Aspects of the Morphology and the Ecology of a Paradiplozoon Species from Barbus Aeneus in the Vaal Dam, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of the Morphology and the Ecology of a Paradiplozoon Species from Barbus Aeneus in the Vaal Dam, South Africa COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujdigispace.uj.ac.za (Accessed: Date). E\:)ro Rouj ASPECTS OF THE MORPHOLOGY AND THE ECOLOGY OF A PARADIPLOZOON SPECIES FROM BARBUS AENEUS IN THE VAAL DAM, SOUTH AFRICA LOUISE ERICA LE ROUX Supervisor: Prof. A. Avenant-Oldewage Co-supervisor: Prof. S.N. Mashego A dissertation submitted in partial fulfilment ofthe requirements for the degree of Master ofScience in Zoology in the Faculty ofScience ofthe Rand Afrikaans University Johannesburg, May 2001 ABSTRACT Only a few species of the family Diplozoidae have previously been described from Africa, from various Labeo and Barbus species. An investigation was undertaken respectively in the Vaal Dam and Vaal River Barrage in the Vaal River system, South Africa to determine aspects of the morphology, taxonomy and ecology of specimens of this family collected from the gills of Barbus aeneus. Various fish species, namely B. aeneus, Barbus kimberleyensis, Labeo capensis, Labeo umbratus, Cyprinus carpio, Clarias gariepinus and Micropterus salmoides, were collected with the aid of gill nets. The fish were killed and the length, weight and sex determined. The gills were removed from the left and right gill chambers, placed in separate, marked petri dishes and covered with water from the dam. Gills (from first to fourth pair) were examined with the aid ofa dissection microscope. The position ofattachment and the region on the gill namely dorsal, median or ventral, was noted. Parasites were removed, fixed between a cover slip and glass slide in steaming hot aceto-formaldehyde alcohol and preserved in 70 % ethanol. A morphological study was undertaken. Results of a Scanning Electron Microscopy study illustrated the following external characteristics namely a round opisthohaptor with four pairs of clamps, while study of whole mounts revealed larval hooks, a round-ended intestine and eggs without filaments. Graphic reconstruction of serial sections of the reproductive system of parasites embedded in resin revealed that the vas deferens of one individual opens into the common vitelline duct of the other. Parasites were identified as belonging to the genus Paradiplozoon. The morphological characteristics, namely the round opisthohaptor, intestine with rounded ending, egg without filament and morphological measurements, of various structures (for example, total body length) that differ from other species of this genus, led to the establishment of a new species, that is, P. alwinii. A relatively low prevalence, abundance and mean intensity of P. alwinii was recorded from'B. aeneus for II which it is highly host specific. P. alwinii showed no preference for either gender, age or size group ofthe host. Little is known about the host behaviour, especially feeding habits and whether this increases chances of infestation. No definite conclusions could thus be made. The influence of the habitat on the occurrence could not be determined, but it was clear that seasonal change and resultant temperature variations influence the occurrence ofP. alwinii. It was expected that water quality would influence prevalence, abundance and intensity of P. alwinii, but sample size was insufficient to draw scientifically valid conclusions. With regard to preferred attachment sites the adults were found to occur mostly on the first (anterior) and fourth (posterior) gill arches, mostly in the median regions. Larvae appeared to be evenly dispersed over all four gill pairs, occurring more often in the ventral regions, however insufficient larval sample sizes hindered any definite conclusions. KEYWORDS: Platyhelminthes Monogenea Diplozoidae Vaal River Paradiplozoon alwinii Barbus aeneus Fish parasite Ectoparasite iii OPSOMMING Slegs 'n paar spesies van die familie Diplozoidae is tot op hede uit Afrika vanaf verskeie Labeo en Barbus spesies beskryf. 'n Ondersoek is onderskeidelik in die Vaaldam en Vaalrivier Barrage in die Vaalriviersisteem, Suid-Afrika geloods om aspekte van die morfologie, taksonomie en ekologie van verteenwoordigers van die familie, wat vanaf die kieue van Barbus aeneus versamel is, te bepaal. 