Electron Transfer Partners of Cytochrome P450

Total Page:16

File Type:pdf, Size:1020Kb

Electron Transfer Partners of Cytochrome P450 4 Electron Transfer Partners of Cytochrome P450 Mark J.l. Paine, Nigel S. Scrutton, Andrew W. Munro, Aldo Gutierrez, Gordon C.K. Roberts, and C. Roland Wolf 1. Introduction Although P450 redox partners are usually expressed independently, "self-sufficient" P450 monooxygenase systems have also evolved through Cytochromes P450 contain a heme center the fusion of P450 and CPR genes. These fusion where the activation of molecular oxygen occurs, molecules are found in bacteria and fungi, the best- resulting in the insertion of a single atom of known example being P450 BM3, a fatty acid oxygen into an organic substrate with the con­ (0-2 hydroxylase from Bacillus megaterium, which comitant reduction of the other atom to water. The comprises a soluble P450 with a fiised carboxyl- monooxygenation reaction requires a coupled and terminal CPR module (recently reviewed by stepwise supply of electrons, which are derived Munro^). BM3 has the highest catalytic activity from NAD(P)H and supplied via a redox partner. known for a P450 monooxygenase^ and was for P450s are generally divided into two major classes many years the only naturally occurring ftised sys­ (Class I and Class II) according to the different tem known until the identification of a eukaryotic types of electron transfer systems they use. P450s membrane-bound equivalent fatty acid hydroxy­ in the Class I family include bacterial and mito­ lase, CYP505A1, from the phytopathogenic fungus chondrial P450s, which use a two-component Fusarium oxysporurrP. A number of novel P450 sys­ shuttle system consisting of an iron-sulfur protein tems are starting to emerge from the large numbers (ferredoxin) and ferredoxin reductase (Figure 4.1). of genome sequencing projects now underway^. The Class II enzymes are the microsomal P450s, which receive electrons from a single mem­ In this chapter, we review the most recent brane-bound enzyme, NADPH cytochrome P450 advances being made in understanding the func­ reductase (CPR), which contains FAD and FMN tion of P450 redox partners and the electron trans­ cofactors (Figure 4.1). Cytochrome b^ may also fer process. Special attention is paid to CPR, couple with some members of the Class II P450s which occupies a particularly important position family, notably CYP3A4, to enhance the rate of because of its central involvement in human drug catalysis ^ metabolism. Mark J.l. Paine and C. Roland Wolf Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK. Nigel S. Scrutton Andrew W. Munro, Gordon C.K. Roberts and Aldo Gutierrez Department of Biochemistry, University of Leicester, Leicester, UK. Cytochrome P450: Structure, Mechanism, and Biochemistry, 3e, edited by Paul R. Ortiz de Montellano Kluwer Academic / Plenum Publishers, New York, 2005. 115 116 Mark J.I. Paine et al. Class I: Iron-sulfur partners Adx/AdR Pdx/PdR NADPH NADP NAD(P)H NAD(P)* i FADp^\mQ) Mitochondrial membrane Class II: Diflavin reductase partners CPR CPR fusion NADPH NADP NADPH NADP 4 4 Novel Systems Fe2S2 fusion NAD* NADH Figure 4.1. Electron transfer partners of cytochrome P450. In Class I systems, electrons are shuttled from NAD(P)H through an FAD-containing ferredoxin reductase and an iron-sulfur containing ferredoxin to P450; in prokaryotes these are typified by putidoredoxin reductase (PdR) and putidoredoxin (Pdx), and in eukaryotes by mitochondrial membrane associated adrenodoxin reductase (AdR) and adrenodoxin (Adx). Class II systems are driven by electrons delivered from NADPH through diflavin (FMN- and FAD-containing) reductases. In eukaryotes these are bound to the endoplasmic reticulum, while fused systems such as P450 BM3 exist in bacteria and fungi. Novel systems now include P450RhF, which contains an FMN-containing reductase fused with a ferredoxin-like center and a P450. 