Mammal Pests Includi Ng Rattlesnakes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Levels of Gene Flow in the California Vole (Microtus Californicus) Are Consistent Across Spatial Scales," Western North American Naturalist: Vol
Western North American Naturalist Volume 70 Number 3 Article 3 10-11-2010 High levels of gene flow in the California olev (Microtus californicus) are consistent across spatial scales Rachel I. Adams Stanford University, Stanford, California, [email protected] Elizabeth A. Hadly Stanford University, Stanford, California, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Adams, Rachel I. and Hadly, Elizabeth A. (2010) "High levels of gene flow in the California vole (Microtus californicus) are consistent across spatial scales," Western North American Naturalist: Vol. 70 : No. 3 , Article 3. Available at: https://scholarsarchive.byu.edu/wnan/vol70/iss3/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 70(3), © 2010, pp. 296–311 HIGH LEVELS OF GENE FLOW IN THE CALIFORNIA VOLE (MICROTUS CALIFORNICUS) ARE CONSISTENT ACROSS SPATIAL SCALES Rachel I. Adams1,2 and Elizabeth A. Hadly1 ABSTRACT.—Gene flow links the genetic and demographic structures of species. Despite the fact that similar genetic and demographic patterns shape both local population structure and regional phylogeography, the 2 levels of population connectivity are rarely studied simultaneously. Here, we studied gene flow in the California vole (Microtus californicus), a small-bodied rodent with limited vagility but high local abundance. Within a 4.86-km2 preserve in central California, genetic diversity in 6 microsatellites was high, and Bayesian methods indicated a single genetic cluster. -
Mammals of the California Desert
MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif. -
2013 Draft Mazama Pocket Gopher Status Update and Recovery Plan
DRAFT Mazama Pocket Gopher Status Update and Recovery Plan Derek W. Stinson Washington Department of Fish and Wildlife Wildlife Program 600 Capitol Way N Olympia, Washington January 2013 In 1990, the Washington Wildlife Commission adopted procedures for listing and de-listing species as endangered, threatened, or sensitive and for writing recovery and management plans for listed species (WAC 232-12-297, Appendix A). The procedures, developed by a group of citizens, interest groups, and state and federal agencies, require preparation of recovery plans for species listed as threatened or endangered. Recovery, as defined by the U.S. Fish and Wildlife Service, is the process by which the decline of an endangered or threatened species is arrested or reversed, and threats to its survival are neutralized, so that its long-term survival in nature can be ensured. This is the Draft Washington State Status Update and Recovery Plan for the Mazama Pocket Gopher. It summarizes what is known of the historical and current distribution and abundance of the Mazama pocket gopher in Washington and describes factors affecting known populations and its habitat. It prescribes strategies to recover the species, such as protecting populations and existing habitat, evaluating and restoring habitat, and initiating research and cooperative programs. Target population objectives and other criteria for down-listing to state Sensitive are identified. As part of the State’s listing and recovery procedures, the draft recovery plan is available for a 90-day public comment period. Please submit written comments on this report by 19 April 2013 via e-mail to: [email protected], or by mail to: Endangered Species Section Washington Department of Fish and Wildlife 600 Capitol Way North Olympia, WA 98501-1091 This report should be cited as: Stinson, D. -
Safe Harbor Agreement