'n Verskeidenheid visspesies, naamlik B. aeneus, Barbus kimberleyensis, Labeo capensis, Labeo umbratus, Cyprinus carpio, Clarias gariepinus en Micropterus salmoides, is met behulp van kieunette versamel. Die visse is gedood en die lengte, massa en geslag is bepaal. Die kieue is vanuit die linker- en regterkieukamers verwyder, in apart gemerkte petri-bakkies geplaas en met water vanuit die dam bedek. Kieue (vanaf die eerste tot vierde paar) is met behulp van 'n disseksiemikroskoop bestudeer. Die vashegtingsposisie en area op die kieu naamlik dorsaal, mediaan ofventraaI, is genoteer. Parasiete is verwyder, tussen 'n dekgasie en mikroskoopplaatjie in stomende asetoformaldehiedalkohol gefikseer en in 70 % etanol gepreserveer. 'n Morfologiese studie is onderneem. Resultate van 'n Skandeer elektronmikroskopiese studie het die volgende uitwendige eienskappe geillustreer naamlik 'n geronde opisthaptor met vier pare klampe. Die studie van totaalpreparate het interne strukture, naamlik larwale hake, rond eindigende intestinum en eiers sonder filamente uitgewys. Grafiese rekonstruksie van seriesnee van die voortplantingstelsel van parasiete wat in hars ingebed was, het onthul dat die vas deferens van een individu in die gemeenskaplike vitelienbuis van die ander individu open. Parasiete is geidentifiseer as behorend tot die genus Paradiplozoon. Die morfologiese eienskappe, naamlik die ronde opisthaptor, intestinum met geronde einde, eier sonder filament en morfologiese afmetings van verskeie strukture (onder andere totale liggaamslengte) wat verskil van ander spesies in hierdie genus, het gelei tot die beskrywing van 'n nuwe spesie, naamlik P. alwinii. 'n Relatiewe lae besmettingsmoontlikheid, IV persentasiebesmetting en gemiddelde besmettingsintensiteit van P. alwinii vanaf B. aeneus, waarvoor dit hoogs gasheerspesifiek is, is genoteer. P. alwinii het geen voorkeur vir geslag, ouderdom of lengte groep van die gasheer getoon nie. Min is bekend oor die gasheer se gedrag, veral voedingsgewoontes, en of dit die kanse van besmetting verhoog. Geen definitiewe gevolgtrekkings kan dus gemaak word nie. Die invloed van die habitat op die verspreiding kon nie bepaal word nie, maar dit was duidelik dat seisoenale veranderinge en gevolglike temperatuurvariasies die aanwesigheid van P. alwinii bemvloed. Dit was verwag dat waterkwaliteit die besmettingsmoontlikheid, persentasiebesmetting en gemiddelde besmettingsintensiteit van P. alwinii sou beinvloed, maar steekproefgrootte was onvoldoende om wetenskaplik geldige gevolgtrekkings te maak. Met betrekking tot voorkeurvashegtingsareas is gevind dat volwassenes meestal aanwesig is op die eerste (anterior) en vierde (posterior) kieue, meestal in die mediaan areas. Dit het geblyk dat larwes eweredig versprei is oor al vier pare kieue, meer algemeen in die ventrale areas, maar onvoldoende larwale steekproefgroottes verhoed enige definitiewe gevolgtrekkings. SLEUTELWOORDE: Platyhelminthes Monogenea Diplozoidae Vaal River Paradiplozoon alwinii Barbus aeneus Fish parasite Ectoparasite v DECLARATION I declare that this report is my own original work. It is being submitted in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of Science of the Rand Afrikaans University, Johannesburg, South Africa. It has not been submitted before for any other degree or examination in any other university. Louise Erica Ie ROllX VI DEDICATION This dissertation is dedicated to my Mother, Annemarie van Loggerenberg, whose lifelong motto has been "perseverance is the only key to success" VII ACKNOWLEDGEMENTS With sincere gratitude to: • The Creator of man and Paradiplozoon alwinii, both perfect III their complexities. • My husband, family and friends for their support throughout this study. • My supervisor, Professor Avenant-Oldewage for her guidance and ongoing encouragement and financial support. • Professor Mashego of RAU's Zoology Department for reading my dissertation and making recommendations. • Hester Roets of RAU's Graphics Department for graphic reproductions ofthe figures contained in this document. • Professor Swanepoel of RAU's Zoology Department for his translations ofKhotenovsky's (1981 and 1985) keys to the Diplozoidae family. • Mrs Edie Lutsch of RAU's Zoology Department for guidance III producing histological sections as well as staining. • The National Research Foundation, Pretoria, for their financial support for this project. • Jeannette Menasce for proof-reading this document and for assisting me with the layout. viii CONTENTS ABSTRACT II KEYWORDS: iii OPSOMMING IV SLEUTELWOORDE: v DECLARATION ~ VI DEDICATION VII ACKNOWLEDGEMENTS VIII CONTENTS IX LIST OF FIGURES XII LIST OF TABLES XIII ABBREVIATIONS XIV CHAPTER 1: INTRODUCTION
