Petzval Portrait Objective

Total Page:16

File Type:pdf, Size:1020Kb

Petzval Portrait Objective Petzval Portrait objective Jose Sasian College of Optical Sciences University of Arizona https://en.wikipedia.org/wiki Announcement of the invention of the Daguerreotype by Arago at the meeting of the French Academy of Sciences and Arts Louis‐Jacques‐Mandé Dominique François Arago Daguerre August 19th 1939 Prof. Andreas Ettingshausen, 1796–1878 https://en.wikipedia.org/wiki/Andreas_von_Ettingshausen https://en.wikipedia.org/wiki Daguerre’s camera and the achromatic landscape lens ½ hour to take a picture: F/16 “It is known that the objectives used by Daguerre were achromatic plane‐convex‐lenses. Their plane side was turned toward the object, the convex side towards the image. They have an opening of 3 zoll, but this opening is reduced to 1 zoll by a diaphragm placed before at a distance of 3 zoll from the lenses.” J. Petzval https://en.wikipedia.org/wiki Prof. Ettingshausen asked Joseph Petzval to explore the shape of the lenses Prof. Andreas Ettingshausen Vienna University, 19th century “It was in the year 1839, when the wonderful invention by Daguerre was made public, and incited the general interest to such a high degree. At that time I was first made aware of the strange shape of Young Joseph Petzval the objectives used in Daguerre’s camera obscura by my dear friend 1807‐1891 and colleague Professor von Ettingshausen. I was asked to explore the reason for this shape.” J. Petzval https://en.wikipedia.org/wiki Petzval Portrait Lens “Greater illumination, one of the desired improvements, can only be obtained in two ways – by enlarging the aperture and by diminishing the focal length, both which, however, will result from employing two converging lenses, instead of one. These lenses must of course be achromats; and by theory, in order that a good image may be produced, they must be separated from each other by a distance no less than one third of the focal length of the lens near the object.” Petzval 1857. F/3.6 40 seconds to take a picture Joseph Eder’s remark “The commercial success of the Petzval portrait lens was immediate and extraordinary, and that it spread with unexpected rapidity.” https://en.wikipedia.org/wiki/Josef_Maria_Eder Petzval lens imaging Beatrice Cenci with Kate Keown Photograph by as the model, Wikipedia Julia Margaret Cameron 1868 Wikipedia Bokeh is the aesthetic quality of the lack of sharp focusing in the images produced by a lens, especially In the outer parts of the field. https://en.wikipedia.org/wiki The question • How did Petzval design his famous portrait lens • Did he use real ray tracing? • Did he use third‐order aberration coefficients? • Did he have help? • Petzval did not leave a record about how he did the designs • The announcement of the Daguerrotype was on August 1939 • Petzval had his designed done by May 1840 Prof. Ettingshausen suggests to P. W. Voigtländer to talk to Petzval Prof. Andreas Ettingshausen, P. W. F. Voigtländer, lens manufacturer in Vienna https://en.wikipedia.org/wiki P. W. Voigtländer meets Petzval and provides glass indices of refraction and dispersion values Young Joseph Petzval P. W. F. Voigtländer https://en.wikipedia.org/wiki Petzval produces by May of 1840 two objective designs (actually four) For portraits For “views” (landscapes) https://en.wikipedia.org/wiki First camera with the Petzval Portrait objective • Voigtländer manufactured the objectives • The portrait objective working at F/3.67 allowed taking photographs in seconds (~40) making portrait photography a practical reality. • Anton Martin took photographs to evaluate the lens Anton Martin https://en.wikipedia.org/wiki Petzval’s Original Prescription The prescription has two sets of data for landscapes and for portraits. Written in ink and in pencil. NATIONAL BANK OF SLOVAKIA P. W. F. Voigtländer notarized copy Akademiker Prof. Dr. Petzval, beleuchtet von Voigtländer, NATIONAL BANK OF SLOVAKIA Drud und Berlag von Friedrich Biemeg und Gobn, Braunschweig 1859. The two sets of prescriptions Given in linien, zoll, and zoll and linien old German units In ink and in pencil No indices of refraction, dispersion values, or thicknesses Reconstructed specifications L. Ermenyi , Dr. Josef Petzvals Leben und Verdienste, Halle a. S., Verlag von Wilhelm Knapp, p. 25, 1903 Commercial camera: Voigtländer‐Petzval conical brass camera Plate D=92 mm ; f=149 mm Plate D=94 mm ; f=150 mm Measurements: 37 cm X 31 cm X 15 cm NATIONAL BANK OF SLOVAKIA An early Petzval objective from 1846 #2761 (1846) Aperture stop was the rim of the first doublet http://www.antiquecameras.net/petzvallens.html First‐order concept layout F1=16 Zoll F1=8 Zoll F2=24 Zoll