Network Analysis of Potential Risk Genes for Psoriasis Huilin Wang, Wenjun Chen, Jin He, Wenjuan Xu and Jiangwei Liu*

Total Page:16

File Type:pdf, Size:1020Kb

Network Analysis of Potential Risk Genes for Psoriasis Huilin Wang, Wenjun Chen, Jin He, Wenjuan Xu and Jiangwei Liu* Wang et al. Hereditas (2021) 158:21 https://doi.org/10.1186/s41065-021-00186-w RESEARCH Open Access Network analysis of potential risk genes for psoriasis Huilin Wang, Wenjun Chen, Jin He, Wenjuan Xu and Jiangwei Liu* Abstract Background: Psoriasis is a complex chronic infammatory skin disease. The aim of this study was to analyze potential risk genes and molecular mechanisms associated with psoriasis. Methods: GSE54456, GSE114286, and GSE121212 were collected from gene expression omnibus (GEO) database. Diferentially expressed genes (DEGs) between psoriasis and controls were screened respectively in three datasets and common DEGs were obtained. The biological role of common DEGs were identifed by enrichment analysis. Hub genes were identifed using protein–protein interaction (PPI) networks and their risk for psoriasis was evalu- ated through logistic regression analysis. Moreover, diferentially methylated positions (DMPs) between psoriasis and controls were obtained in the GSE115797 dataset. Methylation markers were identifed after comparison with the common genes. Results: A total of 118 common DEGs were identifed, which were mainly involved in keratinocyte diferentiation and IL-17 signaling pathway. Through PPI network, we identifed top 10 degrees as hub genes. Among them, high expres- sion of CXCL9 and SPRR1B may be risk factors for psoriasis. In addition, we selected 10 methylation-modifed genes with the higher area under receiver operating characteristic curve (AUC) value as methylation markers. Nomogram showed that TGM6 and S100A9 may be associated with an increased risk of psoriasis. Conclusion: This suggests that immune and infammatory responses are active in keratinocytes of psoriatic skin. CXCL9, SPRR1B, TGM6 and S100A9 may be potential targets for the diagnosis and treatment of psoriasis. Keywords: Psoriasis, Diferentially expressed genes, Diferentially methylated positions, Pathogenesis Introduction of silver-white multilayered scales are characteristic of Psoriasis is an immune-mediated infammatory skin psoriasis, and the patient’s epidermis is thickened, clearly disease with important physiological and psychosocial demarcating from adjacent non-banded skin [5]. Te dis- consequences [1]. Psoriasis has complex characteris- ease afects more than 10% of the body surface area and tics, afecting about 2% of the general population, and usually requires systemic drug therapy. the prevalence of psoriasis varies from country to coun- Infammatory infltration consisting of dermal den- try [2, 3]. Tere are several clinical variants of this dis- dritic cells, macrophages, T cells, and neutrophils is ease, namely plaque psoriasis, erythrodermic psoriasis present in psoriatic plaques [6]. Help T cells have long and pustular psoriasis, among which plaque psoriasis been recognized as an important pathogenic factor accounts for more than 90% [4]. Clinically, red patches in psoriasis. Further evidence suggests that there is a strong T cell component to maintain psoriasis through T1, T17, and T22 cells and their derived cytokines *Correspondence: [email protected] Department of Dermatology, General Hospital of Xinjiang Military [7]. Te complex interaction of pro-infammatory Command, No. 359 Youhao North Road, Saybak District, Urumqi 830001, cytokines, chemokines, growth factors and chemical Xinjiang, China mediators initiated by T17 cells may be the key factors © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Wang et al. Hereditas (2021) 158:21 Page 2 of 8 to induce keratinocyte proliferation, angiogenesis and Identifcation of diferentially expressed genes neutrophil infux, ultimately leading to keratinocyte Te diferentially expressed genes (DEGs) between over-proliferation and the characteristics of psoriatic psoriasis and normal were obtained through limma R plaques [8]. Recently, mast cells have been shown to be software package. Te log2 fold change (FC) ≥ 2 and the major producers of interleukin-22 in psoriasis and P-values < 0.05 were considered as a statistically signif- atomic dermatitis [9]. Among various molecules asso- cant diference. ciated with