Keratinization and Its Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R. -
Loss-Of-Function Mutations in the Gene Encoding Filaggrin Cause Ichthyosis
LETTERS Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris Frances J D Smith1, Alan D Irvine2, Ana Terron-Kwiatkowski1, Aileen Sandilands1, Linda E Campbell1, Yiwei Zhao1, Haihui Liao1, Alan T Evans3, David R Goudie4, Sue Lewis-Jones5, Gehan Arseculeratne5, Colin S Munro6, Ann Sergeant6, Gra´inne O’Regan2, Sherri J Bale7, John G Compton7, John J DiGiovanna8,9, Richard B Presland10,11, Philip Fleckman11 & W H Irwin McLean1 Ichthyosis vulgaris (OMIM 146700) is the most common composed of the 400-kDa protein profilaggrin. Following a short, inherited disorder of keratinization and one of the most unique N-terminal domain, most of the profilaggrin molecule consists frequent single-gene disorders in humans. The most widely of 10–12 repeats of the 324-residue filaggrin sequence6. Upon terminal cited incidence figure is 1 in 250 based on a survey of differentiation of granular cells, profilaggrin is proteolytically cleaved 1 B http://www.nature.com/naturegenetics 6,051 healthy English schoolchildren . We have identified into 37-kDa filaggrin peptides and the N-terminal domain contain- homozygous or compound heterozygous mutations R501X and ing an S100-like calcium binding domain. Filaggrin rapidly aggregates 2282del4 in the gene encoding filaggrin (FLG) as the cause of the keratin cytoskeleton, causing collapse of the granular cells into moderate or severe ichthyosis vulgaris in 15 kindreds. In flattened anuclear squames. This condensed cytoskeleton is cross- addition, these mutations are semidominant; heterozygotes linked by transglutaminases during formation of the cornified cell show a very mild phenotype with incomplete penetrance. envelope (CCE). The CCE is the outermost barrier layer of the skin The mutations show a combined allele frequency of B4% which not only prevents water loss but also impedes the entry of in populations of European ancestry, explaining the high allergens and infectious agents7. -
An Abridged Compendium of Words. a Discussion of Them and Opinions About Them
DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Dermatopathology: An abridged compendium of words. A discussion of them and opinions about them. Part 6 (I-L) Bruce J. Hookerman1 1 Dermatology Specialists, Bridgeton, Missouri, USA Citation: Hookerman BJ. Dermatopathology: An abridged compendium of words. A discussion of them and opinions about them. Part 6 (I-L). Dermatol Pract Concept. 2014;4(4):1. http://dx.doi.org/10.5826/dpc.0404a01 Copyright: ©2014 Hookerman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Corresponding author: Bruce J. Hookerman, M.D., 12105 Bridgeton Square Drive, St. Louis, MO 63044, USA. Email: [email protected] – I – term “id reaction” only for a spongiotic dermatitis manifested by tiny vesicles on the hands of patients with florid dermato- ICHTHYOSIS: a generic term for skin conditions character- phytosis at another site, usually the feet, or for an analogue ized by what are said to be fishlike scales, i.e., scales that are of that phenomenon such as widespread vesicles that appear broad and polygonal with free edges, as are seen in ichthyosis subsequent to injudicious treatment, i.e., with Gentian violet vulgaris (and its look-alike, acquired ichthyosis), X-linked (known sardonically in times past as “Gentian violent”) of ichthyosis, and lamellar ichthyosis. Conditions reputed to be an exuberant spongiotic dermatitis, usually on the feet, such ichthyosis, such as ichthyosis hystrix and ichthyosis linearis as an allergic contact dermatitis. A time-honored explana- circumflexa, do not qualify because they are not associated tion for an “id” reaction is hematogenous dissemination of with broad polygonal scales. -
Keratinization of the Oral Epithelium
Annals of the Royal College of Surgeons of England (I976) vol 58 Keratinization of the oral epithelium David Adams BSC MDS PhD Department of Oral Biology, Welsh National School of Medicine Dental School, Cardiff Summary compare it with the non-keratinizing mucosa The morphology of the keratinizing epi- and the epidermis. I also wish to examine thelia in the mouth is reviewed in the light of some of the mechanisms which control and recent knowledge. There appears to be a spec- regulate keratinization and discuss briefly the trum of degrees of keratinization rather than clinical implications of these. distinct types, and the degree of keratinization Orthokeratinization, in which the surface is reflected in the degree of packing and orien- undergoes cornification as cells lose their stain- tation of tonofilaments. The role of keratohya- ing characteristics and their nuclei, is found on line and other granules in the process is dis- the hard palate and on gingiva, especially cussed and it is suggested that modification where this is firmly bound down to of the cell membrane is an important part of underlyinlg bone (Fig. i). The epithelium keratinization. Although the potential of the lies on a basement membrane which separates various areas in the mucosa is genetically de- it from the connective tissue. Above this there termined and appears early in fetal life, the is a series of more or less well-defined layers. connective tissue exerts an influence on the First comes the germinal layer, one or two extent of keratinization of the surface in a cells thick, then the stratum spinosum, with manner which is not understood. -
