Do New Access and Benefit Sharing Procedures Under the Convention on Biological Diversity Threaten the Future of Biological Cont

Total Page:16

File Type:pdf, Size:1020Kb

Do New Access and Benefit Sharing Procedures Under the Convention on Biological Diversity Threaten the Future of Biological Cont BioControl DOI 10.1007/s10526-009-9234-9 FORUM PAPER Do new Access and Benefit Sharing procedures under the Convention on Biological Diversity threaten the future of biological control? Matthew J. W. Cock • Joop C. van Lenteren • Jacques Brodeur • Barbara I. P. Barratt • Franz Bigler • Karel Bolckmans • Fernando L. Coˆnsoli • Fabian Haas • Peter G. Mason • Jose´ Roberto P. Parra Received: 25 August 2009 / Accepted: 28 September 2009 Ó International Organization for Biological Control (IOBC) 2009 Abstract Under the Convention on Biological benefits arising from their use need to be established Diversity (CBD) countries have sovereign rights over between involved parties [i.e. Access and Benefit their genetic resources. Agreements governing the Sharing (ABS)]. This also applies to species collected access to these resources and the sharing of the for potential use in biological control. Recent appli- cations of CBD principles have already made it difficult or impossible to collect and export natural Handling Editor: Eric Wajnberg. enemies for biological control research in several countries. If such an approach is widely applied it Electronic supplementary material The online version of this article (doi:10.1007/s10526-009-9234-9) contains supplementary material, which is available to authorized users. M. J. W. Cock (&) K. Bolckmans CABI Europe-Switzerland, Rue des Grillons 1, Koppert B.V., Veilingweg 14, Postbus 155, 2800 Dele´mont, Switzerland 2650 AD Berkel en Rodenrijs, The Netherlands e-mail: [email protected] e-mail: [email protected] J. C. van Lenteren F. L. Coˆnsoli Á J. R. P. Parra Laboratory of Entomology, Wageningen University, Departamento de Entomologia e Acarologia, P.O. Box 8031, 6700 EH Wageningen, The Netherlands ESALQ/USP, Caixa Postal 09, 13418-900 Piracicaba, SP, e-mail: [email protected] Brazil e-mail: [email protected] J. Brodeur J. R. P. Parra Institut de recherche en biologie ve´ge´tale, Universite´ de e-mail: [email protected] Montre´al, 4101, rue Sherbrooke Est, Montre´al, QC H1X 2B2, Canada F. Haas e-mail: [email protected] Icipe, Duduville Campus, Kasarani, P.O. Box 30772 – 00100, Nairobi, Kenya B. I. P. Barratt e-mail: [email protected] AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Private Bag 50034, Mosgiel, New Zealand P. G. Mason e-mail: [email protected] Agriculture and Agri-Food Canada, Research Centre, K.W. Neatby Building, 960 Carling Avenue, Ottawa, F. Bigler ON K1A 0C6, Canada Agroscope Reckenholz-Ta¨nikon Research Station ART, e-mail: [email protected] Reckenholzstrasse 191, 8046 Zurich, Switzerland e-mail: [email protected] 123 M. J. W. Cock et al. would impede this very successful and environmen- Introduction tally safe pest management method based on the use of biological diversity. The CBD is required to agree Biological control (BC)—the use of an organism to a comprehensive Access and Benefit Sharing process reduce the population density of another organism— in 2010, in preparation for which the IOBC (Inter- is one of the most environmentally safe and econom- national Organization for Biological Control of ically profitable pest management methods (Cameron Noxious Animals and Plants) Global Commission et al. 1989; Clausen 1978; Cock 1985; Mason and on Biological Control and Access and Benefit Huber 2002; Neuenschwander et al. 2003; Water- Sharing has prepared this position paper. Here, we house and Sands 2001). BC can contribute to solve or first describe the practice of biological control in help to manage indigenous and alien pest problems in relation to the principles of ABS, illustrated exten- diverse natural and managed ecosystems. In BC, sively by case studies and successes obtained with parasitoids, predators, pathogens, herbivores and biological control. Next, we emphasise the very antagonists are used to reduce populations of pests, limited monetary benefits generated in biological diseases and weeds. We examine BC as practised control when compared to other fields of ABS such as over the last 120 years during which at least 165 pest the collection of germplasm for development of and weed species have been brought under permanent human drugs, chemical pesticides or crop cultivars. or temporary control. During this period, more than Subsequently, we inform the biological control 7,000 introductions of biological control agents community of good ABS practice and challenges, (BCAs) involving almost 2,700 species have been and we hope to make clear to the community made, and in addition 170 species are produced and involved in ABS under the CBD the special situation sold globally for periodical release to control more with regard to biological control. Finally, based on than 100 pest species (see ‘‘On-going practice in the non-commercial academic research model, we biological control in relation to Access and Benefit make recommendations which