F2=12 Zoll F=11 Zoll F=5 ½ Zoll D=5.1 Zoll D=2.55 Zoll Aperture 3 zoll Aperture 1 ½ zoll F/3.67 F/3.67 Petzval’s report of 1857 Thin lens solution Given by J. Eder N Crown = 1.517 N Flint = 1.575 The secret of the thin achromatic doublet is that the ratio of the optical powers of the individual lenses must be equal to the negative of the ratio of the glasses v‐numbers. Petzval statement of 1857 “Greater illumination, one of the desired improvements, can only be obtained in two ways – by enlarging the aperture and by diminishing the focal length, both which, however, will result from employing two converging lenses, instead of one. These lenses must of course be achromats; and by theory, in order that a good image may be produced, they must be separated from each other by a distance no less than one third of the focal length of the lens near the object.” Petzval 1857. Supports: Use of a thin lens model Use of third‐order theory Third‐order thin lens solution • Two achromatic doublets individually corrected for spherical aberration • Front doublet contributing positive coma and positive astigmatism • Rear doublet contributing negative coma and negative astigmatism • Field was artificially flattened W222 / W220P = ‐0.79. As a thin lens F1=8 Zoll F2=12 Zoll D=F1 / 3 Zoll W222 / W220P = ‐0.79. AB k uWWB 2 222 222 A 13 kuB W131 Thick lens solution W131 = 0 W131 = 0 Separation is D = 2 Zoll (Rather than D = 2.67 Zoll) W222 / W220P = -0.44 Lens Adjustment Voigtländer wrote: “Prof. Petzval and I finding that, by this ring (i.e. a spacer) we could compensate for some errors, which must have taken place in the calculation.” Petzval did not use real ray tracing. Some arguments are: • His two criticisms of the calculating opticians in his 1843 report and his repetitive highlighting of aberration theory. • His remark in his 1843 report that he had calculated 15 lens combinations with images of the fifth‐order (meaning a third‐order correction or several third‐order aberrations corrected). • That the distance between doublets in the portrait objective is at odds with Petzval’s remark of at least 1/3 the focal length of the first doublet. Further, this statement reflects a third‐order calculation. • That as late as 1857 Petzval expressly remarked that his new lens was corrected to an image of the fifth‐order. • The correction of chromatic change of focus using a thin lens model. K. &. K Bombardier – Corps This first result was the motive, because of the hopes to which it gave rise, that I was given authority by the highest order of his majesty, Archduke Karl Ludwig of Austria his k. & k. Highness General Artillery Director Arch Duke Ludwig to 30 July 1833 – 19 May 1896 have the members of the K. &. K Bombardier – Corps namely the two https://en.wikipedia.org/wiki/Archduke_Karl_Ludwig_of_Austria Oberfeuerwerkers Löschner and Hain at my disposal. This Bombardier corps was well known to have mathematical knowledge… A common misunderstanding Petzval in his 1843 report explains that the first practical result of his dioptric theory was the portrait objective of 1840. He writes that this first result was the motive for which Arch Duke Ludwig provided to him the help of the K&K Bombardier Corps. Later in 1903 L. Ermenyi wrote that before the end of 1840 the portrait lens became vividly discussed in Vienna and that the imperial court showed such interest that Arch Duke Ludwig provided to Petzval help with the Bombardier Corps. Accordingly, and contrary to common belief, Petzval did not have calculation help from the K&K Bombardier Corps to design his famous portrait lens. The Bombardier Corps helped Petzval to calculate the 15 tables (lens prescriptions) for Telescopes, cameras obscuras, and microscopes he wrote about at the close of his report of 1843. Petzval’s drawings "I have conquered the light, I have it firmly in my hands, because there is too much darkness in the world." L. Ermenyi [Dr. Josef Petzvals Leben und Verdienste], Halle a. S., Verlag von Wilhelm Knapp, 1903. Petzval lens specs • F/# 3.6 • F=150 mm • D=42 mm • FOV=+/‐ 16.5 degrees • All glass lenses Conclusion • Petzval, Voigtländer and Martin left enough information to understand how Petzval designed his famous portrait lens. In fact, we showthatPetzvalfollowedwhatitistaughtinintroductorylens design courses. This is first‐order layout, correction of chromatic aberration using doublets, correction of spherical aberration and coma, and artificially flattening the field of view. On‐axis irradiance ds'' da dL ''24 cos' 0 s '2 ds ' dI''cos' L 4 0 s '2 aU4 ' LL''r 22 Ir'20 drLdnU 2 'sincos 0 'sin' 002 22 2 sn''00rs ' L ' INA' 0 2 Radiance theorem 0 n'2 L00' L 22 2 1 nn' sinU ' 2 4/#F Object and image .