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • BIO 475 - Parasitology Spring 2009 Stephen M
    BIO 475 - Parasitology Spring 2009 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 12 Platyhelminth Systematics-New Euplatyhelminthes Superclass Acoelomorpha a. Simple pharynx, no gut. b. Usually free-living in marine sands. 3. Also parasitic/commensal on echinoderms. 1 Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites a. Class Rhabdocoela 1. Rod shaped gut (hence the name) 2. Often endosymbiotic with Crustacea or other invertebrates. Euplatyhelminthes 3. Example: Syndesmis a. Lives in gut of sea urchins, entirely on protozoa. 2 Euplatyhelminthes Class Temnocephalida a. Temnocephala 1. Ectoparasitic on crayfish 5. Class Tricladida a. like planarians b. Bdelloura 1. live in gills of Limulus Class Temnocephalida 4. Life cycles are poorly known. a. Seem to have slightly increased reproductive capacity. b. Retain many morphological characters that permit free-living existence. Euplatyhelminth Systematics 3 Parasitic Platyhelminthes Old Scheme Characters: 1. Tegumental cell extensions 2. Prohaptor 3. Opisthaptor Superclass Neodermata a. Loss of characters associated with free-living existence. 1. Ciliated larval epidermis, adult epidermis is syncitial. Superclass Neodermata b. Major Classes - will consider each in detail: 1. Class Trematoda a. Subclass Aspidobothrea b. Subclass Digenea 2. Class Monogenea 3. Class Cestoidea 4 Euplatyhelminth Systematics Euplatyhelminth Systematics Class Cestoidea Two Subclasses: a. Subclass Cestodaria 1. Order Gyrocotylidea 2. Order Amphilinidea b. Subclass Eucestoda 5 Euplatyhelminth Systematics Parasitic Flatworms a. Relative abundance related to variety of parasitic habitats. b. Evidence that such characters lead to great speciation c. isolated populations, unique selective environments. Parasitic Flatworms d. Also, very good organisms for examination of: 1. Complex life cycles; selection favoring them 2.
    [Show full text]
  • Homosroma Crflfsa GEN
    ON A NEW MONOGENETIC TREMATODE HOMOSrOMA CRflFSA GEN. ET SP. NOV. FROM THE MARINE FISH EUTHYNNUSAFFlfns (CANTOR) WITH A NOTE ON THE FAMILY HEXO&T()MATIDAE, PRICE, 1936 .. by R. VISWANATHANUNNITHAN* The new monogenetic trematode decribed in this paper "'ia~ collected during the course of studies on the parasites of marine food fi~hes from the south west and south east coasts of India. These studies Mr.ere carried out in the Marine Biological Laboratory, Trivandrum and at the Central Marine Fisheries Research Institute, Mandapam Camp. as r~i<:n~d in a previous work (UNNITHAN,1957).. .. Order MAZOCRAEIDEA BYCHOWSKY,1957. Family HEXOSTOMATIDAE PRICE, 1936. PRICE (1936) created the family with Hexostoma. RAFINESQUE,1815, as the type genus and he (1943) defined it under the superfamily Dicli- dophoroidea PRICE, 1936. SPROSTON(1946) revised the diagnosis of the family and accepted it in the superf'amily Diclidophoroidea on the basis of the similarity in the structure of the clamps between Hexostornatidae PRICE, 1936, and Chimericolidae BRINKMANN,1942. BRINKMANN(1952) how- ever, raised the family Chimer'icolidae, to the new superfamily Chimeri- coloidea and gave a detailed discussion on the group. UNNITHAN(1957) 'c removed Microcotylidae TASCHENBURG,1879, from the superfamily. Diclo- dophoroidea and erected the superfamily Microcotyloidea. In his new rationale for the systematic scheme on Monogenoidea, BYCHOWSKY(1957) included Hexostomatidae PRICE, 1936, in. the new order Mazocraidea, along with Mazocraeidae PRICE, 1936. P.RICE(1936) and SPORSTON(1946) included only one genus, Hexosiomo. RAFINESQUE,1815, in this family; the finding of a new species described below has necessitated the creation of a new genus which is named Homostoma.
