World of Fungi Stamp Collection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Volatilomes of Milky Mushroom (Calocybe Indica P&C) Estimated
International Journal of Chemical Studies 2017; 5(3): 387-391 P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2017; 5(3): 387-381 Volatilomes of milky mushroom (Calocybe indica © 2017 JEZS Received: 15-03-2017 P&C) estimated through GCMS/MS Accepted: 16-04-2017 Priyadharshini Bhupathi Priyadharshini Bhupathi and Krishnamoorthy Akkanna Subbiah PhD Scholar, Department of Plant Pathology, Tamil Nadu Agricultural University, Abstract Coimbatore, India The volatilomes of both fresh and dried samples of milky mushroom (Calocybe indica P&C var. APK2) were characterized with GCMS/MS. The gas chromatogram was performed with the ethanolic extract of Krishnamoorthy Akkanna the samples. The results revealed the presence of increased levels of 1, 4:3, 6-Dianhydro-α-d- Subbiah glucopyranose (57.77%) in the fresh and oleic acid (56.58%) in the dried fruiting bodies. The other Professor and Head, Department important fatty acid components identified both in fresh and dried milky mushroom samples were of Plant Pathology, Tamil Nadu octadecenoic acid and hexadecanoic acid, which are known for their specific fatty or cucumber like Agricultural University, aroma and flavour. The aroma quality of dried samples differed from that of fresh ones with increased Coimbatore, India levels of n- hexadecenoic acid (peak area - 8.46 %) compared to 0.38% in fresh samples. In addition, α- D-Glucopyranose (18.91%) and ergosterol (5.5%) have been identified in fresh and dried samples respectively. The presence of increased levels of ergosterol indicates the availability of antioxidants and anticancer biomolecules in milky mushroom, which needs further exploration. The presence of α-D- Glucopyranose (trehalose) components reveals the chemo attractive nature of the biopolymers of milky mushroom, which can be utilized to enhance the bioavailability of pharmaceutical or nutraceutical preparations. -
SOMA News March 2011
VOLUME 23 ISSUE 7 March 2011 SOMA IS AN EDUCATIONAL ORGANIZATION DEDICATED TO MYCOLOGY. WE ENCOURAGE ENVIRONMENTAL AWARENESS BY SHARING OUR ENTHUSIASM THROUGH PUBLIC PARTICIPATION AND GUIDED FORAYS. WINTER/SPRING 2011 SPEAKER OF THE MONTH SEASON CALENDAR March Connie and Patrick March 17th » Meeting—7pm —“A Show and Tell”— Sonoma County Farm Bureau Speaker: Connie Green & Patrick March 17th—7pm Hamilton Foray March. 19th » Salt Point April April 21st » Meeting—7pm Sonoma County Farm Bureau Speaker: Langdon Cook Foray April 23rd » Salt Point May May 19th » Meeting—7pm Sonoma County Farm Bureau Speaker: Bob Cummings Foray May: Possible Morel Camping! eparated at birth but from the same litter Connie Green and Patrick Hamilton have S traveled (endured?) mushroom journeys together for almost two decades. They’ve been to the humid and hot jaguar jungles of Chiapas chasing tropical mushrooms and to EMERGENCY the cloud forests of the Sierra Madre for boletes and Indigo milky caps. In the cold and wet wilds of Alaska they hiked a spruce and hemlock forest trail to watch grizzly bears MUSHROOM tearing salmon bellies just a few yards away. POISONING IDENTIFICATION In the remote Queen Charlotte Islands their bush plane flew over “fields of golden chanterelles,” landed on the ocean, and then off into a zany Zodiac for a ride over a cold After seeking medical attention, contact and roiling sea alongside some low flying puffins to the World Heritage Site of Ninstints. Darvin DeShazer for identification at The two of them have gazed at glaciers and berry picked on muskeg bogs. More than a (707) 829-0596. -
MMA MASTERLIST - Sorted Alphabetically