Recommended publications
  • PETZVAL's LENS and CAMERA by Rudolf Kingslake
    PETZVAL'S LENS AND CAMERA by Rudolf Kingslake Joseph Max Petzval was born on January 6, 1807, in Hungary of German parentage; he died 84 years later in September 1891. Being a member of the mathematics faculty of the University of Vienna, he naturally approached the problem of lens design from a mathematical rather than from an empir­ ical standpoint, which probably accounted in part for his suc­ cess. He actually designed two lenses in 1839, the Portrait lens which he immediately commissioned P. F. von Voigtlander to make, and the Orthoscopic lens which was not manufactured T THE OFFICIAL ANNOUNCEMENT of the Daguerreotype until 1856. Petvzal's interest in optics continued throughout the A process in 1839, Austria was represented by Professor A. rest of his life, and he reported in 1843 that "by order of the F. von Ettingshausen. He was so impressed with the possibilities General-Director Archduke Ludwig, he was assisted in his of photography that upon his return to Vienna, he induced his calculations for several years by two officers and eight friend and colleague the mathematician Joseph Petzval to undertake the design of a wide-aperture lens suitable for por­ traiture. Petzval, then 33 years old, devoted himeslf enthusiasti­ cally to the problem and was amazingly successful. He used a well-corrected telescope objective the right way round for his front component, and added an airspaced doublet behind it, the rear doublet being mathematically designed to give sharp de­ finition and to flatten the field. The formula was handed to the old-established Viennese optician Voigtlander, who first supplied the lens to a focal length of 150 mm and an aperture of f/3.6, mounted in a conical metal camera having a circular ground-glass focusing screen 94 mm diameter with a focusing magnifier permanently installed behind it.
    [Show full text]
  • Portraiture, Surveillance, and the Continuity Aesthetic of Blur
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 6-22-2021 Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova Michigan Technological University, [email protected] Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Arts and Humanities Commons Recommended Citation Hristova, S. (2021). Portraiture, Surveillance, and the Continuity Aesthetic of Blur. Frames Cinema Journal, 18, 59-98. http://doi.org/10.15664/fcj.v18i1.2249 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/15062 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Arts and Humanities Commons Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova DOI:10.15664/fcj.v18i1.2249 Frames Cinema Journal ISSN 2053–8812 Issue 18 (Jun 2021) http://www.framescinemajournal.com Frames Cinema Journal, Issue 18 (June 2021) Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova Introduction With the increasing transformation of photography away from a camera-based analogue image-making process into a computerised set of procedures, the ontology of the photographic image has been challenged. Portraits in particular have become reconfigured into what Mark B. Hansen has called “digital facial images” and Mitra Azar has subsequently reworked into “algorithmic facial images.” 1 This transition has amplified the role of portraiture as a representational device, as a node in a network
    [Show full text]
  • Mathematics in the Austrian-Hungarian Empire
    Mathematics in the Austrian-Hungarian Empire Christa Binder The appointment policy in the Austrian-Hungarian Empire In: Martina Bečvářová (author); Christa Binder (author): Mathematics in the Austrian-Hungarian Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST. (English). Praha: Matfyzpress, 2010. pp. 43–54. Persistent URL: http://dml.cz/dmlcz/400817 Terms of use: © Bečvářová, Martina © Binder, Christa Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz THE APPOINTMENT POLICY IN THE AUSTRIAN- -HUNGARIAN EMPIRE CHRISTA BINDER Abstract: Starting from a very low level in the mid oft the 19th century the teaching and research in mathematics reached world wide fame in the Austrian-Hungarian Empire before World War One. How this was complished is shown with three examples of careers of famous mathematicians. 1 Introduction This symposium is dedicated to the development of mathematics in the Austro- Hungarian monarchy in the time from 1850 to 1914. At the beginning of this period, in the middle of the 19th century the level of teaching and researching mathematics was very low – with a few exceptions – due to the influence of the jesuits in former centuries, and due to the reclusive period in the first half of the 19th century. But even in this time many efforts were taken to establish a higher education.