    [Show full text]
  • (Monogenea, Dactylogyridae) on Rhamdia Quelen N
    http://dx.doi.org/10.1590/1519-6984.14014 Effect of water temperature and salinity in oviposition, hatching success and infestation of Aphanoblastella mastigatus (Monogenea, Dactylogyridae) on Rhamdia quelen N. C. Marchioria*, E. L. T. Gonçalvesb, K. R. Tancredob, J. Pereira-Juniorc, J. R. E. Garciad and M. L. Martinsb aEmpresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – EPAGRI, Campo Experimental de Piscicultura de Camboriú, Rua Joaquim Garcia, s/n, Centro, CEP 88340-000, Camboriú, SC, Brazil bLaboratório de Sanidade de Organismos Aquáticos – AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina – UFSC, Rodovia Admar Gonzaga, 1346, CEP 88040-900, Florianópolis, SC, Brazil cLaboratório de Biologia de Parasitos de Organismos Aquáticos – LABIPOA, Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande – FURG, Av. Itália, Km 8, Campus Carreiros, CEP 96650-900, Rio Grande, RS, Brazil dUniversidade do Sul de Santa Catarina – Unisul, Av. José Acácio Moreira, 787, Bairro Dehon, CP 370, CEP 88704-900, Tubarão, SC, Brazil *e-mail: [email protected] Received: July 28, 2014 – Accepted: September 23, 2014 – Distributed: November 30, 2015 (With 5 figures) Abstract Several environmental parameters may influence biological processes of several aquatic invertebrates, such as the Monogenea. Current analysis investigates oviposition, hatching success and infestation of Aphanoblastella mastigatus, a parasite of the silver catfish Rhamdia quelen at different temperatures (~ 24 and 28 °C) and salinity (by adding sodium chloride to water, at concentrations 0, 5 and 9 g/L) in laboratory. There was no significant difference in oviposition rate and in A. mastigatus infestation success at 24 and 28 °C.
    [Show full text]
  • Ultrastructural Observations on the Oncomiracidium Epidermis and Adult Tegument of Discocotyle Sagittata, a Monogenean Gill Parasite of Salmonids
    Parasitology Research https://doi.org/10.1007/s00436-020-07045-z FISH PARASITOLOGY - ORIGINAL PAPER Ultrastructural observations on the oncomiracidium epidermis and adult tegument of Discocotyle sagittata, a monogenean gill parasite of salmonids Mohamed Mohamed El-Naggar1,2 & Richard C Tinsley3 & Jo Cable2 Received: 14 September 2020 /Accepted: 28 December 2020 # The Author(s) 2021 Abstract During their different life stages, parasites undergo remarkable morphological, physiological, and behavioral “metamorphoses” to meet the needs of their changing habitats. This is even true for ectoparasites, such as the monogeneans, which typically have a free-swimming larval stage (oncomiracidium) that seeks out and attaches to the external surfaces of fish where they mature. Before any obvious changes occur, there are ultrastructural differences in the oncomiracidium’s outer surface that prepare it for a parasitic existence. The present findings suggest a distinct variation in timing of the switch from oncomiracidia epidermis to the syncytial structure of the adult tegument and so, to date, there are three such categories within the Monogenea: (1) Nuclei of both ciliated cells and interciliary cytoplasm are shed from the surface layer and the epidermis becomes a syncytial layer during the later stages of embryogenesis; (2) nuclei of both ciliated cells and interciliary syncytium remain distinct and the switch occurs later after the oncomiracidia hatch (as in the present study); and (3) the nuclei remain distinct in the ciliated epidermis but those of the interciliary epidermis are lost during embryonic development. Here we describe how the epidermis of the oncomiracidium of Discocotyle sagittata is differentiated into two regions, a ciliated cell layer and an interciliary, syncytial cytoplasm, both of which are nucleated.