would facilitate the Sharing’’ of this paper). practice of collection and exchange of biological Alien species are being introduced accidentally or control agents, propose a workable framework to deliberately around the world at an increasing rate, assist policy makers and biological control practitio- driven by factors such as increasing trade, travel and ners, and urge biological control leaders in each tourism (Wittenberg and Cock 2001). A proportion of country to get involved in the discussions with their these become established and a proportion of those national ABS contact point to take their needs into established become pests or invasive in natural consideration. habitats. In addition, as most of the world’s crop plants are alien species in much of the area where Keywords Biological control Á Access they are grown, there remains great potential for pests and Benefit Sharing Á Convention on Biological from the crops’ areas of origin to be introduced into Diversity Á History Á Monetary Á Non-monetary Á new areas. Furthermore, the spread around the world Genetic resources, biological control agent of new crops such as those grown for agrifuel, will create new opportunities for pest introductions. Abbreviations In contrast, deliberate introductions and releases of ABC Augmentative biological control exotic BCAs have resulted in remarkably few prob- ABS Access and Benefit Sharing lems (Lynch et al. 2001), although there are some BC Biological control exceptions (Howarth 1991; Louda et al. 2003). Nev- BCA Biological control agent ertheless, risk analysis for non-target species is now CBC Classical biological control recommended for BC programmes (Bigler et al. 2006; CBD Convention on Biological Diversity IPPC 2005; van Lenteren et al. 2006). Initially, it was COP Conference of Parties thought that this would impede new BC programmes, IOBC International Organization for Biological but results published by Kairo et al. (2003) indicate Control of Noxious Animals and that, although some delay in application may occur, the Plants annual number of new natural enemies becoming 123 Do new Access and Benefit Sharing procedures available for use has not decreased. However, a new Nations (FAO) by the authors, in their capacity as and potentially serious threat to the use of BC has members of the IOBC Global Commission on ABS recently become apparent. Under the Convention on (Cock et al. 2009;IOBC2008). The report specifi- Biological Diversity (CBD), countries have sovereign cally addressed the use of invertebrates in BC, and rights over the genetic resources within their bound- while this bias has been maintained here, the aries and that agreements governing access to genetic principles presented are directly applicable to the resources and sharing of benefits arising from their use use of pathogens in BC. The report to FAO was should be established between the parties involved. concerned with BC principally in the context of This is known as Access and Benefit Sharing (ABS). agriculture and forestry, although BC is increasingly ABS applies to all BCAs taken from one country to commonly used to address pests of natural ecosys- another. BC practitioners will need to comply with tems (Wittenberg and Cock 2001; Case Study 4). whatever ABS regime is agreed by the tenth meeting of Furthermore, BC has been used or considered for pest the Conference of the Parties to the CBD (COP10) in management in other sectors including management 2010. Recent applications of CBD principles have of vectors of human and animal diseases, pests of already created barriers to collection and export of humans and animals, nuisance and disease-transmit- natural enemies for BC research (Case Studies 1–3; for ting flies breeding in animal dung, alien species in all case studies see Annex 1—Electronic supplemen- other production systems, e.g. water weeds affecting tary material) in several countries. If this approach is fisheries, transport, power generation, etc. (Case widely applied it will seriously compromise this very Study 5), and ecosystem services such as recycling successful and environmentally safe pest management animal dung in pasture. The same principles of ABS method. apply in all these uses. This report included a series of Unlike some other uses of genetic resources (e.g. case studies which are included here as Electronic in medicine), traditional knowledge held by individ- supplementary material available on the journal uals and communities of indigenous people (a website. These are intended to provide real examples strongly argued principle under the CBD) is not of many of the points made and to bring out issues relevant to finding and identifying potentially useful relating to ABS in the practice of ABC and CBC. natural enemies, and there is no case known where In this paper, we aim to: such knowledge would have been needed. This 1. clarify the practice of BC in relation to the should not be confused with local scientific knowl- principles of ABS, illustrating the benefits for edge about habitats, fauna and flora, which clearly countries providing BCAs, can assist in finding appropriate locations for surveys 2.