    [Show full text]
  • 01-00C Welcome to Hungary – Paks
    12th FPGA workshop | Monday, 14 October 2019 Welcome to Hungary Gyula Mate Mach, Project supervisor Welcome to Hungary | Gyula Máté Mach The country The country 3 Monday, 14 October 2019 About the country • Hungary, in Hungarian: Magyarország [ˈmɒɟɒrorsaːɡ] is a country in Central Europe • Spanning 93,030 square kilometers (35,920 sq mi) in the Carpathian Basin • Hungary's population was 9,937,628 was in 2011 • 13 million speakers of Hungarian • Hungarian is one of 5 Most Difficult Languages in the World to Learn (Japanese, Mandarin, Hungarian, Finnish, Arabic, Polish) • Hungary's capital and largest city is Budapest 4 Monday, 14 October 2019 The origin of the country • Hungary was established in 895 by the tribes • In 1001 applying to Pope Sylvester II, Stephen received the insignia of royalty (including a part of the Holy Crown of Hungary, currently kept in the Hungarian Parliament) from the papacy 5 Monday, 14 October 2019 Memberships • United Nations since 1955 • IAEA since 1957 • World Bank since 1982 • Council of Europe since 1990 • Visegrád Group since 1991 • WTO since 1995 • NATO since 1999 • EU since 2004 • Schengen Area since 2007 6 Monday, 14 October 2019 Welcome to Hungary | Gyula Máté Mach Hungarian Nobel prize owners Nobels (13) • Philipp E. A. von Lenard (1862-1947) 1905 Physics • Robert Bárány (1876-1936) 1914 Medicine • Richard A. Zsigmondy (1865-1929) 1925 Chemistry • Albert von Szent-Györgyi (1893-1986) 1937 Medicine • George de Hevesy (1885-1966) 1943 Chemistry • Georg von Békésy (1899-1972) 1961 Medicine • Eugene P. Wigner (1902-1995) 1963 Physics • Dennis Gabor (1900-1979) 1971 Physics • John C.
    [Show full text]
  • Download PDF of Article
    teaching and education Synchrotron radiation and X-ray free-electron lasers (X-FELs) explained to all users, active and potential ISSN 1600-5775 Yeukuang Hwua,b,c* and Giorgio Margaritondod* aInstitute of Physics, Academia Sinica, Taipei 11529, Taiwan, bDepartment of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan, cBrain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, and dFaculte´ des Sciences de Base, Ecole Polytechnique Fe´de´rale de Lausanne, 1015 Lausanne, Switzerland. Received 8 September 2020 *Correspondence e-mail: [email protected], [email protected] Accepted 29 March 2021 Synchrotron radiation evolved over one-half century into a gigantic worldwide Edited by M. Yamamoto, RIKEN SPring-8 enterprise involving tens of thousands of researchers. Initially, almost all users Center, Japan were physicists. But now they belong to a variety of disciplines: chemistry, materials science, the life sciences, medical research, ecology, cultural heritage Keywords: synchrotron; X-FEL; relativity; and others. This poses a challenge: explaining synchrotron sources without ponderomotive. requiring a sophisticated background in theoretical physics. Here this challenge is met with an innovative approach that only involves elementary notions, commonly possessed by scientists of all domains. 1. Background Synchrotron radiation sources and free-electron lasers (Margaritondo, 1988, 2002; Winick, 1995; Willmott, 2011; Mobilio et al., 2015; Bordovitsyn, 1999) are, arguably, the most important practical applications of Albert Einstein’s special relativity (Rafelski, 2017). Indeed, they exploit relativistic properties to produce electromagnetic radiation in spectral ranges where other emitters are unsatisfactory, most notably X-rays. Explaining such sources to non-physicists is not easy. We propose here an approach that only requires a few basic scientific notions.