psoriasis, tumor necrosis factor (TNF)-α, IL-23, IL-17 and IL-22 are important regulators of pso- Enrichment analysis riasis [10]. Emerging evidence suggests that diferent phenotypes have diferent immunogenetic characteris- Te enrichment analysis was performed using clus- tics, which may afect treatment options [11]. terProfler R software package for the DEGs, includ- Epidermal gene modifcation is considered as an ing gene ontology (GO) functional analysis and Kyoto essential factor in the pathogenesis of psoriasis [12]. Encyclopedia of Genes and Genomes (KEGG) pathway Epigenetic changes also play an important role in the analysis. Te cellular component (CC), biological pro- cess (BP) and molecular function (MF) terms belonged diferentiation of CD4( +) T lymphocyte subsets and in the pathogenesis of psoriasis [13]. Among all epigenetic to GO function. P-value of < 0.05 was considered statis- mechanisms, DNA methylation is one of the important tically signifcant. factors in keratinocyte diferentiation [14, 15]. Com- mon drugs used to treat psoriasis, such as methotrex- Construction of protein–protein interaction (PPI) network ate, have been reported to interfere with the methyl transfer function of folic acid, thereby restoring nor- Te DEGs were put into the online tool STRING (https:// mal methylation status [16]. However, researchers still string- db. org) to construct the PPI network. A combined need to make greater eforts to elucidate how abnormal score of ≥ 0.5 was considered signifcant. Te hub genes epigenetic modifcations afect the pathogenesis of pso- were chosen based on a higher number of associations riasis. In addition, some environmental factors, includ- with other genes (degree) in the PPI network. ing modifable variables such as physical trauma, drug reversal, psychological stress, obesity, are associated DNA methylation analysis with the development and deterioration of psoriasis GSE115797 included DNA methylation profle of 24 [17]. psoriatic disease skin tissue and adjacent normal skin In this study, psoriasis-related sequencing data in samples. Te signal intensities along with the detec- public databases were used to explore the molecular tion P-values were calculated for each CpG probes after mechanisms and potential risk factors of the disease. BMIQ normalization. Normal skinized average beta val- ues were calculated using ChAMP R software. Diferen- Materials and methods tially methylated positions (DMPs) between psoriasis Data collection and normal were achieved by limma R software pack- age. Set screening threshold with false discovery rate We collected psoriasis-related datasets from the (FDR) < 0.05. gene expression omnibus (GEO) database. GSE54456 included gene expression profle from skin samples of 92 psoriatic and 82 normal punch biopsies. Te genes Statistical analyses annotated in RefSeq was used to quantify gene expres- Statistical analyses were carried out with SPSS Statistics sion levels. Te gene expression was normalized to 21.0. Te diferences between two groups were compared the number of reads per kilobase per million mapped by Student t test. LRM function in RMS R software pack- reads (RPKM). GSE114286 included gene expression age was used for logistic regression analysis. profle from 9 normal skins from healthy volunteers and 18 lesional skins from patients with psoriasis. Te gene expression was normalized through RPKM. Results GSE121212 included gene expression profle of skin Diferentially expressed genes in psoriasis tissues obtained from a carefully matched and tightly By comparing the diferences between psoriasis and defned cohort of 28 psoriasis patients, and 38 healthy healthy controls, we obtained diferentially expressed controls. Paired reads were mapped to the human ref- genes (DEGs). A total of 401, 1857, and 466 DEGs were erence genome (b37), number of reads for each gene obtained in GSE54456, GSE114286 and GSE121212, was counted using HTSeq. respectively (Fig. 1A). Among these DEGs, we found 118 Wang et al. Hereditas (2021) 158:21 Page 3 of 8 Fig. 1 The diferentially expressed genes between psoriasis and control. A Volcano maps of diferentially expressed genes in three datasets. B The common genes in three groups of diferentially expressed genes genes simultaneously present in three datasets and then logistic regression analysis and presented the risk pre- defned them as common DEGs (Fig. 1B).