Recommended publications
  • The Use and Exchange of Biological Control Agents for Food and Agriculture
    BACKGROUND STUDY PAPER NO. 47 October 2009 E COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE THE USE AND EXCHANGE OF BIOLOGICAL CONTROL AGENTS FOR FOOD AND AGRICULTURE by Matthew J.W. Cock, Joop C. van Lenteren, Jacques Brodeur, Barbara I.P.Barratt, Franz Bigler, Karel Bolckmans, Fernando L. Cônsoli, Fabian Haas, Peter G. Mason, José Roberto P. Parra 1 This document has been prepared at the request of the Secretariat of the Commission on Genetic Resources for Food and Agriculture by the Global Commission on Biological Control and Access and Benefit-Sharing of the International Organisation for Biological Control of Noxious Animals and Plants (IOBC), as a contribution to the cross-sectoral theme, Consideration of policies and arrangements for access and benefit-sharing for genetic resources for food and agriculture , which the Commission will consider at its Twelfth Regular Session. The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO, or its Members. 1 For affiliation of the authors see Annex 2. BACKGROUND STUDY PAPER NO. 47 i TABLE OF CONTENTS ABOUT THIS PUBLICATION .................................................................................................................1 LIST OF ABBREVIATIONS ....................................................................................................................2 EXECUTIVE SUMMARY ........................................................................................................................4
    [Show full text]
  • IOBC Internet Book of Biological Control – Draft September 2005
    IOBC Internet Book of Biological Control Version 5, January 2008 IOBC Internet Book of Biological Control, version 5 Editor: J.C. van Lenteren ([email protected]) Aim: to present the history, the current state of affairs and the future of biological control in order to show that this control method is sound, safe and sustainable Contents 1. Introduction......................................................................................................................................................... 6 2. Discovery of natural enemies and a bit of entomological history ..................................................................... 10 3. Development of idea to use natural enemies for pest control and classification of types of biological control 16 4. History of biological control ............................................................................................................................. 22 5. Current situation of biological control (including region/country revieuws).................................................... 41 6. Biological control of weeds .............................................................................................................................. 51 7. Future of biological control: to be written ........................................................................................................ 61 8. Mass production, storage, shipment and release of natural enemies................................................................. 62 9. Commercial and non-commercial producers
    [Show full text]
  • Parasitoid Learning and Intraguild Predation and Their Effects on the Biological Control of Aphids
    Parasitoid Learning and Intraguild Predation and their Effects on the Biological Control of Aphids Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades eines Doktorin der Gartenbauwissenschaften - Dr. rer. hort. - genehmigte Dissertation von Chantal Jazzar (MSc) geboren am 01.01.1972 in Tripoli, Libanon 2007 Referent: Prof. Dr. Hans-Michael Poehling Korreferent: Prof. Dr. Felix Wäckers Tag der Promotion: 29.1.2007 To my everything and my everybody, to my Jesus Abstract i Abstract Optimising Parasitoid Learning as a Strategy to Enhance the Biological Control of Aphids in Protected Environment Chantal Jazzar Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) are important cosmopolitan pests of vegetables and ornamentals in greenhouses. They are responsible for direct and indirect plant damage. Through extensive feeding, M. persicae and M. euphorbiae can interfere in quite dramatic ways with the growth processes of the plant. Indirect damage is linked to their proficiency in viral transmission. Because of their hidden feeding habit on the underside of the leaf, insecticidal control of those aphids with conventional sprayers is not warranted. M. persicae and M. euphorbiae resistance to several groups of insecticides has been observed. Therefore, the avenues of research are now directed towards green and sustainable control strategies. Most popular is the use of natural enemies such as parasitoids and predators. In a permanently changing environment, it is by no means an easy task to distinguish potentially important events from negligible ones. Yet, to survive, every animal has to continuously face that challenge. The capacity to learn through experience and then modify her responses to prevailing environmental cues equips a foraging parasitoid with behavioral plasticity.