2. NADPH-Cytochrome P450 apoptosis and cellular homeostasis^' ^, it is inter­ Reductase and the Diflavin esting that CPR was first isolated from yeast as an Reductase Family FMN containing NADPH-dependent cytochrome c reductase^. A mammalian equivalent was later 2.1. Background isolated from pig liver and reported to contain an FAD cofactor^. By 1962, the enzyme was shown In view of the key role that cytochrome c to be localized at the endoplasmic reticulum^, and has recently been found to play in regulating the flavin cofactors to be involved in the reduction Electron Transfer Partners of Cytochrome P450 117 of cytochrome c^^. The true physiological redox A useful feature of flavins is that their absorption partner was eventually discovered as P450 through spectra are altered by changes in their reduction the reconstitution of laurate co-hydroxylase activ­ state. Thus, the reduction state can be examined ity from a detergent solubilized preparation by measuring changes in the visible absorbance of cytochrome P450, NADPH cytochrome c range (Figure 4.2). This unique property stimu­ reductase^ ^' ^^, and a heat stable component, which lated research into the redox properties'^' '^, of the was later identified as the phospholipid phos­ enzyme and the complex processes of hydride/ phatidylcholine^^. electron transfer from NADPH, across the flavins The initial difficulties in identifying a physio­ and on to P450, discussed later in this chapter. logical role for CPR were due to the purification The cDNA and corresponding primary amino methods used, which incorporated trypsin or lipase acid sequences of several CPRs including rat'^, treatment^' ^. These resulted in the cleavage of rabbit^^, and human^' were obtained by the the amino-terminal membrane anchoring domain, mid-1980s, and the development of Escherichia which constitutes the first 60 or so amino acid coli expression systems paved the way for detailed residues and is responsible for interactions with the molecular characterization of the polypeptide phospholipid bilayer and P450^'^. Thus, while through site-directed mutagenesis. The three- proteolytically cleaved CPR is fully functional and dimensional structure of rat CPR was determined capable of reducing c3^ochrome c and a range of by X-ray crystallography in 1997 by Kim and artificial electron accepting compounds, it is unable coworkers^^, providing the structural prototype for to reconstitute with P450s. The intact form of the dual flavin oxidoreductases. reductase was eventually purified from liver micro­ somes using detergent solubilization procedures 2.2. The Diflavin Reductase and found to have a molecular weight of 76-80 kDa Family and to support P450-dependent reactions^^' ^^. In the early 1970s, the enzyme was shown to CPR is the prototype for a small family of contain one molecule each of FMN and FAD^^' ^^. diflavin reductases which are believed to have 300 400 500 600 700 Wavelength (nm) Figure 4.2. Absorbance spectra of oxidized and reduced human CPR. The absorption maxima for the oxidized enzyme are located at 380 nm and 454 nm. The direction of the arrow shows the absorption changes that occur upon reducton of the flavins, in this case using a 2-fold and 20-fold excess of NADPH. 118 Mark J.I. Paine et al. ferredoxin reductase | flavodoxin I FMN CPR IMS BM3 iPSgf^: NOS[ ':^1^^''- Figure 4.3. Schematic outline of the diflavin reductase family. Members contain an N-terminal FMN-binding flavodoxin-like domain and a C-terminal FAD/NADPH-binding ferredoxin reductase-like domain, which contains an additional linker region. Shown are: CPR, which has an amino-terminal membrane anchor region (Anc); NRl (Novel reductase 1); MSR (methionine synthase reductase), which contains an additional interdomain sequence; P450 BM3, which is fused to a P450 domain; and NOS (nitric oxide synthases), which has linked to a heme-containing oxygenase domain that is structurally distinct from the P450s. evolved as a result of a gene fusion event between electrons to the P450 monooxygenase complex, ancestral FMN- and FAD-containing flavopro- albeit with greatly reduced efficiency^^. A num­ teins^^. Indeed, CPR is one of only four mam­ ber of other diflavin reductases have been dis­ malian enzymes that contain both FMN- and sected into functional units including: rat CPR^^, FAD-binding domains, the other three being BM3^'' ^^, NRl^^, and methionine synthase reduc­ methionine synthase reductase^"*, NRl^^, and the tase^"^. The ability to separate CPR and other nitric oxide synthases^^ (Figure 4.3). Bacterial diflavin reductases into their component parts has members of the family include the B. megaterium greatly facilitated structural and functional studies