SAFE HARBOR AGREEMENT FOR THE RE-INTRODUCTION OF THE AMARGOSA VOLE (Microtus californicus scirpensis), IN SHOSHONE, CALIFORNIA Prepared by U.S. Fish and Wildlife Service, Carlsbad Fish and Wildlife Office and Susan Sorrells July 7, 2020 2 Table of Contents 1.0 INTRODUCTION ............................................................................................................ 5 Purpose .................................................................................................................................... 5 Enrolled Lands and Core Area ................................................................................................ 5 Regulatory Framework ........................................................................................................... 5 SHA Standard and Background .............................................................................................. 6 Assurances Provided ............................................................................................................... 6 Relationship to Other Agreements .......................................................................................... 6 2.0 STATUS AND BACKGROUND OF AMARGOSA VOLE .......................................... 7 2.1 Status and Distribution ................................................................................................. 7 2.2 Life History and Habitat Requirements ........................................................................ 8 2.3 Threats ....................................................................................................................... -
U.S. EPA, Pesticide Product Label, 0.5% STRYCHNINE MILO for HAND
Jl.l!l€' 23, 1997 Dr. Alan V. Tasker Acting Leader, rata Support Teaill Tec.'mical and Sciemtific Services USDA/AHflS/BBEP Unit ISO ) 4700 River Foad Rivcreale, ND 20737 Dear Dr. Tasker, Subject: 0.5% Str.fclmine Mlo rex Ha.'ld Baiting fucket C,ophers EPA Registratirn No. 56228-19 Your Slil;;nissions of Septemb€r 23, 19%, and June 2, 1997 ~Je nave reviewed ,YOUr sl.ibmi~sicn of Sept€T."'~r 19, 1996:. ThE' cnongp--s in tl"le inert ingredients a'ld t..'1e revised basic and alte..."7late Confidential StatC1"~nts of Forl'1Ula (CSFs) ;;.r8 acceptable. He 1=1<: fort-l;;.rd to receiving the product chemistry data on the nc-w formulation. Your letter of SepteJl'J::>er 23, 19%, imicates thClt some of these studies ~Jere underway at that tire. The proposed revis20 label stibIcJ tted 00 June 2, 1997, is J:-.asically ) acceptC!ble, but the change identified l.-elow must be made. 1. In the "NOI'E TO PHYSICIAN", change "CI\UrION," to "NOrrcp.:" so as not to conflict with the label's required signal Nord "I'i"lNGFR". 8u.1:'mit one r:::q:y of the fin.-J.l printed label before releasing this prcrluct for shipment. :;;~x¥~~ COP~ E William H. JacObs BEST AVA'LAB\.. i\cting Product 1<1a.'l8.ger 14 Insecticide-Rodenticide Branch Reo.istration Division (7505C) :::::, ~.. ..w·-1······ _.. ._-j.. ......w. ··1· "~'~"·Tm--I··· ·1· ............ ·····1· _............. DATE ~ •......••.•....... .........•..••.• ....... ~ ..•....... ..........................................................................................- ....... EPA Form 1320-102-70) OFFICIAL FILE COpy r.. PRECAUTIONARY STATEMENTS 0.5% STRYCHNINE r~1.0 HAZARDS TO HUMANS AND FOR HAND BAITING STORAGE AND DISPOSAL I -, DOMESTIC ANIMALS Do not contaminate water, food, or POCKET GOPHERS feed by storage or disposal. -
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
Spatial and Temporal Continuity of Kangaroo Rat Populations Shown by Sequencing Mitochondrial DNA from Museum Specimens
Spatial and Temporal Continuity of Kangaroo Rat Populations Shown by Sequencing Mitochondrial DNA from Museum Specimens W. Kelley Thomas, Svante Paabo, Francis X. Villablanca, and Allan C. Wilson Surnmary. The advent ofdirect sequencing via the region - tRNA genes - Population dynamics POlymerase chain reaction (PCR) has opened up the Population tree- Molecular trees Possibility of molecular studies on museum speci ~~ns. Here we analyze genetic variation in popu attons over time by applying PCR to DNA extract Introduction ed from museum specimens sampled from iPulations of one species over the last 78 years. Over the past 10 years, mitochondrial DNA ncluded in this study were 43 museum specimens (mtDNA) has been a productive source of infor o_fthe Panamint kangaroo rat Dipodomys panamin mation about genetic variation at and below the lLnu.s from localities representing each ofthree geo species level (for