    [Show full text]
  • Arthropod Pest Management in Organic Vegetable Greenhouses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320702556 Arthropod Pest Management in Organic Vegetable Greenhouses Article · October 2017 DOI: 10.1093/jipm/pmx021 CITATIONS 0 7 authors, including: Beatriz maria Diaz Instituto Nacional de Tecnología Agropecuaria 25 PUBLICATIONS 262 CITATIONS SEE PROFILE All content following this page was uploaded by Beatriz maria Diaz on 29 October 2017. The user has requested enhancement of the downloaded file. Journal of Integrated Pest Management, (2017) 8(1): 29; 1–14 doi: 10.1093/jipm/pmx021 Recommendations Arthropod Pest Management in Organic Vegetable Greenhouses Phyllis G. Weintraub,1,7 Eitan Recht,2 Lilach Lily Mondaca,3 Ally R. Harari,4 Beatriz Maria Diaz,5 and Jude Bennison6 1Agricultural Research Organization, Gilat Research Center, D.N. Negev, 85280 Israel, 2Plant Protection and Inspection Services, POB 78 Bet Dagan, 50250, Israel, 3Sapir Academic Collage, D.N. Hof Askelon, 79165, Israel, 4Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel, 5Estación Experimental Agropecuaria Concordia, CRER, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí. Concordia 3200, Entre Rios, Argentina, 6ADAS Boxworth, Cambridge, CB23 4NN, United Kingdom, and 7Corresponding author, e-mail: [email protected] Subject Editors: Larry Godfrey (deceased 18 April 2017) and Melissa Willrich Siebert Received 10 January 2017; Editorial decision 19 July 2017 Abstract We present a comprehensive discussion of pest management in organic greenhouse vegetable production. Greenhouse structures and production practices vary greatly in different regions of the world. In northern Europe and North America, they are closed heated structures because of the long periods of cold weather and biological control is highly developed.
    [Show full text]
  • XVIII. International Plant Protection Congress
    XVIII. International Plant Protection Congress BER LIN 2 0 1 5 24–27 August 2015 • Berlin (Germany) PROGRAMME © fotolia.com/Beboy/St. Körber/drob/S. Mathews/T. Nyshko/jola B. www.ippc2015.de HELPING FARMERS GROW CropLife International and its global network are the voice and leading advocates for the plant science industry. Plant science provides modern agricultural tools and technologies which help farmers: Look after Feed a growing Progress rural OUR PLANET POPULATION COMMUNITIES The world needs farmers, and farmers need plant science. CropLife International is proud to be at the heart of #HelpingFarmersGrow. www.croplife.org Table of Contents Organisati on and Imprint .................................................................................... 4 Programme Overview Monday, 24 August 2015 .............................................................. 5 Tuesday, 25 August 2015 .............................................................. 6 HELPING FARMERS GROW Wednesday, 26 August 2015 ........................................................ 8 Thursday, 27 August 2015 ............................................................ 10 CropLife International and its global network are the voice Friday, 28 August 2015 ................................................................. 12 and leading advocates for the plant science industry. Congress Committ ee Members .......................................................................... 14 Welcome Note Hosti ng Organisati ons • DPG, JKI and IVA ................................