cytochrome P450 BM3^^ and the reductase subunit of these enzymes. of sulfite reductase^^. While these are all struc­ turally related, there exist some key differences. For instance, methionine synthase reductase and 2.3. CPR Genes NRl both contain the same domain organization as P450 reductase but lack the membrane anchoring Apart from plants, which contain multiple sequence, and are thus located in the cytosol. CPR genes^^'^^, most organisms contain a single Methionine synthase also has a much larger inter­ CPR gene. At the time of writing, a relatively domain linker than CPR, although the functional modest total of 20 CPR genes have been identi­ significance of this is unclear. In nitric oxide syn­ fied, which will doubtlessly increase as a result of thase, the reductase region is fused with a heme the many genome sequencing projects currently domain, and has acquired an extra calmodulin- underway. New sequences can be monitored using binding domain to regulate electron transfer. the website www.icgeb.trieste.it,
Recommended publications
  • Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2018 Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase Rhesa N. Ledbetter Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biochemistry Commons Recommended Citation Ledbetter, Rhesa N., "Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase" (2018). All Graduate Theses and Dissertations. 7197. https://digitalcommons.usu.edu/etd/7197 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ELECTRON FLOW AND MANAGEMENT IN LIVING SYSTEMS: ADVANCING UNDERSTANDING OF ELECTRON TRANSFER TO NITROGENASE by Rhesa N. Ledbetter A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biochemistry Approved: ______________________ ______________________ Lance C. Seefeldt, Ph.D. Scott A. Ensign, Ph.D. Biochemistry Biochemistry Major Professor Committee Member ______________________ ______________________ Bruce Bugbee, Ph.D. Sean J. Johnson, Ph.D. Plant Physiology Biochemistry Committee Member Committee Member ______________________ ______________________ Nicholas E. Dickenson, Ph.D. Mark R. McLellan, Ph.D. Biochemistry Vice President for Research and Committee Member Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2018 ii Copyright © Rhesa N. Ledbetter 2018 All Rights Reserved iii ABSTRACT Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase by Rhesa N.
    [Show full text]
  • Cluster Characterization in Iron-Sulfur Proteins by Magnetic Circular Dichroism (Spectroscopic Probes/Ferredoxins) P
    Proc. Natl. Acad. Sci. USA Vol. 75, No. 11, pp. 5273-5275, November 1978 Biochemistry Cluster characterization in iron-sulfur proteins by magnetic circular dichroism (spectroscopic probes/ferredoxins) P. J. STEPHENS*, A. J. THOMSON*t, T. A. KEIDERLING*t, J. RAWLINGS*§, K. K. RAOT, AND D. 0. HALLS * Department of Chemistry, University of Southern California, Los Angeles, California 90007; and ISchool of Biological Sciences, University of London King's College, 68 Half Moon Lane, London, England Communicated by Martin D. Kamen, August 2,1978- ABSTRACT We report magnetic circular dichroism (MCD) respect to the number of 4-Fe clusters). Ac values are normal- spectra of 4-Fe iron-sulfur clusters in the iron-sulfur proteins ized to a magnetic field of 10 kilogauss. Chromatium high-potential iron protein (HIPIP), Bacillus 1-3 MCD and stearothernophilus ferredoxin and Clostridium pasteurianum Figs. display absorption spectra for clusters ferredoxin. The MCD is found to vary significantly with cluster in the C2-, C3-, and Cl- states, respectively. The absorption oxidation state but is relatively insensitive to the nature of the spectra are typical of 4-Fe clusters, exhibiting few distinct protein. The spectra obtained are compared with the corre- features"l; for a given oxidation state the spectra are insensitive sponding spectra of iron-sulfur proteins containing 2-Fe clus- to the specific protein under study. By comparison, the MCD ters. It is concluded that MCD is useful for the characterization spectra are appreciably more structured than the absorption of iron-sulfur cluster type and oxidation state in iron-sulfur spectra but retain the insensitivity to the nature of the proteins and is superior for this purpose to absorption and nat- associated ural circular dichroism spectroscopy.
