European ancestry, explaining the high allergens and infectious agents7.
    [Show full text]
  • An Abridged Compendium of Words. a Discussion of Them and Opinions About Them
    DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Dermatopathology: An abridged compendium of words. A discussion of them and opinions about them. Part 6 (I-L) Bruce J. Hookerman1 1 Dermatology Specialists, Bridgeton, Missouri, USA Citation: Hookerman BJ. Dermatopathology: An abridged compendium of words. A discussion of them and opinions about them. Part 6 (I-L). Dermatol Pract Concept. 2014;4(4):1. http://dx.doi.org/10.5826/dpc.0404a01 Copyright: ©2014 Hookerman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Corresponding author: Bruce J. Hookerman, M.D., 12105 Bridgeton Square Drive, St. Louis, MO 63044, USA. Email: [email protected] – I – term “id reaction” only for a spongiotic dermatitis manifested by tiny vesicles on the hands of patients with florid dermato- ICHTHYOSIS: a generic term for skin conditions character- phytosis at another site, usually the feet, or for an analogue ized by what are said to be fishlike scales, i.e., scales that are of that phenomenon such as widespread vesicles that appear broad and polygonal with free edges, as are seen in ichthyosis subsequent to injudicious treatment, i.e., with Gentian violet vulgaris (and its look-alike, acquired ichthyosis), X-linked (known sardonically in times past as “Gentian violent”) of ichthyosis, and lamellar ichthyosis. Conditions reputed to be an exuberant spongiotic dermatitis, usually on the feet, such ichthyosis, such as ichthyosis hystrix and ichthyosis linearis as an allergic contact dermatitis. A time-honored explana- circumflexa, do not qualify because they are not associated tion for an “id” reaction is hematogenous dissemination of with broad polygonal scales.
    [Show full text]
  • Keratinization of the Oral Epithelium
    Annals of the Royal College of Surgeons of England (I976) vol 58 Keratinization of the oral epithelium David Adams BSC MDS PhD Department of Oral Biology, Welsh National School of Medicine Dental School, Cardiff Summary compare it with the non-keratinizing mucosa The morphology of the keratinizing epi- and the epidermis. I also wish to examine thelia in the mouth is reviewed in the light of some of the mechanisms which control and recent knowledge. There appears to be a spec- regulate keratinization and discuss briefly the trum of degrees of keratinization rather than clinical implications of these. distinct types, and the degree of keratinization Orthokeratinization, in which the surface is reflected in the degree of packing and orien- undergoes cornification as cells lose their stain- tation of tonofilaments. The role of keratohya- ing characteristics and their nuclei, is found on line and other granules in the process is dis- the hard palate and on gingiva, especially cussed and it is suggested that modification where this is firmly bound down to of the cell membrane is an important part of underlyinlg bone (Fig. i). The epithelium keratinization. Although the potential of the lies on a basement membrane which separates various areas in the mucosa is genetically de- it from the connective tissue. Above this there termined and appears early in fetal life, the is a series of more or less well-defined layers. connective tissue exerts an influence on the First comes the germinal layer, one or two extent of keratinization of the surface in a cells thick, then the stratum spinosum, with manner which is not understood.