    [Show full text]
  • Program Book
    SEPTEMBER 16-20, 2019 MONTRÉAL, QUÉBEC, CANADA PROGRAM BOOK Share your experience with us! @Aphidophaga14 #aphidophaga14 Aphidophaga XIV, Montreal 2019, Program book | 1 WELCOME MESSAGE Dear colleagues, It is a great pleasure for us to receive all of you in Montreal for the 14th Symposium on “Ecology of Aphidophaga”. It is our turn to organize the symposium, twenty years after the Bromont venue for Aphidophaga 7 (1999). Welcome at UQAM. Welcome in Montreal, in Quebec, and Canada! Since it is only the second time the symposium is held outside Europe, we decided to invite nearctical and neotropical research scientists (Americans) for plenary conferences. We would like to acknowledge the scientific committee of the group for selecting our institution/country for hosting the symposium, during the previous Aphidophaga in Germany. We would like also to acknowledge all the private sponsors that provide financial support (see later). We also received support from the Ministry of Agriculture of Quebec (MAPAQ) and from the entomological societies of Quebec and Canada. We will have about 80 participants from all over the world. With 42 oral communication and 14 posters, attesting the vitality of the research on Aphidophagous natural enemies. Topics covered during the symposium include taxonomy, biology and behaviour of aphidophagous natural enemies, aphid control, non-target effects of agricultural practices on predators and parasitoids, ecological interactions and a session on invasive aphidophagous natural enemies. The world is rapidly changing. Most aphidophagous guilds of the world are now facing new challenges generated by the global climatic change and by invasion by foreign aphidophagous species. Furthermore, in the ultimate years, several studies pointed toward a drastic reduction of insect biomass in several areas.
    [Show full text]
  • Parasitization of the Sugarcane Aphid, Melanaphis Sacchari, by Commercially Available Aphid Parasitoids
    Parasitization of the sugarcane aphid, Melanaphis sacchari, by commercially available aphid parasitoids Nathan H. Mercer, Ricardo T. Bessin & John J. Obrycki BioControl Journal of the International Organization for Biological Control ISSN 1386-6141 BioControl DOI 10.1007/s10526-020-10051-w 1 23 Your article is protected by copyright and all rights are held exclusively by International Organization for Biological Control (IOBC). This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy BioControl https://doi.org/10.1007/s10526-020-10051-w (0123456789().,-volV)(0123456789().,-volV) Parasitization of the sugarcane aphid, Melanaphis sacchari, by commercially available aphid parasitoids Nathan H. Mercer . Ricardo T. Bessin . John J. Obrycki Received: 7 May 2020 / Accepted: 11 September 2020 Ó International Organization for Biological Control (IOBC) 2020 Abstract Identification of natural enemies of novel (purchased adults) and the F1 generation (reared from pests is important for the development of effective M. sacchari). Host suitability was evaluated by integrated pest management. Commercially available transferring M.
    [Show full text]
  • Host Species Suitability and Instar Preference of Aphidius Ervi and Aphelinus Abdominalis
    Entomologia Generalis, Vol. 36 (2017), Issue 4, 347–367 Article Published in print October 2017 Host species suitability and instar preference of Aphidius ervi and Aphelinus abdominalis M.C. Velasco-Hernández1, N. Desneux2, M.M. Ramírez-Martínez3, L. Cicero4 and R. Ramirez-Romero1* 1 Biological Control Laboratory, Department of Agricultural Production, CUCBA, University of Guadalajara, Zapopan, Jalisco, México 2 French National Institute for Agricultural Research (INRA), UMR1355, 400 Route des Chappes, 06903, Sophia-Antipolis, France 3 Department of Ecology and Natural Resources, CUCSUR, University of Guadalajara, Autlán de Navarro, Jalisco, México 4 Forest Health and Agriculture Program, C.E. Mocochá – CIRSE, National Institute for Research in Forestry, Agriculture, and Livestock (INIFAP), Mocochá 97454, Yucatán, México * Corresponding author: [email protected] With 3 figures and 1 table Abstract: Parasitism rates and parasitoid development can be influenced by the species and developmental stage of the host, both of these factors can influence parasitoid performance and fitness. In this study, parasitism rates and developmental parameters were assessed for two widely distributed and commercially available species of aphid parasitoid: Aphidius ervi (Hymenoptera: Braconidae) and Aphelinus abdominalis (Hymenoptera: Aphelinidae). In a first bioassay, parasitism rates and parasitoid development were investigated in different host spe- cies. The wasp A. ervi was tested on Macrosiphum euphorbiae, Rhopalosiphum padi, and Myzus persicae (Hemiptera: Aphididae) and A. abdominalis was tested on M. persicae, R. padi, and Rhopalosiphum maidis (Hemiptera: Aphididae). The results indicated that A. ervi had a greater percentage of emergence, higher percentage of parasitized aphids, longer developmen- tal time, and higher proportion of females in M.