MMA MASTERLIST - Sorted Alphabetically Sunday, December 10, 20Taxa Count: 2115 Page 1 of 26 Agaricus abruptibulbus Amanita amerimuscaria Agaricus arvensis Amanita amerirubescens nom. prov. Agaricus campestris Amanita atkinsoniana Agaricus haemorrhoidarius Amanita aureosolea nom. prov. Agaricus micromegethus Amanita battarrae Agaricus pattersonae Amanita bisporigera Agaricus placomyces Amanita brunnescens Agaricus semotus Amanita ceciliae Agaricus silvaticus Amanita cinereoconia Agaricus silvicola Amanita citrina Agaricus sp. Amanita citrina f. lavendula Agaricus subrutilescens Amanita cokeri Agaricus xanthrodermus Amanita cothurnata Agrocybe acericola Amanita crenulata Agrocybe aegerita Amanita crocea Agrocybe dura Amanita elongata Agrocybe erebia Amanita excelsa var. spissa Agrocybe firma Amanita farinosa Agrocybe pediades Amanita flavoconia Agrocybe praecox Amanita flavorubens Agrocybe sp. Amanita flavorubescens Agrocybe tabacina Amanita frostiana Albatrellus caeruleoporus Amanita fulva var. alba Albatrellus confluens Amanita fulva var. crassivolvata Albatrellus ovinus Amanita gemmata Albatrellus sp. Amanita jacksonii Alboleptonia sericella Amanita longipes Albugo candida Amanita murrilliana Aleuria aurantia Amanita onusta Aleuria rhenana Amanita pantherina, cf. Aleurodiscus amorphus Amanita phalloides Aleurodiscus oakesii Amanita porphyria Amanita abrupta Amanita praecox nom. prov. Amanita aestivalis Amanita pseudovolvata nom. prov. Amanita albocreata Amanita RET T01 Amanita amerifulva nom. prov. Amanita ristichii Amanita rubescens -
Wild-Gathered Fungi for Health and Rural Livelihoods
Proceedings of the Nutrition Society (2006), 65, 190–197 DOI:10.1079/PNS2006491 g The Authors 2006 Wild-gathered fungi for health and rural livelihoods Miriam de Roma´n1*, Eric Boa1 and Steve Woodward2 1CABI Bioscience, Bakeham Lane, Egham, Surrey TW20 9TY, UK 2School of Biological Sciences, University of Aberdeen, Plant and Soil Science, St Machar Drive, Aberdeen AB24 3UU, UK Fungi are a good source of digestible proteins and fibre, are low in fat and energy and make a useful contribution to vitamin and mineral intake. In terms of current dietary advice, 80 g fungi represent one portion of vegetables. Dried fungi and concentrated extracts are also used as medicines and dietary supplements. Some species show strong anti-tumour and antioxidant activity by enhancing various immune system functions and lowering cholesterol levels. Nevertheless, there are also some safety concerns. Edible species might be mistaken for poi- sonous ones, high heavy-metal concentrations in wild edible fungi (WEF) are a known source of chronic poisoning and the consumption of WEF can contribute markedly to the radiocaesium intake of human subjects. Some regions of Europe have a strong WEF tradition, especially eastern Europe. In the UK the consumption of wild fungi is considered of minor importance. Only one-third of adults consume fungi (cultivated species and WEF) throughout the UK; the average intake of fungi in the UK is estimated to be 0.12 kg fresh weight per capita per year. At least eighty-two species of wild fungi are recorded as being consumed in the UK, although certain species (e.g. -
AMATOXIN MUSHROOM POISONING in NORTH AMERICA 2015-2016 by Michael W
VOLUME 57: 4 JULY-AUGUST 2017 www.namyco.org AMATOXIN MUSHROOM POISONING IN NORTH AMERICA 2015-2016 By Michael W. Beug: Chair, NAMA Toxicology Committee Assessing the degree of amatoxin mushroom poisoning in North America is very challenging. Understanding the potential for various treatment practices is even more daunting. Although I have been studying mushroom poisoning for 45 years now, my own views on potential best treatment practices are still evolving. While my training in enzyme kinetics helps me understand the literature about amatoxin poisoning treatments, my lack of medical training limits me. Fortunately, critical comments from six different medical doctors have been incorporated in this article. All six, each concerned about different aspects in early drafts, returned me to the peer reviewed scientific literature for additional reading. There remains no known specific antidote