    [Show full text]
  • The History of Petzval Lenses 11-06-11 14:43
    The history of Petzval Lenses 11-06-11 14:43 Antique & Classic Cameras Home Blog Camera Appraisals Rolleiflex Rolleicords Rolleiflex Buying Tip Leica M Lenses 50 Summicron-M Lenses 35 Summicron-M Lenses Leica 28mm M-Lenses Most Watched Leica Leica M Cameras Leica Screw Lenses Leica Screw Cameras Leica Lens Reviews Leica R Lenses Sonnar Lens Petzval Lens Soft Focus Lenses Soft Focus Lenses 2 Soft Focus Lenses 3 Soft Focus Lens Sales Soft Focus Lens Test Heliar Lenses Canon RF Lens Canon 50mm F/1.2 LTM Canon RF Cameras Fuji 6x7 & 6x9 Fuji 645 Cameras Hasselblad 6x6 Hasselblad C Lenses Pentax 6x7 Lenses Ricohflex Nikon RF Lens Zeiss Contax RF Lens Contax G Lens Super Ikonta Minolta-35 RF Pentax M42 Lens Bokeh Fuji 617 Olympus Stylus Epic 1890 Lens Catalogue 1892 Steinheil Lens Ads 1892 Zeiss Lens Ads 1904 Dallmeyer Lens Ads 1904 Busch Lens Ads 1904 Goerz Lens Ads Antique Wood Cameras Photographers 1860-1900 1857 CC Harrison Lens Harrison Globe Lens 1871 Camera Catalog 1883 Blair Envelope 1895 Sunart Camera 1910 Premo Catalog 1848-1875 Advertisements Camera Books Most Watched Lens Vade Mecum Links Contact Us About Us Morgan Low Ball Dollars Petzval Portrait Lenses and Their History Daguerre announced his process to the world on August 19, 1839. The original Daguerre & Giroux Camera utilized a lens designed and manufactured by Charles Chevalier, celebrated microscope maker and son of Vincent Chevalier who founded their optical business in France. The Chevalier 16-inch telescope objective was comprised of a cemented doublet and was achromatic. The lens, which covered a whole plate, had a working aperture of f/17, and suffered from considerable spherical abberations.
    [Show full text]
  • © 2018 IEEE. Personal Use of This Material Is Permitted. Permission
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works IEEE TRANSACTIONS ON BROADCASTING, VOL. XX, NO. XX, XXX 2018 1 Evaluation of the Concept of Dynamic Adaptive Streaming of Light Field Video Peter A. Kara, Member, IEEE, Aron Cserkaszky, Member, IEEE, Maria G. Martini, Senior Member, IEEE, Attila Barsi, Laszl´ o´ Bokor, Member, IEEE, Tibor Balogh, Member, IEEE Abstract—Light field visualization has progressed and devel- oped significantly in the past years. At the time of this paper, light field displays are utilized in the industry and they are commercially available as well. Although their appearance on the consumer market is approaching, many potential applications of light field technology have not yet been addressed, such as video streaming. In this paper, we present our research on the dynamic adaptive streaming of light field video. In order to evaluate the presented concept of quality switching, we carried out a series of subjective tests, where test participants were shown light field videos containing stallings and switches in spatial and angular resolution. Index Terms—Light field visualization, Quality of Experience, Fig. 1. Experimental telepresence on a HoloVizio 721RC [5]. video streaming, spatial resolution, angular resolution, stalling. is also promising for the head-up displays of land and air I. INTRODUCTION vehicles, and flight safety and efficiency in air traffic controls HE visual experience provided by light field displays can be further increased through the easily observable real T enables a natural sense of 3D, as no special glasses or spatial position of aircrafts.