    [Show full text]
  • Containing Aldehyde Ferredoxin Oxidoreductase From
    JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4817–4819 Vol. 177, No. 16 0021-9193/95/$04.0010 Copyright q 1995, American Society for Microbiology Molecular Characterization of the Genes Encoding the Tungsten- Containing Aldehyde Ferredoxin Oxidoreductase from Pyrococcus furiosus and Formaldehyde Ferredoxin Oxidoreductase from Thermococcus litoralis ARNULF KLETZIN,1† SWARNALATHA MUKUND,1 TERRY L. KELLEY-CROUSE,1 2 2 1 MICHAEL K. CHAN, DOUGLAS C. REES, AND MICHAEL W. W. ADAMS * Department of Biochemistry and Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602,1 and Division of Chemistry, California Institute of Technology, Pasadena, California 911252 Received 21 February 1995/Accepted 8 June 1995 The hyperthermophilic archaea Pyrococcus furiosus and Thermococcus litoralis contain the tungstoenzymes aldehyde ferredoxin oxidoreductase, a homodimer, and formaldehyde ferredoxin oxidoreductase, a homotet- ramer. Herein we report the cloning and sequencing of the P. furiosus gene aor (605 residues; Mr, 66,630) and the T. litoralis gene for (621 residues; Mr, 68,941). Enzymes containing tungsten (W) are rare in biology, yet the first 169 amino acid residues of a P. furiosus ahc gene encoding hyperthermophilic archaea contain three distinct types, all of an S-adenosylhomocysteine hydrolase; and (iii) a short open which catalyze aldehyde oxidation (6–9). The homodimeric reading frame and a partially sequenced long open reading aldehyde ferredoxin oxidoreductase (AOR) of Pyrococcus fu- frame of unknown function (Fig. 1) (5). riosus (maximum growth temperature [Tmax], 1058C [3]) oxi- The gene for AOR contained 605 codons which correspond dizes a wide range of aliphatic and aromatic, nonphosphory- to a protein with a molecular weight of 66,630 (compared with lated aldehydes (7).
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Oriented Attachment of Cytochrome P450 2C9 to a Self-Assembled Monolayer on a Gold Electrode as a Biosensor Design Permalink https://escholarship.org/uc/item/1m67k8mm Author Schneider, Elizabeth Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Oriented Attachment of Cytochrome P450 2C9 to a Self-Assembled Monolayer on a Gold Electrode as a Biosensor Design by Elizabeth Ann Schneider A dissertation submitted in partial satisfaction of the requirements for the degree of Joint Doctor of Philosophy with the University of California, San Francisco in Bioengineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Douglas S. Clark, Chair Associate Professor Shuvo Roy Professor Liwei Lin Dr. Robert Kostecki Fall 2011 Abstract Oriented Attachment of Cytochrome P450 2C9 to a Self-Assembled Monolayer on a Gold Electrode as a Biosensor Design by Elizabeth Ann Schneider Doctor of Philosophy in Bioengineering University of California, Berkeley Professor Douglas S. Clark, Chair Cytochrome P450s (CYPs) are a family of enzymes implicated in the metabolism of drugs in the body. Consequently, P450 reactions are of high interest to the pharmaceutical industry, where lead compounds in drug development are screened as potential substrates of CYPs. The P450 reaction involves electron transfer to an iron heme via NADPH and the electron transfer partner enzyme P450 reductase (CPR). By immobilizing CYPs on an electrode however, NADPH and CPR are potentially no longer needed and the immobilized CYP can act as a biosensor by accepting electrons directly from the electrode.