Recommended publications
  • Genomic Variants Reveal Differential Evolutionary Constraints on Human Transglutaminases and Point Towards Unrecognized Significance of Transglutaminase 2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Debrecen Electronic Archive RESEARCH ARTICLE Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2 Kiruphagaran Thangaraju1, RoÂbert KiraÂly1, MaÂte A. DemeÂny1, JaÂnos AndraÂs MoÂtyaÂn1, a1111111111 Mo nika Fuxreiter1,2, LaÂszlo FeÂsuÈs1,3* a1111111111 a1111111111 1 Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, a1111111111 Debrecen, Hungary, 2 MTA-DE Momentum Laboratory of Protein Dynamics, Faculty of Medicine, University a1111111111 of Debrecen, Debrecen, Hungary, 3 MTA-DE Stem cell, Apoptosis and Genomics Research Group of Hungarian Academy of Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary * [email protected] OPEN ACCESS Abstract Citation: Thangaraju K, KiraÂly R, DemeÂny MA, AndraÂs MoÂtyaÂn J, Fuxreiter M, FeÂsuÈs L (2017) Transglutaminases (TGMs) catalyze Ca2+-dependent transamidation of proteins with speci- Genomic variants reveal differential evolutionary constraints on human transglutaminases and point fied roles in blood clotting (F13a) and in cornification (TGM1, TGM3). The ubiquitous TGM2 towards unrecognized significance of has well described enzymatic and non-enzymatic functions but in-spite of numerous studies transglutaminase 2. PLoS ONE 12(3): e0172189. its physiological function in humans has not been defined. We compared data on non-syn- doi:10.1371/journal.pone.0172189 onymous single nucleotide variations (nsSNVs) and loss-of-function variants on TGM1-7 Editor: Richard L. Eckert, University of Maryland and F13a from the Exome aggregation consortium dataset, and used computational and School of Medicine, UNITED STATES biochemical analysis to reveal the roles of damaging nsSNVs of TGM2.
    [Show full text]
  • TGM6 L517W Is Not a Pathogenic Variant for Spinocerebellar Ataxia Type 35
    ARTICLE OPEN ACCESS TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35 Yanxing Chen, MD, PhD, Dengchang Wu, MD, PhD, Benyan Luo, MD, PhD, Guohua Zhao, MD, PhD, and Correspondence Kang Wang, MD, PhD Dr. Zhao [email protected] Neurol Genet 2020;6:e424. doi:10.1212/NXG.0000000000000424 or Dr. Wang [email protected] Abstract Objective To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6. Methods Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype. Results The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals. Conclusions The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35. From the Department of Neurology (Y.C., G.Z.), the Second Affiliated Hospital, School of Medicine, Zhejiang University; and Department of Neurology (D.W., B.L., K.W.), the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
    [Show full text]
  • Neurologic Outcomes in Friedreich Ataxia: Study of a Single-Site Cohort E415
    Volume 6, Number 3, June 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort e415 ARTICLE Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort e440 ARTICLE Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy e428 ARTICLE Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases e434 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E.
    [Show full text]
  • Gene Ontology Functional Annotations and Pleiotropy
    Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question
    [Show full text]
  • Comprehensive Comparison of Three Commercial Human Whole-Exome
    Asan et al. Genome Biology 2011, 12:R95 http://genomebiology.com/2011/12/9/R95 RESEARCH Open Access Comprehensive comparison of three commercial human whole-exome capture platforms Asan2,3*†,YuXu1†, Hui Jiang1†, Chris Tyler-Smith4†, Yali Xue4, Tao Jiang1, Jiawei Wang1, Mingzhi Wu1, Xiao Liu1, Geng Tian1, Jun Wang1, Jian Wang1, Huangming Yang1* and Xiuqing Zhang1* Abstract Background: Exome sequencing, which allows the global analysis of protein coding sequences in the human genome, has become an effective and affordable approach to detecting causative genetic mutations in diseases. Currently, there are several commercial human exome capture platforms; however, the relative performances of these have not been characterized sufficiently to know which is best for a particular study. Results: We comprehensively compared three platforms: NimbleGen’s Sequence Capture Array and SeqCap EZ, and Agilent’s SureSelect. We assessed their performance in a variety of ways, including number of genes covered and capture efficacy. Differences that may impact on the choice of platform were that Agilent SureSelect covered approximately 1,100 more genes, while NimbleGen provided better flanking sequence capture. Although all three platforms achieved similar capture specificity of targeted regions, the NimbleGen platforms showed better uniformity of coverage and greater genotype sensitivity at 30- to 100-fold sequencing depth. All three platforms showed similar power in exome SNP calling, including medically relevant SNPs. Compared with genotyping and whole-genome sequencing data, the three platforms achieved a similar accuracy of genotype assignment and SNP detection. Importantly, all three platforms showed similar levels of reproducibility, GC bias and reference allele bias. Conclusions: We demonstrate key differences between the three platforms, particularly advantages of solutions over array capture and the importance of a large gene target set.