    [Show full text]
  • Lens/Mirrors
    Refractive Optical Design Systems Any lens system is a tradeoff of many factors Add optical elements (lens/mirrors) to balance these Many different types of lens systems used Want to look at each from the following Performance Requirements Resolution of the lens – how good at seeing fine details Also compensation to reduce lens aberrations Field of View: How much of a object is seen in the image from the lens system F# - that is how fast is the lens i.e. how good is the lens at low light exposures Packaging requirements- can you make it rugged & portable Spectral Range – what wavelengths do you want to see Also how to prevent chromatic aberrations Single Element Poor image quality with spherical lens Creates significant aberrations especially for small f# Aspheric lens better but much more expensive (2-3x higher $) Very small field of view High Chromatic Aberrations – only use for a high f# Need to add additional optical element to get better images However fine for some applications eg Laser with single line Where just want a spot, not a full field of view Landscape Lens Single lens but with aperture stop added i.e restriction on lens separate from the lens Lens is “bent” around the stop Reduces angle of incidence – thus off axis aberrations Aperture either in front or back Simplest cameras use this Achromatic Doublet Typically brings red and blue into same focus Green usually slightly defocused Chromatic blur 25x less than singlet (for f#=5 lens) Cemented achromatic doublet poor at low f# Slight improvement
    [Show full text]
  • The Techniques and Material Aesthetics of the Daguerreotype
    The Techniques and Material Aesthetics of the Daguerreotype Michael A. Robinson Submitted for the degree of Doctor of Philosophy Photographic History Photographic History Research Centre De Montfort University Leicester Supervisors: Dr. Kelley Wilder and Stephen Brown March 2017 Robinson: The Techniques and Material Aesthetics of the Daguerreotype For Grania Grace ii Robinson: The Techniques and Material Aesthetics of the Daguerreotype Abstract This thesis explains why daguerreotypes look the way they do. It does this by retracing the pathway of discovery and innovation described in historical accounts, and combining this historical research with artisanal, tacit, and causal knowledge gained from synthesizing new daguerreotypes in the laboratory. Admired for its astonishing clarity and holographic tones, each daguerreotype contains a unique material story about the process of its creation. Clues from the historical record that report improvements in the art are tested in practice to explicitly understand the cause for effects described in texts and observed in historic images. This approach raises awareness of the materiality of the daguerreotype as an image, and the materiality of the daguerreotype as a process. The structure of this thesis is determined by the techniques and materials of the daguerreotype in the order of practice related to improvements in speed, tone and spectral sensitivity, which were the prime motivation for advancements. Chapters are devoted to the silver plate, iodine sensitizing, halogen acceleration, and optics and their contribution toward image quality is revealed. The evolution of the lens is explained using some of the oldest cameras extant. Daguerre’s discovery of the latent image is presented as the result of tacit experience rather than fortunate accident.
    [Show full text]
  • Proceedings of Spie
    Joseph Petzval lens design approach Item Type Article Authors Sasián, José Citation José Sasián, "Joseph Petzval lens design approach", Proc. SPIE 10590, International Optical Design Conference 2017, 1059017 (27 November 2017); doi: 10.1117/12.2285108; https:// doi.org/10.1117/12.2285108 DOI 10.1117/12.2285108 Publisher SPIE-INT SOC OPTICAL ENGINEERING Journal INTERNATIONAL OPTICAL DESIGN CONFERENCE 2017 Rights © 2017 SPIE. Download date 26/09/2021 02:37:17 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/627184 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Joseph Petzval lens design approach José Sasián José Sasián, "Joseph Petzval lens design approach," Proc. SPIE 10590, International Optical Design Conference 2017, 1059017 (27 November 2017); doi: 10.1117/12.2285108 Event: International Optical Design Conference - IODC 2017, 2017, Denver, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/30/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Invited Paper Joseph Petzval lens design approach José Sasián College of Optical Sciences, University of Arizona 1630 E. University Blvd., Tucson, Arizona USA 85721 ABSTRACT We pose that there is enough information left to reconstruct Petzval lens design approach, and answer the question of how Joseph Petzval design his famous portrait objective. Keywords: Joseph Petzval, landscape objective, portrait objective, lens design, aberration theory, photographic lens 1. INTRODUCTION Joseph Maximillian Petzval (1807-1891) was a talented mathematician and physicist from Hungary who immigrated to Austria and taught at the University of Vienna. He designed the lens that made portrait photography a practical reality.