for amatoxin poisoning. There have not been any gold standard double-blind placebo controlled studies. There never can be. When dealing with a potentially deadly poisoning (where in many non-western countries the amatoxin fatality rate exceeds 50%) treating of half of all poisoning patients with a placebo would be unethical. Using amatoxins on large animals to test new treatments (theoretically a great alternative) has ethical constraints on the experimental design that would most likely obscure the answers researchers sought. We must thus make our best judgement based on analysis of past cases. Although that number is now large enough that we can make some good assumptions, differences of interpretation will continue. Nonetheless, we may be on the cusp of reaching some agreement. Towards that end, I have contacted several Poison Centers and NAMA will be working with the Centers for Disease Control (CDC). -
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic. -
87197-8Fqws.Pdf
VBSK utflykt Billingen 3/9-11 Namn på latin Namn på svenska Agaricus urinascens Vit kungschampinjon Amanita battarae Zonkamskivling Amanita citrina Vitgul flugsvamp Amanita fulva Brun kamskivling Amanita muscaria Röd flugsvamp Amanita pantherina Panterflugsvamp Amanita phalloides Lömsk flugsvamp Amanita phalloides var. alba Lömsk flugsvamp var alba Amanita regalis Brun flugsvamp Amanita rubescens Rodnande flugsvamp Amanita spissa Gråfotad flugsvamp Amanita vaginata Grå kamskivling Amanita virosa Vit flugsvamp Armillaria mellea/s.l. Honungsskivlinggruppen Artomyces pyxidatus Kandelabersvamp Bjerkandera adusta Svedticka Boletus badius Brunsopp Boletus calopus Bittersopp Boletus edulis Stensopp Boletus luridiformis Blodsopp Boletus pascuus Rutsopp Boletus pruinatus Boksopp Boletus subtomentosus Sammetssopp Calvatia excipuliformis Långfotad röksvamp Cantharellus cibarius Kantarell Cantharellus melanoxeros Svartnande kantarell Cantharellus tubaeformis Trattkantarell Chlorociboria aeruginascens Grönskål Clavaria vermicularis Maskfingersvamp Clavulina cristata Kamfingersvamp Clavulinopsis corniculata Ängsfingersvamp Clavulinopsis helveola Hagfingersvamp Clitocybe gibba Sommartrattskivling Clitocybe odora Grön trattskivling Coprinus comatus Fjällig bläcksvamp Coprinus micaceus Glitterbläcksvamp Cordyceps militaris Röd larvklubba Cortinarius anomalus Björkspindling Cortinarius anthracinus Purpurbrun spindling Cortinarius bivelus Hålspindling Cortinarius bolaris Brokspindling Cortinarius brunneus Umbraspindling Cortinarius caninus Granspindling -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
The Ectomycorrhizal Fungus Amanita Phalloides Was Introduced and Is
Molecular Ecology (2009) doi: 10.1111/j.1365-294X.2008.04030.x TheBlackwell Publishing Ltd ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America ANNE PRINGLE,* RACHEL I. ADAMS,† HUGH B. CROSS* and THOMAS D. BRUNS‡ *Department of Organismic and Evolutionary Biology, Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA, †Department of Biological Sciences, Gilbert Hall, Stanford University, Stanford, CA 94305-5020, USA, ‡Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA Abstract The deadly poisonous Amanita phalloides is common along the west coast of North America. Death cap mushrooms are especially abundant in habitats around the San Francisco Bay, California, but the species grows as far south as Los Angeles County and north to Vancouver Island, Canada. At different times, various authors have considered the species as either native or introduced, and the question of whether A. phalloides is an invasive species remains unanswered. We developed four novel loci and used these in combination with the EF1α and IGS loci to explore the phylogeography of the species. The data provide strong evidence for a European origin of North American populations. Genetic diversity is generally greater in European vs. North American populations, suggestive of a genetic bottleneck; polymorphic sites of at least two loci are only polymorphic within Europe although the number of individuals sampled from Europe was half the number sampled from North America. Endemic alleles are not a feature of North American populations, although alleles unique to different parts of Europe were common and were discovered in Scandinavian, mainland French, and Corsican individuals. -