    [Show full text]
  • CURRICULUM VITAE Gadi V
    CURRICULUM VITAE Gadi V. P. Reddy Research Leader USDA-ARS-Southern Insect Management Research Unit 141 Experiment Station Road, P.O. Box 346 Stoneville, Mississippi 38776, USA Phone (662) 686-5231 (work), (662) 820-8664 (cell) E-mail: [email protected] Personal History and Professional Experience Educational background Postdoctoral Fellow (1996), IACR-Rothamsted, Harpenden, United Kingdom. Dissertation title: Integration of sex pheromones and entomopathogenic fungi Zoophthora radicans for the control of diamondback moth, Plutella xylostella. Ph.D. Agricultural Entomology (1991), Department of Entomology, University of Agricultural Sciences, Bangalore, India. Dissertation title: Studies with sex pheromones in the management of diamondback moth, Plutella xylostella. M.S. Agricultural Entomology (1985), Department of Entomology, Annamalai University, Tamilnadu, India. Thesis title: Biology, damage potential and chemical control of the mite Tetranychus ludeni on four varieties of eggplant. B.S. Agriculture (1982), College of Agriculture, Meerut University, Meerut, India. Citizenship United States of America Professional and Leadership Development Training: Graduate, Leadership for the 21st Century (LEAD21) Professional Development Program (University of Georgia Fanning Institute), Class X; 2014–15. LEAD21 is intended to meet the future needs for leadership development of team leaders, research station and center directors, district and regional directors, department heads and chairs, and others in land grant universities colleges of agricultural, environmental, and human sciences and USDA/NIFA. The primary purpose for LEAD21 is to develop leaders in land grant institutions and their strategic partners who link research, academics, and extension in order to lead more effectively in an increasingly complex environment, either in their current position or as they aspire to other positions.
    [Show full text]
  • Interactions Among Natural Enemies and Consequences for Biological Control of Arthropods
    Intra- and interspecific interactions among natural enemies and consequences for biological control of arthropods Habilitationsschrift von Dr. rer. nat. Rainer Meyhöfer Gottfried Wilhelm Leibniz Universität Hannover September 2019 Contents 1 General introduction 3 2 Effects of intraguild predation on parasitoid survival 10 (based on Meyhöfer R., Hindayana D., 2000, Entomologia Experimentalis et Applicata, 97, 115-122) 3 Intraguild predation by aphidophagous predators on parasitised aphids: 11 the use of multiple video cameras (based on Meyhöfer R., 2001, Entomologia Experimentalis et Applicata, 100, 77-87) 4 Intraguild predation on the aphid parasitoid Lysiphlebus fabarum: 12 Mortality risks and behavioural decisions made under the risk of predation. (based on Meyhöfer R., Klug T., 2002, Biological Control 25, 239-248) 5 Impact of intraguild predators on behavioural decisions made by foraging 13 parasitoids (based on Meyhöfer R., Klug T., unpublished) 6 Impact of aphid density on parasitoid and predator intraguild predation 34 (based on Meyhöfer R., Klug T., unpublished) 7 Two protagonists on aphidophagous patches: effects of learning and 48 intraguild predation (based on Jazzar C., Meyhöfer R., Ebssa L., Poehling H.-M., 2007, Entomologia Experimentalis et Applicata, 127, 88-99) 8 Adding ‘‘personality’’ to biocontrol: characterization and suitability of 49 microsatellites for sibship reconstruction of Diaeretiella rapae (based on Eisele I., Meyhöfer R., 2015, BioControl, 60, 189-197) 9 Intraguild Predation among the Hoverfly Episyrphus balteatus de Geer 50 (Diptera: Syrphidae) and other aphidophagous predators (based on Hindayana D., Meyhöfer R., Dagmar Scholz D., Poehling H.-M., 2001, Biological Control 20, 236-246) 10 Propensity towards cannibalism among Hypoaspis aculeifer and 51 H.