    [Show full text]
  • Genetic Background of Ataxia in Children Younger Than 5 Years in Finland E444
    Volume 6, Number 4, August 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Genetic background of ataxia in children younger than 5 years in Finland e444 ARTICLE Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene e448 ARTICLE Somatic SLC35A2 mosaicism correlates with clinical fi ndings in epilepsy brain tissuee460 ARTICLE Synonymous variants associated with Alzheimer disease in multiplex families e450 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E. Post, MBA, CAE article. Alternatively, send an email to [email protected].
    [Show full text]
  • W O 2019/200163 Al 17 October 2019 (17.10.2019) W IPO I PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property (1) Organization11111111111111111111111I1111111111111i1111liiili International Bureau (10) International Publication Number (43) International Publication Date W O 2019/200163 Al 17 October 2019 (17.10.2019) W IPO I PCT (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12N15/869 (2006.01) A61P17/00 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C07K14/46 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2019/027079 pM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 11 April 2019 (11.04.2019) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regionalprotection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (26)PublicationLanguage: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/656,768 12 April 2018 (12.04.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: KRYSTAL BIOTECH, INC.
    [Show full text]
  • Homozygous Mutations in PXDN Cause Congenital Cataract, Corneal Opacity, and Developmental Glaucoma
    REPORT Homozygous Mutations in PXDN Cause Congenital Cataract, Corneal Opacity, and Developmental Glaucoma Kamron Khan,1,2,11 Adam Rudkin,3,11 David A. Parry,1,11 Kathryn P. Burdon,3 Martin McKibbin,1,2 Clare V. Logan,1 Zakia I.A. Abdelhamed,1,4 James S. Muecke,5 Narcis Fernandez-Fuentes,1 Kate J. Laurie,3 Mike Shires,1 Rhys Fogarty,3 Ian M. Carr,1 James A. Poulter,1 Joanne E. Morgan,1 Moin D. Mohamed,1,6 Hussain Jafri,7 Yasmin Raashid,8 Ngy Meng,9 Horm Piseth,10 Carmel Toomes,1 Robert J. Casson,5 Graham R. Taylor,1 Michael Hammerton,5 Eamonn Sheridan,1 Colin A. Johnson,1 Chris F. Inglehearn,1 Jamie E. Craig,3,11,* and Manir Ali1,11,* Anterior segment dysgenesis describes a group of heterogeneous developmental disorders that affect the anterior chamber of the eye and are associated with an increased risk of glaucoma. Here, we report homozygous mutations in peroxidasin (PXDN) in two consanguineous Pakistani families with congenital cataract-microcornea with mild to moderate corneal opacity and in a consanguineous Cambodian family with developmental glaucoma and severe corneal opacification. These results highlight the diverse ocular phenotypes caused by PXDN mutations, which are likely due to differences in genetic background and environmental factors. Peroxidasin is an extracellular matrix-associated protein with peroxidase catalytic activity, and we confirmed localization of the protein to the cornea and lens epithe- lial layers. Our findings imply that peroxidasin is essential for normal development of the anterior chamber of the eye, where it may have a structural role in supporting cornea and lens architecture as well as an enzymatic role as an antioxidant enzyme in protecting the lens, trabecular meshwork, and cornea against oxidative damage.