    [Show full text]
  • Glycolysis Citric Acid Cycle Oxidative Phosphorylation Calvin Cycle Light
    Stage 3: RuBP regeneration Glycolysis Ribulose 5- Light-Dependent Reaction (Cytosol) phosphate 3 ATP + C6H12O6 + 2 NAD + 2 ADP + 2 Pi 3 ADP + 3 Pi + + 1 GA3P 6 NADP + H Pi NADPH + ADP + Pi ATP 2 C3H4O3 + 2 NADH + 2 H + 2 ATP + 2 H2O 3 CO2 Stage 1: ATP investment ½ glucose + + Glucose 2 H2O 4H + O2 2H Ferredoxin ATP Glyceraldehyde 3- Ribulose 1,5- Light Light Fx iron-sulfur Sakai-Kawada, F Hexokinase phosphate bisphosphate - 4e + center 2016 ADP Calvin Cycle 2H Stroma Mn-Ca cluster + 6 NADP + Light-Independent Reaction Phylloquinone Glucose 6-phosphate + 6 H + 6 Pi Thylakoid Tyr (Stroma) z Fe-S Cyt f Stage 1: carbon membrane Phosphoglucose 6 NADPH P680 P680* PQH fixation 2 Plastocyanin P700 P700* D-(+)-Glucose isomerase Cyt b6 1,3- Pheophytin PQA PQB Fructose 6-phosphate Bisphosphoglycerate ATP Lumen Phosphofructokinase-1 3-Phosphoglycerate ADP Photosystem II P680 2H+ Photosystem I P700 Stage 2: 3-PGA Photosynthesis Fructose 1,6-bisphosphate reduction 2H+ 6 ADP 6 ATP 6 CO2 + 6 H2O C6H12O6 + 6 O2 H+ + 6 Pi Cytochrome b6f Aldolase Plastoquinol-plastocyanin ATP synthase NADH reductase Triose phosphate + + + CO2 + H NAD + CoA-SH isomerase α-Ketoglutarate + Stage 2: 6-carbonTwo 3- NAD+ NADH + H + CO2 Glyceraldehyde 3-phosphate Dihydroxyacetone phosphate carbons Isocitrate α-Ketoglutarate dehydogenase dehydrogenase Glyceraldehyde + Pi + NAD Isocitrate complex 3-phosphate Succinyl CoA Oxidative Phosphorylation dehydrogenase NADH + H+ Electron Transport Chain GDP + Pi 1,3-Bisphosphoglycerate H+ Succinyl CoA GTP + CoA-SH Aconitase synthetase
    [Show full text]
  • Engineering of Cytochrome P450s CYP109E1 and CYP109A2 from Bacillus Megaterium DSM319 for The
    Engineering of Cytochrome P450s CYP109E1 and CYP109A2 from Bacillus megaterium DSM319 for the production of vitamin D3 metabolites Kumulative Dissertation zur Erlangen des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät der Universität des Saarlandes von Ammar Abdulmughni Saarbrücken 2018 Tag des Kolloquiums : 14.08.2018 Dekan : Prof. Dr. Guido Kickelbick Berichterstatter : Prof. Dr. Rita Bernhardt Prof. Dr. Gert-Wieland Kohring Vorsitz : Prof. Dr. Uli Müller Akad. Mitarbeiter: Dr. Ing. Michael Kohlstedt Abstract Active vitamin D3 metabolites play an essential role in the maintenance of calcium and phosphorus homeostasis. The conventional chemical synthesis of this metabolite is time- consuming, environmentally unfriendly and often results in low yield. Therefore, the biotechnological production of active vitamin D3 metabolites is of great importance to the pharmaceutical industry. Hereby, cytochrome P450 enzymes have the potential to achieve this goal. The present work reports on the optimization of a biotechnological process in Bacillus megaterium MS941 for the production of vitamin D3 metabolites. On that account, two cytochrome P450 enzymes were used as biocataylsts, namely CYP109E1 and CYP109A2 from the Gram-positive bacterium Bacillus megaterium DSM319. Both enzymes were subjected for functional and structural characterization in order to optimize their activity and/or regio-selectivity towards vitamin D3. In terms of hydroxylation activity, it has been shown that the conversion of vitamin D3 with CYP109E1 results in the formation of several derivatives, while CYP109A2 shows clearly a higher regio-selectivity towards 25- hydroxylation. The elucidation of the crystal structure of both enzymes provides detailed insights into the geometry of these enzymes. By means of molecular docking, site-directed mutagenesis was successfully performed, resulting in the creation of mutants with higher regio-selectivity compared to the wild type, in particular when using CYP109E1.