Perspectives on Morphologic Approaches to the Study of the Granular Layer Keratinocyte Karen A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biologic Structure and Function: Perspectives on Morphologic Approaches to the Study of the Granular Layer Keratinocyte Karen A. Holbrook, Ph.D. Stephen Rothman [1] wrote: ‘‘Modern dermatology has been built on the of morphologic approaches to understand skin biology, selecting as solid pillars of precise macro- and microscopic observation, accurate an illustration the progress that has been made in understanding recording and meaningful interpretation of the findings. No natural the structure, composition and function of one cell, the granular layer science can exist without direct observation of natural phenomena, and keratinocyte. This approach avoids describing the advances in metho- dermatology has become a great discipline because we have had so dology, and, instead, demonstrates how morphology has promoted the many good observers.’’ He went on to state further that ‘‘y whereas the conceptual development of the topic (Tables I–III). immense knowledge acquired by the classical descriptive methods is still rapidly increasing, the application of experimental methods to derma- WHAT DO MORPHOLOGIC METHODS OFFER? tologic problems is a relatively young and undeveloped approach.’’ AN OVERVIEW These statements acknowledge the importance of observation and The development of morphologic approaches for skin research has description (usually thought of as features of morphology) in clinical involved the development of instrumentation (to a large extent, dermatology and in descriptive dermatologic research, but were made microscopy) methods to prepare tissue for morphologic examination before he could recognize the value of morphology to experimental (e.g., biopsy, separated epidermis and dermis, isolated cells, cell studies as well. -
Deimination, Intermediate Filaments and Associated Proteins
International Journal of Molecular Sciences Review Deimination, Intermediate Filaments and Associated Proteins Julie Briot, Michel Simon and Marie-Claire Méchin * UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; [email protected] (J.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +33-5-6115-8425 Received: 27 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes. Keywords: citrullination; post-translational modification; cytoskeleton; keratin; filaggrin; peptidylarginine deiminase 1. Introduction Intermediate filaments (IF) constitute a unique macromolecular structure with a diameter (10 nm) intermediate between those of actin microfilaments (6 nm) and microtubules (25 nm). In humans, IF are found in all cell types and organize themselves into a complex network. They play an important role in the morphology of a cell (including the nucleus), are essential to its plasticity, its mobility, its adhesion and thus to its function. -
Identification of Trichoplein, a Novel Keratin Filament- Binding Protein
Research Article 1081 Identification of trichoplein, a novel keratin filament- binding protein Miwako Nishizawa1,*, Ichiro Izawa1,*, Akihito Inoko1,*, Yuko Hayashi1, Koh-ichi Nagata1, Tomoya Yokoyama1,2, Jiro Usukura3 and Masaki Inagaki1,‡ 1Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan 2Department of Dermatology, Mie University Faculty of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan 3Department of Anatomy and Cell Biology, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 29 November 2004 Journal of Cell Science 118, 1081-1090 Published by The Company of Biologists 2005 doi:10.1242/jcs.01667 Summary Keratins 8 and 18 (K8/18) are major components of the antibody in a complex with K8/18 and immunostaining intermediate filaments (IFs) of simple epithelia. We report revealed that trichoplein colocalized with K8/18 filaments here the identification of a novel protein termed in HeLa cells. In polarized Caco-2 cells, trichoplein trichoplein. This protein shows a low degree of sequence colocalized not only with K8/18 filaments in the apical similarity to trichohyalin, plectin and myosin heavy chain, region but also with desmoplakin, a constituent of and is a K8/18-binding protein. Among interactions desmosomes. In the absorptive cells of the small intestine, between trichoplein and various IF proteins that we trichoplein colocalized with K8/18 filaments at the apical tested using two-hybrid methods, trichoplein interacted cortical region, and was also concentrated at desmosomes. -
Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M
14 The Open Dermatology Journal, 2010, 4, 14-20 Open Access Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M. Brandner1,§, Marek Haftek*,2,§ and Carien M. Niessen3,§ 1Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany 2University of Lyon, EA4169 Normal and Pathological Functions of Skin Barrier, E. Herriot Hospital, Lyon, France 3Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany Abstract: The skin is an indispensable barrier which protects the body from the uncontrolled loss of water and solutes as well as from chemical and physical assaults and the invasion of pathogens. In recent years several studies have suggested an important role of intercellular junctions for the barrier function of the epidermis. In this review we summarize our knowledge of the impact of adherens junctions, (corneo)-desmosomes and tight junctions on barrier function of the skin. Keywords: Cadherins, catenins, claudins, cell polarity, stratum corneum, skin diseases. INTRODUCTION ADHERENS JUNCTIONS The stratifying epidermis of the skin physically separates Adherens junctions are intercellular structures that couple the organism from its environment and serves as its first line intercellular adhesion to the cytoskeleton thereby creating a of structural and functional defense against dehydration, transcellular network that coordinate the behavior of a chemical substances, physical insults and micro-organisms. population of cells. Adherens junctions are dynamic entities The living cell layers of the epidermis are crucial in the and also function as signal platforms that regulate formation and maintenance of the barrier on two different cytoskeletal dynamics and cell polarity. -
Trichohyalin-Like 1 Protein Plays a Crucial Role in Proliferation and Anti
Makino et al. Cell Death Discovery (2020) 6:109 https://doi.org/10.1038/s41420-020-00344-5 Cell Death Discovery ARTICLE Open Access Trichohyalin-like 1 protein plays a crucial role in proliferation and anti-apoptosis of normal human keratinocytes and squamous cell carcinoma cells Teruhiko Makino 1,MegumiMizawa1, Yoko Yoshihisa1, Seiji Yamamoto2, Yoshiaki Tabuchi 3, Masashi Miyai4, Toshihiko Hibino4, Masakiyo Sasahara2 and Tadamichi Shimizu1 Abstract Epidermal differentiation is a complex process that requires the regulated and sequential expression of various genes. Most fused-type S100 proteins are expressed in the granular layer and it is hypothesized that these proteins may be associated with cornification and barrier formation. We previously identified a member of the fused-type S100 proteins, Trichohyalin-like 1 (TCHHL1) protein. TCHHL1 is distributed in the basal layer of the normal epidermis. Furthermore, the expression is markedly increased in cancerous/non-cancerous skin samples with the hyperproliferation of keratinocytes. We herein examined the role of TCHHL1 in normal human keratinocytes (NHKs) and squamous cell carcinoma (SCC). The knockdown of TCHHL1 by transfection with TCHHL1 siRNA significantly inhibited proliferation and induced the early apoptosis of NHKs. In TCHHL1-knockdown NHKs, the level of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation was markedly decreased. In addition, the slight inhibition of v-akt murine thymoma viral oncogene homolog (AKT) phosphorylation and upregulation of forkhead box-containing protein O1(FOXO1), B-cell lymphoma2 (BCL2) and Bcl2-like protein 11 (BCL2L11) was observed. Skin-equivalent models fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; built by TCHHL1-knockdown NHKs showed a markedly hypoplastic epidermis. -
Abnormal Epidermal Keratinization in the Repeated Epilation Mutant Mouse
Abnormal Epidermal Keratinization in the Repeated Epilation Mutant Mouse KAREN A. HOLBROOK, BEVERLY A . DALE, and KENNETH S . BROWN Departments of Biological Structure, Medicine (Dermatology), and Periodontics, University of Washington, Seattle, Washington 98195, and the Laboratory of Developmental Biology and Anomalies, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20205 ABSTRACT Repeated epilation (Er) is a radiation-induced, autosomal, incomplete dominant mutation in mice which is expressed in heterozygotes but is lethal in the homozygous condition . Many effects of the mutation occur in skin : the epidermis in Er/Er mice is adhesive (oral and nasal orifices fuse, limbs adhere to the body wall), hyperplastic, and fails to undergo terminal differentiation . Skin from fetal +/+, Er/+ and Er/Er mice at ages pre- and postkeratin- ization examined by