    [Show full text]
  • And Intra-Species Replacements in Freshwater Fishes in Japan
    G C A T T A C G G C A T genes Article Waves Out of the Korean Peninsula and Inter- and Intra-Species Replacements in Freshwater Fishes in Japan Shoji Taniguchi 1 , Johanna Bertl 2, Andreas Futschik 3 , Hirohisa Kishino 1 and Toshio Okazaki 1,* 1 Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] (S.T.); [email protected] (H.K.) 2 Department of Mathematics, Aarhus University, Ny Munkegade, 118, bldg. 1530, 8000 Aarhus C, Denmark; [email protected] 3 Department of Applied Statistics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria; [email protected] * Correspondence: [email protected] Abstract: The Japanese archipelago is located at the periphery of the continent of Asia. Rivers in the Japanese archipelago, separated from the continent of Asia by about 17 Ma, have experienced an intermittent exchange of freshwater fish taxa through a narrow land bridge generated by lowered sea level. As the Korean Peninsula and Japanese archipelago were not covered by an ice sheet during glacial periods, phylogeographical analyses in this region can trace the history of biota that were, for a long time, beyond the last glacial maximum. In this study, we analyzed the phylogeography of four freshwater fish taxa, Hemibarbus longirostris, dark chub Nipponocypris temminckii, Tanakia ssp. and Carassius ssp., whose distributions include both the Korean Peninsula and Western Japan. We found for each taxon that a small component of diverse Korean clades of freshwater fishes Citation: Taniguchi, S.; Bertl, J.; migrated in waves into the Japanese archipelago to form the current phylogeographic structure of Futschik, A.; Kishino, H.; Okazaki, T.
    [Show full text]
  • Full and FINAL MASTERS DISCERTATION
    ASPECTS OF THE MORPHOLOGY AND ECOLOGY OF A DIPLOZOON SPECIES (MONOGENEA) FROM THE GILLS OF LABEO UMBRATUS IN THE VAAL DAM AND VAAL RIVER BARRAGE, GAUTENG, SOUTH AFRICA. LAURETTE SEDDON Supervisor: Prof. A. Avenant-Oldewage Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Zoology in the Faculty of Science of the Rand Afrikaans University Johannesburg , May 2004 ABSTRACT To date, 4 diplozoidae parasites have been described form Africa. Two belonging to the genus Diplozoon, namely D. aegyptensis and D. ghanense from sites in Northern Africa. One belonging to the genus Neodiplozoon, namely Neodiplozoon polycotyleus . The fourth monogenean is the concern of this study which aimed to determine the exact classification of the monogenean found on the gills of Labeo umbratus in the Vaal Dam and Vaal River Barrage respectively. The study was conducted over a 13-month period, with field data collections occurring every two to three months from January 1999 to February 2000. Host fishes were collected with the aid of gill nets with mesh sizes of 90, 110 and 130mm respectively. In-field measurements were taken regarding the total length, fork length, position of parasites on the gill arches and the host gender. All parasites collected were fixed in steaming AFA and stored in 70% ethanol. Laboratory measurements of whole mounts were completed with the aid of light microscope and drawing tube attachment. Staining methods employed included Boraxcarmine-iodine, Mayer’s Hematoxylin and Horen’s Trichrome. Scanning electron microscopy was used to gather information regarding the external morphology of the parasites.
    [Show full text]
  • Seasonal Growth of the Attachment Clamps of a Paradiplozoon Sp
    African Journal of Biotechnology Vol. 11(9), pp. 2333-2339, 31 January, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.3064 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Seasonal growth of the attachment clamps of a Paradiplozoon sp. as depicted by statistical shape analysis Milne, S. J.1,2 *# and Avenant-Oldewage, A.1 1Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa. 2School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa. Accepted 15 December, 2011 Geometric morphometric methods using computer software is a more statistically powerful method of assessing changes in the anatomy than are traditional measurements of lengths. The aim of the study was to investigate whether changes in the size and shape Paradiplozoon sp. permanent attachment clamps could be used to determine the duration of the organsism’s life-cycle in situ . A total of 149 adult Paradiplozoon sp. ectoparasites were recovered from Labeobarbus aeneus and Labeobarbus kimberlyensis in the Vaal Dam. The software tool tpsDIG v.2.1 was used on six digitised landmarks placed at the junctures between the sclerites of the attachment clamps from digital micrographs. The tpsSmall v. 2.0 and Morphologika 2 v. 2.5 software tools were used to perform principal component analysis (PCA) on this multivariate dataset. The PCA analysis indicated that the increase in size and linear change in shape of the selected landmarks, were significant predictors of the sampling season. This study suggests that it takes one year for the permanent attachment clamps of a Paradiplozoon sp.