    [Show full text]
  • Genomic Variants Reveal Differential Evolutionary Constraints on Human Transglutaminases and Point Towards Unrecognized Significance of Transglutaminase 2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Debrecen Electronic Archive RESEARCH ARTICLE Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2 Kiruphagaran Thangaraju1, RoÂbert KiraÂly1, MaÂte A. DemeÂny1, JaÂnos AndraÂs MoÂtyaÂn1, a1111111111 Mo nika Fuxreiter1,2, LaÂszlo FeÂsuÈs1,3* a1111111111 a1111111111 1 Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, a1111111111 Debrecen, Hungary, 2 MTA-DE Momentum Laboratory of Protein Dynamics, Faculty of Medicine, University a1111111111 of Debrecen, Debrecen, Hungary, 3 MTA-DE Stem cell, Apoptosis and Genomics Research Group of Hungarian Academy of Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary * [email protected] OPEN ACCESS Abstract Citation: Thangaraju K, KiraÂly R, DemeÂny MA, AndraÂs MoÂtyaÂn J, Fuxreiter M, FeÂsuÈs L (2017) Transglutaminases (TGMs) catalyze Ca2+-dependent transamidation of proteins with speci- Genomic variants reveal differential evolutionary constraints on human transglutaminases and point fied roles in blood clotting (F13a) and in cornification (TGM1, TGM3). The ubiquitous TGM2 towards unrecognized significance of has well described enzymatic and non-enzymatic functions but in-spite of numerous studies transglutaminase 2. PLoS ONE 12(3): e0172189. its physiological function in humans has not been defined. We compared data on non-syn- doi:10.1371/journal.pone.0172189 onymous single nucleotide variations (nsSNVs) and loss-of-function variants on TGM1-7 Editor: Richard L. Eckert, University of Maryland and F13a from the Exome aggregation consortium dataset, and used computational and School of Medicine, UNITED STATES biochemical analysis to reveal the roles of damaging nsSNVs of TGM2.
    [Show full text]
  • TGM6 L517W Is Not a Pathogenic Variant for Spinocerebellar Ataxia Type 35
    ARTICLE OPEN ACCESS TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35 Yanxing Chen, MD, PhD, Dengchang Wu, MD, PhD, Benyan Luo, MD, PhD, Guohua Zhao, MD, PhD, and Correspondence Kang Wang, MD, PhD Dr. Zhao [email protected] Neurol Genet 2020;6:e424. doi:10.1212/NXG.0000000000000424 or Dr. Wang [email protected] Abstract Objective To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6. Methods Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype. Results The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals. Conclusions The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35. From the Department of Neurology (Y.C., G.Z.), the Second Affiliated Hospital, School of Medicine, Zhejiang University; and Department of Neurology (D.W., B.L., K.W.), the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
    [Show full text]
  • Perspectives on Morphologic Approaches to the Study of the Granular Layer Keratinocyte Karen A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biologic Structure and Function: Perspectives on Morphologic Approaches to the Study of the Granular Layer Keratinocyte Karen A. Holbrook, Ph.D. Stephen Rothman [1] wrote: ‘‘Modern dermatology has been built on the of morphologic approaches to understand skin biology, selecting as solid pillars of precise macro- and microscopic observation, accurate an illustration the progress that has been made in understanding recording and meaningful interpretation of the findings. No natural the structure, composition and function of one cell, the granular layer science can exist without direct observation of natural phenomena, and keratinocyte. This approach avoids describing the advances in metho- dermatology has become a great discipline because we have had so dology, and, instead, demonstrates how morphology has promoted the many good observers.’’ He went on to state further that ‘‘y whereas the conceptual development of the topic (Tables I–III). immense knowledge acquired by the classical descriptive methods is still rapidly increasing, the application of experimental methods to derma- WHAT DO MORPHOLOGIC METHODS OFFER? tologic problems is a relatively young and undeveloped approach.’’ AN OVERVIEW These statements acknowledge the importance of observation and The development of morphologic approaches for skin research has description (usually thought of as features of morphology) in clinical involved the development of instrumentation (to a large extent, dermatology and in descriptive dermatologic research, but were made microscopy) methods to prepare tissue for morphologic examination before he could recognize the value of morphology to experimental (e.g., biopsy, separated epidermis and dermis, isolated cells, cell studies as well.