    [Show full text]
  • Energy Conservation Involving 2 Respiratory Circuits
    Energy conservation involving 2 respiratory circuits Marie Charlotte Schoelmericha,1 , Alexander Katsyva, Judith Donig¨ a, Timothy J. Hackmannb, and Volker Muller¨ a,2 aMolecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany; and bDepartment of Animal Science, University of California, Davis, CA 95616 Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved November 27, 2019 (received for review August 28, 2019) Chemiosmosis and substrate-level phosphorylation are the 2 acetogenic bacteria. Acetogens use the reductive acetyl- mechanisms employed to form the biological energy currency coenzyme A (acetyl-CoA) pathway to fix CO2 using inorganic adenosine triphosphate (ATP). During chemiosmosis, a transmem- gases such as H2 or CO (autotrophic) or organic compounds brane electrochemical ion gradient is harnessed by a rotary ATP such as sugars (heterotrophic) as an electron source. Under synthase to phosphorylate adenosine diphosphate to ATP. In autotrophic conditions, they rely on a chemiosmotic mechanism microorganisms, this ion gradient is usually composed of H+, to conserve energy in the form of ATP. Ferredoxin (Fd) is the but it can also be composed of Na+. Here, we show that the central electron carrier in bioenergetics of acetogens and fuels strictly anaerobic rumen bacterium Pseudobutyrivibrio ruminis 2 distinct respiratory enzymes, the Fd2−:NAD+ oxidoreductase possesses 2 ATP synthases and 2 distinct respiratory enzymes, (Rnf complex) and the Fd2−:H+ oxidoreductase (Ech complex) the ferredoxin:NAD+ oxidoreductase (Rnf complex) and the (2–4). The Rnf complex in Acetobacterium woodii establishes a energy-converting hydrogenase (Ech complex). In silico analyses Na+ gradient, which fuels a Na+-dependent ATP synthase.
    [Show full text]
  • Electron Carriers: Proteins and Cofactors in Oxidative Phosphorylation
    Electron Carriers: Proteins Secondary article and Cofactors in Oxidative Article Contents . Introduction . Overview of Oxidative Phosphorylation and Phosphorylation Photophosphorylation . Electron Carriers: NADH, Flavoproteins, Cytochromes, Klaus-Heinrich Roehm, Philipps University, Marburg, Germany Iron–Sulfur Proteins, Quinones and Others . Reduction Potentials Biological electron transfer is mediated by a heterogeneous group of redox cofactors. Most . Electron Transfer Mechanisms of these compounds are firmly bound by proteins, others migrate freely within membranes, and some are soluble. The orderly flow of electrons through chains of such cofactors is fundamental to the generation of metabolic energy. Introduction schematic way, the general topology of both chains and the Most of the metabolic energy generated in living cells approximate size of the individual complexes as deter- results from processes that abstract electrons from a donor mined by X-ray crystallography or electron microscopy. molecule, channel them through an electron transport The types and numbers of the cofactor molecules chain, and finally deliver them to an acceptor molecule. participating in electron transport are also indicated. Their When the donor is NADH and the acceptor is oxygen, the chemical properties are discussed in more detail below. overall reaction is strongly exergonic and ATPcan be generated (oxidative phosphorylation). In the light reac- tion of photosynthesis, electrons are taken from water and The respiratory chain 1 eventually transferred to NADP to yield NADPH. This Primary electron donors of respiratory electron transport is an endergonic process, and therefore has to be driven by in the mitochondria are either NADH 1 H 1 or metabo- the absorption of light energy. The resulting overall lites that can be oxidized by FAD-dependent dehydro- reaction becomes sufficiently exergonic to yield significant genases (Figure 1a).
    [Show full text]
  • Consequences of the Structure of the Cytochrome B6 F Complex for Its Charge Transfer Pathways ⁎ William A
    Biochimica et Biophysica Acta 1757 (2006) 339–345 http://www.elsevier.com/locate/bba Review Consequences of the structure of the cytochrome b6 f complex for its charge transfer pathways ⁎ William A. Cramer , Huamin Zhang Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA Received 17 January 2006; received in revised form 30 March 2006; accepted 24 April 2006 Available online 4 May 2006 Abstract At least two features of the crystal structures of the cytochrome b6 f complex from the thermophilic cyanobacterium, Mastigocladus laminosus and a green alga, Chlamydomonas reinhardtii, have implications for the pathways and mechanism of charge (electron/proton) transfer in the complex: (i) The narrow 11×12 Å portal between the p-side of the quinone exchange cavity and p-side plastoquinone/quinol binding niche, through which all Q/QH2 must pass, is smaller in the b6 f than in the bc1 complex because of its partial occlusion by the phytyl chain of the one bound chlorophyll a molecule in the b6 f complex. Thus, the pathway for trans-membrane passage of the lipophilic quinone is even more labyrinthine in the b6 f than in the bc1 complex. (ii) A unique covalently bound heme, heme cn, in close proximity to the n-side b heme, is present in the b6 f complex. The b6 f structure implies that a Q cycle mechanism must be modified to include heme cn as an intermediate between heme bn and plastoquinone bound at a different site than in the bc1 complex. In addition, it is likely that the heme bn–cn couple participates in photosytem + I-linked cyclic electron transport that requires ferredoxin and the ferredoxin: NADP reductase.