reviews, see Wilson et al. 1985; graphically distinct subspecies. These specimens Hamson 1988). However, because these studies have :were originally collected and prepared as dried skins been restricted to the analysis of present-day pop 10 19 11 , 1917, or 1937. For each specimen, a 225 ulations, they represent a static view ofthe historic bp segment of the mitochondrial genome was se processes that shape the genetic variation detected quenced. These mitochondrial DNA sequences were in contemporary populations. Due to recent tech compared to those of 63 specimens collected at the nical advances brought about by the polymerase same localities in 1988. The three subspecies were chain reaction (PCR) (Kocher et al. 1989; Paabo et n~a rl y completely distinct. -
Status of Birds of Oak Creek Wildlife Area
Status of Birds of Oak Creek Wildlife Area Abundance Seasonal Occurance *Species range included in C = Common r= Resident Oak Creek WLA but no U = Uncommon s = Summer Visitor documentation of species R = Rare w= Winter Visitor m=Migrant Common Name Genus Species Status Common Loon* Gavia immer Rw Pied-billed Grebe Podilymbus podiceps Cr Horned Grebe Podiceps auritus Um Eared Grebe Podiceps nigricollis Us Western Grebe Aechmorphorus occidentalis Us Clark's Grebe* Aechmorphorus clarkii Rm Double-crested Cormorant Phalocrorax auritus Um American Bittern* Botaurus lentiginosus Us Great Blue Heron Arden herodias Cr Black-crowned Night-Heron Nycticorax nycticorax Cr Tundra Swan Cygnus columbiaus Rw Trumpeter Swan Cygnus buccinator Am Greater White-fronted Anser albifrons Rm Goose* Snow Goose Chen caerulescens Rw Canada Goose Branta canadensis Cr Green-winged Teal Anas crecca Ur Mallard Anas Platyrynchos Cr Northen Pintail Anas acuta Us Blue-winged Teal Anas discors Rm Cinnamon Teal Anas cyanoptera Us Northern Shoveler Anas clypeata Cr Gadwall* Anas strepere Us Eurasian Wigeon* Anas Penelope Rw American Wigeon Anas Americana Cr Wood Duck Aix sponsa Ur Redhead Aythya americana Uw Canvasback Aythya valisineria Uw Ring-necked Duck Aythya collaris Uw Greater Scaup* Aythya marila Rw Leser Scaup Aythya affinis Uw Common Goldeneye Bucephala clangula Uw Barrow's Goldeneye Bucephala islandica Rw Bufflehead Bucephala albeola Cw Harlequin Duck Histrionicus histrionicus Rs White-winged Scoter Melanitta fusca Rm Hooded Merganser Lophodytes Cucullatus Rw -
Species List
Species List M001 Opossum M025 Brazilian Free-tailed Bat M049 Mountain Pocket Gopher Didelphis virginiana Tadarida brasiliensis Thomomys monticola M002 Mount Lyell Shrew M026 Pika M050 Little Pocket Mouse Sorex lyelli Ochotona princeps Perognathus longimembris M003 Vagrant Shrew M027 Brush Rabbit M051 Great Basin Pocket Mouse Sorex vagrans Sylvilagus bachmani Perognathus parvus M004 Dusky Shrew M028 Desert Cottontail M052 Yellow-eared Pocket Mouse Sorex monticolus Sylvilagus audubonii Perognathus xanthonotus M005 Ornate Shrew M029 Snowshoe Hare M053 California Pocket Mouse Sorex ornatus Lepus americanus Perognathus californicus M006 Water Shrew M030 White-tailed Jackrabbit M054 Heermann's Kangaroo Rat Sorex palustris Lepus townsendii Dipodomys heermanni M007 Trowbridge's Shrew M031 Black-tailed Jackrabbit M055 California Kangaroo Rat Sorex trowbridgii Lepus californicus Dipodomys californicus M008 Shrew-mole M032 Mountain Beaver M056 Beaver Neurotrichus gibbsii Aplodontia rufa Castor canadensis M009 Broad-footed Mole M033 Alpine Chipmunk M057 Western Harvest Mouse Scapanus latimanus Eutamias alpinus Reithrodontomys megalotis M010 Little Brown Myotis M034 Least Chipmunk M058 California Mouse Myotis lucifugus Eutamias minimus Peromyscus californicus M011 Yuma Myotis M035 Yellow Pine Chipmunk M059 Deer Mouse Myotis yumanensis Eutamias amoenus Peromyscus maniculatus M012 Long-eared Myotis M036 Allen's Chipmunk M060 Brush Mouse Myotis evotis Eutamias senex Peromyscus boylii M013 Fringed Myotis M037 Sonoma Chipmunk M061 Piñon Mouse Myotis thysanodes -
Young, L.J., & Hammock E.A.D. (2007)