    [Show full text]
  • Petzval's Portrait Lens
    Petzval’s portrait lens Lens Design OPTI 517 Prof. Jose Sasian Prof. Jose Sasian Chronology • Camera obscura; Leonardo da Vinci (1452- 1519) provided the first known technical description • The idea of capturing an image • Lois Jacques Mande Daguerre (1787-1851) succeeded in finding a photographic process. This was announced in 1939 Prof. Jose Sasian Time table 1812 W. Wollaston landscape lens; 30 deg @ f/15 1825 ~T. Young, G. Airy, J. Herschel, H. Coddington 1828 Hamilton's theory of systems of rays 1839 Photography was made a practical reality 1839 Chevalier lens 1840 Petzval (Hungarian) portrait lens; 15 deg @ f/3.6 1841 Gauss’s cardinal points, focal and principal 1856 Seidel theory Prof. Jose Sasian Joseph Petzval 1807-1891 Prof. Jose Sasian Specification R +52.9 -41.4 +436.2 +104.8 +36.8 45.5 -149.5 N-crown=1.517; N-flint=1.576 T 5.8 1.5 23.3/23.3 2.2 0.7 3.6 F=100 mm Prof. Jose Sasian Petzval portrait lens could actually take photographs of people. This likely contributed to its success. It made photography a practical reality. Prof. Jose Sasian Petzval Portrait lens vs Wollanston landscape lens •F/3.6 •F/15 •Field +/- 15 degrees •Field +/- 30 degrees •Artificially flattened field •Artificially flattened field •1840 •1812 •Photography process announced •Applied to camera obscura in 1839 Petzval portrait lens could actually take photographs of people. This likely contributed to its success. It made photography a practical reality. Prof. Jose Sasian Images Object Image Prof. Jose Sasian The state of the art • Telescope doublets: Chromatic aberration and spherical aberration • Periscopic lenses in the camera obscura • Airy’s study of the periscopic lens exhibiting the trade of between astigmatism and field curvature.
    [Show full text]
  • A Camera Obscura by Voigtländer & Son Vienna
    Simon Weber-Unger A Camera Obscura by 70 5 Voigtländer & Son Vienna This article treats a camera obscura that, by its provenance, maker and date, can be placed in a direct connection to the early period of Austrian photography and its development . The Changeable Picture our Society in I Description of the camera obscura Figure 1: Made in Vienna, c . 1848, signed on lens “Voigtländer & Sohn / in Wien ”. Mahogany veneer wood corpus, mirror and ground glass (not original), lacquered brass lens with lens hood and brass cap, focussing screw, brass fitted screw-on magnifier glass (fig . 4) . Dimensions: wood box c 25. 3. x 36 .4 x 30 7. cm, total length c .49 cm, lens diameter c 65. mm, focusing screen up to c 22. x 27 cm . Detailed description of the camera obscura’s lens by Dr. Milos Mladek, Vienna The lens of the camera obscura is an optical system of three glasses in two groups with a fixed intermediate diaphragm, mounted in a beautifully-made, sturdy brass barrel engraved „Voigtländer & Sohn in Wien“ . It has rack-and-pinion focusing and renders a sharp image with good contrast and no apparent distortion . As for the optical design: The heart of the system seems to be a positive meniscus in the rear, with a focal length of 12 cm and a fixed diaphragm before it . There is a strongly negative cemented meniscus (consisting of a biconvex lens in front and a biconcave lens behind) in front of these two . The focal length of the whole system is about 25 cm, with an approximate lens register of about 35 cm, the relative aperture is probably about f / 9 .
    [Show full text]