    [Show full text]
  • Conformational Changes in Binding of Substrates with Human Cytochrome P450 Enzymes
    Book of oral abstracts 100 Conformational changes in binding of substrates with human cytochrome P450 enzymes F. Peter Guengerich, Clayton J. Wilkey, Michael J. Reddish, Sarah M. Glass, and Thanh T. N. Phan Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA Introduction. Extensive evidence now exists that P450 enzymes can exist in multiple conformations, at least in the substrate-bound forms (e.g., crystallography). This multiplicity can be the result of either an induced fit mechanism or conformational selection (selective substrate binding to one of two or more equilibrating P450 conformations). Aims. Kinetic approaches can be used to distinguish between induced fit and conformational selection models. The same energy is involved in reaching the final state, regardless of the kinetic path. Methods. Stopped-flow absorbance and fluorescence measurements were made with recombinant human P450 enzymes. Analysis utilized kinetic modeling software (KinTek Explorer®). Results. P450 17A1 binding to its steroid ligands (pregnenolone and progesterone and the 17-hydroxy derivatives) is dominated by a conformational selection process, as judged by (a) decreasing rates of substrate binding as a function of substrate concentration, (b) opposite patterns of the dependence of binding rates as a function of varying concentrations of (i) substrate and (ii) enzyme, and (c) modeling of the data in KinTek Explorer. The inhibitory drugs orteronel and abiraterone bind P450 17A1 in multi-step processes, apparently in different ways. The dye Nile Red is also a substrate for P450 17A1 and its sequential binding to the enzyme can be resolved in fluorescence and absorbance changes. P450s 2C8, 2D6, 2E1, and 4A11 have also been analyzed with regard to substrate binding and utilize primarily conformational selection models, as revealed by analysis of binding rates vs.
    [Show full text]
  • Bacterial Ferredoxin' R
    BACTERIOLOGICAL REVIEWS Vol. 28, No. 4, p. 497-517 December, 1964 Copyright @ 1964 American Society for Microbiology Printed in U.S.A. BACTERIAL FERREDOXIN' R. C. VALENTINE Department of Biochemistry, University of California, Berkeley, California INTRODUCTION ................................................... 497 Low-Potential Electron Transport................................................... 498 ISOLATION OF FERREDOXIN FROM BACTERIA ............................................... 500 Purification ................................................... 500 Assays................................................... 500 Phosphoroclastic Assay ................. 501 Hydrogenase Assay ................ 502 Other Assays .................... 502 Distribution................ 502 PROPERTIES OF CRYSTALLINE FERREDOXIN ................ 503 Oxidized and Reduced States ................ 503 Spectra ................ 504 Composition ......................................................... 504 ENZYMATIC REDUCTION OF FERREDOXIN ................................................... 505 Phosphoroclastic System ................................................... 505 a-Ketoglutarate ................................................... 506 Dithionite as H2 Precursor ................................................... 507 Hypoxanthine ................................................... 507 Coupling with Formate................................................... 507 OXIDATION OF REDUCED FERREDOXIN ................................................... 507 Urate ..................................................
    [Show full text]
  • Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites
    Int. J. Mol. Sci. 2012, 13, 15901-15924; doi:10.3390/ijms131215901 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites Giovanna Di Nardo and Gianfranco Gilardi * Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-011-670-4593; Fax: +39-011-670-4643. Received: 27 September 2012; in revised form: 1 November 2012 / Accepted: 13 November 2012 / Published: 28 November 2012 Abstract: Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes.
    [Show full text]