    [Show full text]
  • Natural Enemies, Pests They Control, and Scientific Names
    Natural Enemies, Pests They Control, and Scientific Names Arthropod and Nematode Natural Enemies Can Found If I want to conserve (whose scientific name is…) that helps me I should look for these names on the I buy in NY? this beneficial control… compatibility apps: them? arthropod… yes yes aphid midges Aphidoletes aphidimyza aphids Aphidoletes aphidimyza some yes beetles that are Coleoptera is the scientific name many insect pests Coleoptera is a beneficial insect listed predators (for of the insect group that includes on at least one compatibility app. example, rove beetles, all beetles. The following However, some coleoptera are pests. ground beetles, and families are generally predatory: And, since this is such a broad group, others) Coccinellidae (lady beetles), the compatibility information provided Carabidae (ground beetles), may not be correct for all beneficial Staphylinidae (rove beetles), beetle species. Cantharidae (soldier beetles), Melyridae (flower beetles) yes hover flies, syrphid Syrphus spp, and many, many aphids Syrphus spp.; Syrphus corollae; flies others Episyrphus balteatus some yes lacewings Chrysoperla spp. and some aphids, insect eggs, Chrysopa carnea = Chrysoperla carnea; others small larvae Chrysoperla spp. some yes lady beetles Coccinellidae aphids, mites, small Coccinelidae, Coccinella 7-punctata, insects, insect eggs Hippodamia convergens some yes minute pirate bug Orius insidiosus insect eggs, small Orius laevigatus may be a reasonable caterpillars, thrips, proxy; Orius spp.; Orius insidiosus mites, aphids yes yes nematodes Steinernema spp., thrips, fungus Nematodes (note that this is a very Heterorhabditis spp. gnats, shore flies, broad category and it’s possible some grubs there are differences among species), Heterorhabditis bacteriophora, Steinernema, Steinernema feltiae, Steinernema carpocapsae Can Found If I want to conserve (whose scientific name is…) that helps me I should look for these names on the I buy in NY? this beneficial control… compatibility apps: them? arthropod… some yes parasitoid wasp Aphidius spp.
    [Show full text]
  • Bottom-Up Effects of Abiotic Factors on Aphid Parasitoid Specialization Le Thu Ha Nguyen
    Bottom-up effects of abiotic factors on aphid parasitoid specialization Le Thu Ha Nguyen To cite this version: Le Thu Ha Nguyen. Bottom-up effects of abiotic factors on aphid parasitoid specialization. Parasitol- ogy. Université Côte d’Azur, 2017. English. NNT : 2017AZUR4132. tel-01820622 HAL Id: tel-01820622 https://tel.archives-ouvertes.fr/tel-01820622 Submitted on 22 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École doctorale Sciences de la Vie et de la Santé Unité de recherche : UMR Inra 1355, CNRS 7254, UNS THESE DE DOCTORAT Présentée en vue de l’obtention du Grade de docteur en Sciences de la Vie et de la Santé UNIVERSITE CÔTE D’AZUR par Le-Thu-Ha NGUYEN Bottom-up effects of abiotic factors on aphid parasitoid specialization Effet bottom-up du stress hydrique sur la gamme d’hôtes des parasitoïdes de pucerons Dirigée par Eric Wajnberg, Directeur de Recherche, INRA Sophia Antipolis et codirigée par Nicolas Desneux, Directeur de Recherche, INRA Sophia Antipolis Soutenue le 20 Décembre 2017 devant le jury composé de: Yvan Rahbé Directeur de recherche, INRA Lyon Rapporteur François Verheggen Professeur, Univ.
    [Show full text]