    [Show full text]
  • Transglutaminase 3: the Involvement in Epithelial Differentiation and Cancer
    cells Review Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer Elina S. Chermnykh * , Elena V. Alpeeva and Ekaterina A. Vorotelyak Koltzov Institute of Developmental Biology Russian Academy of Sciences, 119334 Moscow, Russia; [email protected] (E.V.A.); [email protected] (E.A.V.) * Correspondence: [email protected] Received: 1 June 2020; Accepted: 26 August 2020; Published: 30 August 2020 Abstract: Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
    [Show full text]
  • Molecular Genetic Studies of Recessively Inherited Eye Diseases
    MOLECULAR GENETIC STUDIES OF RECESSIVELY INHERITED EYE DISEASES by SARAH JOYCE A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Clinical and Experimental Medicine The Medical School University of Birmingham July 2011 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Cataract is the opacification of the crystalline lens of the eye. Both childhood and later-onset cataracts have been linked with complex genetic factors. Cataracts vary in phenotype and exhibit genetic heterogeneity. They can appear as isolated abnormalities, or as part of a syndrome. During this project, analysis of syndromic and non-syndromic cataract families using genetic linkage studies was undertaken in order to identify the genes involved, using an autozygosity mapping and positional candidate approach. Causative mutations were identified in families with syndromes involving cataracts. The finding of a mutation in CYP27A1 in a family with Cerebrotendinous Xanthomatosis permitted clinical intervention as this is a treatable disorder. A mutation that segregated with disease status in a family with Marinesco Sjogren Syndrome was identified in SIL1. In a family with Knobloch Syndrome, a frameshift mutation in COL18A1 was detected in all affected individuals.
    [Show full text]
  • TGM5 Gene Transglutaminase 5
    TGM5 gene transglutaminase 5 Normal Function The TGM5 gene provides instructions for making an enzyme called transglutaminase 5. This enzyme is found in many of the body's tissues, although it seems to play a particularly important role in the outer layer of skin (the epidermis). In the epidermis, transglutaminase 5 is involved in the formation of the cornified cell envelope, which is a structure that surrounds cells and helps the skin form a protective barrier between the body and its environment. Specifically, transglutaminase 5 forms strong bonds, called cross-links, between the structural proteins that make up the cornified cell envelope. This cross-linking provides strength and stability to the epidermis. Health Conditions Related to Genetic Changes Acral peeling skin syndrome At least 22 mutations in the TGM5 gene have been found to cause acral peeling skin syndrome. This condition is characterized by painless peeling of the top layer of skin that is most apparent on the hands and feet but can also affect the arms and legs. Most of the mutations change single protein building blocks (amino acids) in transglutaminase 5, including the most common mutation in people of European ancestry, which replaces the amino acid glycine with the amino acid cysteine at position 113 (written as Gly113Cys or G113C). TGM5 gene mutations reduce the amount of transglutaminase 5 that is produced or prevent cells from making any of this enzyme. A shortage of transglutaminase 5 impairs protein cross-linking, which weakens the cornified cell envelope and allows the outermost cells of the epidermis to separate easily from the underlying skin and peel off.
    [Show full text]
  • Diverse Noncoding Mutations Contribute to Deregulation of Cis-Regulatory Landscape in Pediatric Cancers
    bioRxiv preprint doi: https://doi.org/10.1101/843102; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Diverse noncoding mutations contribute to deregulation of cis-regulatory landscape in pediatric cancers Bing He1, Peng Gao1, Yang-Yang Ding1,2, Chia-Hui Chen1, Gregory Chen3, Changya Chen1, Hannah Kim1, Sarah K. Tasian1,2,7, Stephen P. Hunger1,2,7, Kai Tan1,2,4,5,6,7 1 Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA 2 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Medical Scientist Training Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 4 Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA 5 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 6 Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 7 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Correspondence: Kai Tan, [email protected] Disclosure of potential conflicts of interest The authors declare no competing interests. bioRxiv preprint doi: https://doi.org/10.1101/843102; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]