    [Show full text]
  • Cell Shape Controls Terminal Differentiation of Human Epidermal Keratinocytes (Cell Adhesion/Proliferation/Involucrin Expression) FIONA M
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5576-5580, August 1988 Cell Biology Cell shape controls terminal differentiation of human epidermal keratinocytes (cell adhesion/proliferation/involucrin expression) FIONA M. WATT*, PETER W. JORDANt, AND CHARLES H. O'NEILLt *Keratinocyte Laboratory, and tAnchorage Laboratory, Imperial Cancer Research Fund, P.O. Box 123, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom Communicated by Howard Green, May 2, 1988 ABSTRACT Cultures of human epidermal keratinocytes To investigate the role of cell-substratum contact, and provide a useful experimental model with which to study the hence cell shape, in regulating terminal differentiation, we factors that regulate cell proliferation and terminal differen- have made use of a recently described technique that allows tiation. One situation that is known to trigger premature precise control of cell-substratum contact in the absence of terminal differentiation is suspension culture, when keratin- cell-cell contact (14). We have looked at the effect ofchanges ocytes are deprived of substratum and intercellular contact. in cell shape on DNA synthesis and involucrin expression We have now investigated whether area ofsubstratum contact, and conclude that a rounded morphology acts as a signal to and hence cell shape, can regulate terminal differentiation. keratinocytes to stop dividing and to undergo terminal Keratinocytes were grown on circular adhesive islands that differentiation; inhibition ofproliferation in spread cells is not prevented cell-cell contact. By varying island area we could a sufficient signal for terminal differentiation. vary cell shape from fully spread to almost spherical. We found that when substratum contact was restricted, DNA synthesis was inhibited and expression of involucrin, a marker of MATERIALS AND METHODS terminal differentiation, was stimulated.
    [Show full text]
  • Neurologic Outcomes in Friedreich Ataxia: Study of a Single-Site Cohort E415
    Volume 6, Number 3, June 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort e415 ARTICLE Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort e440 ARTICLE Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy e428 ARTICLE Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases e434 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • B Inhibition in a Mouse Model of Chronic Colitis1
    The Journal of Immunology Differential Expression of Inflammatory and Fibrogenic Genes and Their Regulation by NF-␬B Inhibition in a Mouse Model of Chronic Colitis1 Feng Wu and Shukti Chakravarti2 Fibrosis is a major complication of chronic inflammation, as seen in Crohn’s disease and ulcerative colitis, two forms of inflam- matory bowel diseases. To elucidate inflammatory signals that regulate fibrosis, we investigated gene expression changes under- lying chronic inflammation and fibrosis in trinitrobenzene sulfonic acid-induced murine colitis. Six weekly 2,4,6-trinitrobenzene sulfonic acid enemas were given to establish colitis and temporal gene expression patterns were obtained at 6-, 8-, 10-, and 12-wk time points. The 6-wk point, TNBS-w6, was the active, chronic inflammatory stage of the model marked by macrophage, neu- trophil, and CD3؉ and CD4؉ T cell infiltrates in the colon, consistent with the idea that this model is T cell immune response driven. Proinflammatory genes Cxcl1, Ccl2, Il1b, Lcn2, Pla2g2a, Saa3, S100a9, Nos2, Reg2, and Reg3g, and profibrogenic extra- cellular matrix genes Col1a1, Col1a2, Col3a1, and Lum (lumican), encoding a collagen-associated proteoglycan, were up-regulated at the active/chronic inflammatory stages. Rectal administration of the NF-␬B p65 antisense oligonucleotide reduced but did not abrogate inflammation and fibrosis completely. The antisense oligonucleotide treatment reduced total NF-␬B by 60% and down- regulated most proinflammatory genes. However, Ccl2, a proinflammatory chemokine known to promote fibrosis, was not down- regulated. Among extracellular matrix gene expressions Lum was suppressed while Col1a1 and Col3a1 were not. Thus, effective treatment of fibrosis in inflammatory bowel disease may require early and complete blockade of NF-␬B with particular attention to specific proinflammatory and profibrogenic genes that remain active at low levels of NF-␬B.
    [Show full text]