light, scanning, and transmission electron microscopy showed marked abnormalities in tissue architecture, differentiation, and cell structure ; light and dark basal epidermal cells were separated by wide intercellular spaces, joined by few desmosomes, and contained phagolysosomes . The numbers of spinous, granular, and superficial layers were highly variable within any given region and among various regions of the body. In some areas, 2-8 layers of granular cells, containing large or diminutive keratohyalin granules, extended to the epidermal surface; in others, the granular layers were covered by several layers of partially keratinized or nonkeratinized cells . In rare instances, a single or small group of cornified cells was present among the granular layers but was not associated with the epidermal surface . Both the granular and non keratinized/partially keratinized upper epidermal layers in Er/Er skin gave positive immunofluorescence with antiserum to the histidine-rich, basic protein, filaggrin . -
Augmentation of Keratinocyte Differentiation by the Epidermal Mitogen, 8-Promo-CAMP
Experimental Cell Research 149 (1983) 215-226 Augmentation of Keratinocyte Differentiation by the Epidermal Mitogen, 8-Promo-CAMP PHILIP S. L. TONG and CYNTHIA L. MARCELO* Department ,of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA The effect of the epidermal mitogen, 8bromo-CAMP, on keratinocyte differentiation was studied. A 3X10d4 M dose of I-bromo-CAMP was added to primary neonatal mouse epidermal keratinocyte cultures that slowly proliferate, stratify and differentiate over 2-3 weeks time. [3H]Thymidine autoradiography coupled with an NH4Cl plus reducing agent technic which separates basal and differentiating keratinocytes was used to determine the target cell for the I-bromo-CAMP mitogenic effect. A histologic stain and a four buffer protein extraction protocol, in conjunction with PAGE and fluorographic technics, were used to assess the differentiation of the cultures. The data indicated that 8-bromo-CAMP primarily stimulated the proliferation of the basal cell monolayer. Simultaneous with the mitogenic effect was an increase in the production of keratohyalin granule, keratin and cell envelope proteins, which are specific markers of epidermal differentiation. The results indicate that keratinocytes stimulated by the epidermal mitogen I-bromo-CAMP simulta- neously express differentiation-related processes. The effect of CAMP on proliferation appears to be cell-specific and concentra- tion-dependent. Numerous studies report that large increases in intracellular CAMP inhibit proliferation [ 1, 21, an event often accompanied by stimulation of a number of cell functions and of differentiation [3-8]. Almost as numerous are investigations demonstrating the hyperproliferative effect of CAMP on a number of cell types [9-141. -
Knockdown of Filaggrin in a Three-Dimensional Reconstructed
ORIGINAL ARTICLE Knockdown of Filaggrin in a Three-Dimensional Reconstructed Human Epidermis Impairs Keratinocyte Differentiation Vale´rie Pendaries1,2,3, Jeremy Malaisse4, Laurence Pellerin1,2,3, Marina Le Lamer1,2,3, Rachida Nachat1,2,3,8, Sanja Kezic5, Anne-Marie Schmitt6,CarlePaul1,2,3,7, Yves Poumay4, Guy Serre1,2,3 and Michel Simon1,2,3 Atopic dermatitis is a chronic inflammatory skin disorder characterized by defects in the epidermal barrier and keratinocyte differentiation. The expression of filaggrin, a protein thought to have a major role in the function of the epidermis, is downregulated. However, the impact of this deficiency on keratinocytes is not really known. This was investigated using lentivirus-mediated small-hairpin RNA interference in a three-dimensional recon- structed human epidermis (RHE) model, in the absence of other cell types than keratinocytes. Similar to what is known for atopic skin, the experimental filaggrin downregulation resulted in hypogranulosis, a disturbed corneocyte intracellular matrix, reduced amounts of natural moisturizing factor components, increased permeability and UV-B sensitivity of the RHE, and impaired keratinocyte differentiation at the messenger RNA and protein levels. In particular, the amounts of two filaggrin-related proteins and one protease involved in the degradation of filaggrin, bleomycin hydrolase, were lower. In addition, caspase-14 activation was reduced. These results demonstrate the importance of filaggrin for the stratum corneum properties/functions. They indicate that filaggrin downregulation in the epidermis of atopic patients, either acquired or innate, may be directly responsible for some of the disease-related alterations in the epidermal differentiation program and epidermal barrier function. Journal of Investigative Dermatology advance online publication, 10 July 2014; doi:10.1038/jid.2014.259 INTRODUCTION a secondary local epidermal barrier disruption.