Update TRENDS in Genetics Vol.23 No.5 Research Focus On switches and knobs, microsatellites and monogamy Larry J. Young1 and Elizabeth A.D. Hammock2 1 Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, 954 Gatewood Road, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA 2 Vanderbilt Kennedy Center and Department of Pharmacology, 465 21st Avenue South, MRBIII, Room 8114, Vanderbilt University, Nashville, TN 37232, USA Comparative studies in voles have suggested that a formation. In male prairie voles, infusion of vasopressin polymorphic microsatellite upstream of the Avpr1a locus facilitates the formation of partner preferences in the contributes to the evolution of monogamy. A recent study absence of mating [7]. The distribution of V1aR in the challenged this hypothesis by reporting that there is no brain differs markedly between the socially monogamous relationship between microsatellite structure and mon- and socially nonmonogamous vole species [8]. Site-specific ogamy in 21 vole species. Although the study demon- pharmacological manipulations and viral-vector-mediated strates that the microsatellite is not a universal genetic gene-transfer experiments in prairie, montane and mea- switch that determines mating strategy, the findings do dow voles suggest that the species differences in Avpr1a not preclude a substantial role for Avpr1a in regulating expression in the brain underlie the species differences in social behaviors associated with monogamy. social bonding among these three closely related species of vole [3,6,9,10]. Single genes and social behavior Microsatellites and monogamy The idea that a single gene can markedly influence Analysis of the Avpr1a loci in the four vole species complex social behaviors has recently received consider- mentioned so far (prairie, montane, meadow and pine voles) able attention [1,2]. -
Mammal Pests
VERTEBRATE PEST CONT ROL HANDBOOK - MAMMALS Mammal Pests Introduction This section contains methods used to control field rodents and rabbits and is a guide for agricultural commissioner personnel engaged in this work. Most pest mammals are discussed with specific control options. Rodenticides are often recommended. Before rodenticides are used, acceptance tests should be made to indicate the degree of bait acceptance that can be expected. If bait acceptance is good, most of the bait will be quickly consumed by rodents during a 24-hour period. If acceptance is poor, toxic bait should not be used. Too frequent application of acute toxic baits, like zinc phosphide, may cause bait and poison shyness. Unlike insecticides, which are generally applied to the crop itself, rodent baits are commonly placed in rodent burrows or applied to trails or areas where rodents naturally feed. Rodent baits should not be applied in any manner that will contaminate food or feed crops. This would include any application method which would cause the bait to lodge in food plants. Fumigants are applied directly into the rodent burrow and are sealed in by covering the burrow opening with a shovelful of dirt. Identifying Rodents Causing Damage to Crops One of the keys to controlling rodent damage in crops is prompt and accurate determination of which species is causing the damage. To make a positive species identification, survey the area of reported damage and look for signs of rodent activity such as: trails, runs, tracks and tail marks, droppings, burrows, nests and food caches. Also look for cuttings of grass or plant material in trails, runs or near burrow entrances. -
Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments
National Park Service U.S. Department of the Interior Natural Resource Program Center Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR–2009/278 ON THE COVER: Top: Wupatki National Monument; bottom left: bobcat (Lynx rufus); bottom right: Wupatki pocket mouse (Perogna- thus amplus cineris) at Wupatki National Monument. Photos courtesy of U.S. Geological Survey/Charles Drost. Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR—2009/278 Author Charles Drost U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Editing and Design Jean Palumbo National Park Service, Southern Colorado Plateau Network Northern Arizona University Flagstaff, Arizona December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.