    [Show full text]
  • SEM Study of Diplozoon Kashmirensis (Monogenea, Polyopisthocotylea) from Crucian Carp, Carassius Carassius
    SEM study of Diplozoon kashmirensis (Monogenea, Polyopisthocotylea) from Crucian Carp, Carassius carassius Shabina Shamim, Fayaz Ahmad Department of Zoology, University of Kashmir, Srinagar – 190 006, Kashmir, J&K, India ABSTRACT Using Scanning Electron Microscopy the external morphology of the helminth parasite Diplozoon kashmirensis (Monogenea, Diplozoidae) from the fish Carassius carassius is described herein for the first time. The present study is a part of the parasitological work carried out on the fishes of Jammu and Kashmir. These fish helminthes are ectoparasites, blood feeding found on gills of fishes. They have extraordinary body architecture due to their unique sexual behavior in which two larval worms fuse together permanently resulting in the transformation of one X shaped duplex individual. Oral sucker of the prohaptor has a partition giving it a paired appearance. The opisthohaptor present on hind body contains four pairs of clamps on each haptor of the pair, a pair of hooks and a concave terminal end. Body is composed of tegmental folds to help the worms in fixing to the gills. This type of strategy adapted for parasitic life in which two individuals permanently fuse into a single hermaphrodite individual without any need to search for mating partner and presence of highly sophisticated attachment structures, shows highest type of specialization of diplozoid monogeneans. In this study we used SEM to examine the surface topography of Diplozoon kashmiriensis, thereby broadening our existing knowledge of surface morphology of fish helminthes. Key Words – Carassius carassius, Diplozoon kashmirensis, Monogenea, Opisthohaptor, SEM. I INTRODUCTION Monogenea is one of the largest classes within the phylum Platyhelminthes and they usually possess anterior and posterior attachment apparatus that are used for settlement, feeding, locomotion and transfer from host to host [1, 2, 3].
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Pdf 731.06 K
    Molecular phylogeny ofthe Puntius (Hamilton, 1822) based on nuclear gene RAG2 Faezeh Yazdani Moghaddam1, *, Mansour Aliabadian1, *, Siti Khalijah Daud2, Mahvash Seifali3 1Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. 2Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400UPM Serdang, Selangor, Malaysia. 3Department of Biology, Faculty of Science, University Alzahra, Tehran, Iran. Received: 11September 2012, 2012; Accepted: 24 November 2012 Abstract The tropical Asian cyprinid genus Puntius is a major part of the ichthyofauna in Southeast Asia. Systematic status of the genus Puntius among Cyprinidae, the most prominent freshwater fish all over the world, remain to be substantiated. The molecular phylogenetic analyses derived from Recombination activating genesequences (RAG2) for 35 representative samples of Malaysian Puntius and their allies, indicated paraphyly of the genus Puntius among common cyprinid groups of Southeast Asia. At a larger scale, while the monophyly of Cyprinidae and the subfamily Cyprininae were confirmed, the monophyly of the tribe Barbinini, Cyprinini, or Puntius (Systomus) were not supported. Keywords: Cyprinidae, Puntius, Systomus, recombination activating gene 2, phylogeny. Introduction which contains some 220 nominal species (about 120 of these considered valid), has seen a Family Cyprinidae with more than 3,268 species significant accretion of new species in recent and 321 genera is one of the largest freshwater years. Many species are traded internationally as fish families in the world, in which, phylogenetic ornamentals (Collins et al., 2012). Carrying the relationships among Malaysian cyprinids remain generic name, Puntius, was made familiar by largely unresolved (Cunha et al., 2002; Liu and Hamilton in 1822, but later researchers have used Chen, 2003).
    [Show full text]