Los Hongos Agaricales De Las Áreas De Encino Del Estado De Baja California, México Nahara Ayala-Sánchez Universidad Autónoma De Baja California
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Estudios en Biodiversidad Parasitology, Harold W. Manter Laboratory of 2015 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez Universidad Autónoma de Baja California Irma E. Soria-Mercado Universidad Autónoma de Baja California Leticia Romero-Bautista Universidad Autónoma del Estado de Hidalgo Maritza López-Herrera Universidad Autónoma del Estado de Hidalgo Roxana Rico-Mora Universidad Autónoma de Baja California See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/biodiversidad Part of the Biodiversity Commons, Botany Commons, and the Terrestrial and Aquatic Ecology Commons Ayala-Sánchez, Nahara; Soria-Mercado, Irma E.; Romero-Bautista, Leticia; López-Herrera, Maritza; Rico-Mora, Roxana; and Portillo- López, Amelia, "Los hongos Agaricales de las áreas de encino del estado de Baja California, México" (2015). Estudios en Biodiversidad. 19. http://digitalcommons.unl.edu/biodiversidad/19 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Estudios en Biodiversidad by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, and Amelia Portillo-López This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/biodiversidad/19 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, y Amelia Portillo-López Resumen Se realizó una recopilación de las especies de hongos del orden Agaricales (regionalmente conocido como “agaricoides”) de los bosques Quercus spp. -
Full-Text (PDF)
African Journal of Microbiology Research Vol. 5(31), pp. 5750-5756, 23 December, 2011 Available online at http://www.academicjournals.org/AJMR ISSN 1996-0808 ©2011 Academic Journals DOI: 10.5897/AJMR11.1228 Full Length Research Paper Leucocalocybe, a new genus for Tricholoma mongolicum (Agaricales, Basidiomycota) Xiao-Dan Yu1,2, Hui Deng1 and Yi-Jian Yao1,3* 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. 2Graduate University of Chinese Academy of Sciences, Beijing, 100049, China. 3Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom. Accepted 11 November, 2011 A new genus of Agaricales, Leucocalocybe was erected for a species Tricholoma mongolicum in this study. Leucocalocybe was distinguished from the other genera by a unique combination of macro- and micro-morphological characters, including a tricholomatoid habit, thick and short stem, minutely spiny spores and white spore print. The assignment of the new genus was supported by phylogenetic analyses based on the LSU sequences. The results of molecular analyses demonstrated that the species was clustered in tricholomatoid clade, which formed a distinct lineage. Key words: Agaricales, taxonomy, Tricholoma, tricholomatoid clade. INTRODUCTION The genus Tricholoma (Fr.) Staude is typified by having were re-described. Based on morphological and mole- distinctly emarginate-sinuate lamellae, white or very pale cular analyses, T. mongolicum appears to be aberrant cream spore print, producing smooth thin-walled within Tricholoma and un-subsumable into any of the basidiospores, lacking clamp connections, cheilocystidia extant genera. Accordingly, we proposed to erect a new and pleurocystidia (Singer, 1986). Most species of this genus, Leucocalocybe, to circumscribe the unique genus form obligate ectomycorrhizal associations with combination of features characterizing this fungus and a forest trees, only a few species in the subgenus necessary new combination.