Portland Cement Is the Most Common Type of Cement in General Use Around the World, Used As a Basic Ingredient of Concrete, Morta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calcareous Cement: Their Nature and Uses, with Some
•a^^-^ko 1v- MMX. i-" J, < ,v.- ^^fe* jir^MVin ?2f /" CALCAREOUS CEMENTS THEIR NATURE AND USES. STANDARD WORKS FOR ENGINEERS. By W. J. MACQUORN RANKINE, C.E., LL.D., F.R.S., Late Keg. Prof, of Civil Engineering in tlie University of Glasgow. Ill Crown 8vo, Cloth. Thoroughly Revised by W. J. Miliab, C.E., Sec. to the Inst, of Engineers and Shipbuilders in Scotland. I.—APPLIED MECHANICS. Focrteenth Editio;?. 12s. 6d. IL—CIVIL ENGINEERING. Ninetee.nth Edition. IBs. Ill —THE STEAM ENGINE AND OTHER PRIME MOVERS. Thirtebxth Editioh. 12s. 6d. IV.—MACHINERY AND MILLWORK. Sevk.vth Edition. 12s. 6d. v.—USEFUL RULES FOR ENGINEERS, ARCHITECTS, BUILDERS, ELECTRICIANS, &c. Seventh Edition-. 10s. Cd. VI.—A MECHANICAL TEXT-BOOK: A Simple Introduction to the Study of Mechanics. Fourth Edition. 9s. VII.—PROFESSOR RANKINE'S MISCELLANEOUS SCIENTIFIC PAPERS. With Memoir by Professor Tait, M.A., and Fine Portrait on Steel. Royal 8vo, Handsome Cloth. 31s. 6d. HYDRAULIC POWER AND HYDRAULIC MACHINERY. For the Use of Practical Engineers and Students. By Henry Robinson, M.Inst.C.E., F.G.S., Professor of Civil Engineering, King's College, London. SECOKD EDITION. With 69 Lithographic Plates. Large 8vo. 34s. " A book of 6BEAT professional usefulness. "-Iron. MEASUREMENT CONVERSIONS (Eng-lish and Fpench). 43 Graphic TaVtles or Diagrams. Showing at a glance the Mutual Convei-sion of Measurements m Different Units of Lengths, Areas, Volumes, Weights, Stresses, Densities, Quantities of Work, Horse Powers, temperatures, &c. For the Use of Engineers, Surveyors, Architects, and Contractors. By R. H. Smith, A.M.I.C.E., M.I.M.E., M.I.E.E., &c. -
Archaeology South-East ASE
Archaeology South-East ASE LAND AT CRAYLANDS LANE/LONDON ROAD LITTLE SWANSCOMBE, KENT (Centred at NGR 559786 174912) HISTORIC BUILDING RECORD (HISTORIC ENGLAND LEVEL 1 & 3) Commissioned by Swanscombe Developments LLP LAND AT CRAYLANDS LANE/LONDON ROAD, LITTLE SWANSCOMBE, KENT HISTORIC BUILDINGS RECORD (HISTORIC ENGLAND LEVEL 3) NGR: 559786 174912 Commissioned by Swanscombe Developments LLP Site Code: CLI 16 Project No. 160242 Report No. 2016180 OASIS ID: archaeol6-251290 Assistant Prepared by: Hannah Green BA, MA Archaeologist Reviewed and Amy Williamson BA Project Manager approved by: Date of Issue: May 2016 Revision: 2 Archaeology South-East Units 1 & 2 2 Chapel Place Portslade East Sussex BN41 1DR Archaeology South-East Land At Craylands Lane / London Road, Little Swanscombe, Kent Historic Buildings Record SUMMARY In April 2016 Archaeology South-East (a division of the Centre for Applied Archaeology, UCL) carried out a programme of historic building recording of the buildings and tramway tunnels adjacent to Craylands Lane and London Road, Little Swanscombe, Kent, DA10 0LP, prior to the proposed redevelopment of the site for residential use. This recording exercise forms a detailed survey of the extant tramway tunnels at Historic England Level 3 (English Heritage 2006a). The wider site was subject to a Level 1 record, for contextual purposes. A desk-based assessment has previously been produced for the site by Archaeology South-East (ASE 2005). The site was established as a quarry in the early 20th century, forming part of the Swanscombe Works. The Swanscombe Works was one of the largest cement producers throughout the 20th century, and at its closure in 1990 was the oldest cement producer in the world. -
How Limestone, Rocks, and Volcanic Ash Built the Modern World
26/11/2017 The Rock Solid History of Concrete ALEXANDERVANLOON/WIKIMEDIA The Rock Solid History of Concrete By Jonathan Schifman Oct 12, 2017 1.5k HOW LIMESTONE, ROCKS, AND VOLCANIC ASH BUILT THE MODERN WORLD. The story of concrete is so ancient that we don't even know when and where it begins. It is a story of discovery, experimentation, and mystery. Emperors and kings became legends for erecting great concrete structures, some of which are still a mystery to engineers today. Many of history's most skilled architects found inspiration in slabs of the gray building material. Common bricklayers advanced the technology, and a con man played a crucial role in the development of concrete recipes. Today, the world is literally filled with concrete, from roads and sidewalks to bridges and dams. The word itself has become a synonym for something that is real and tangible. Press http://www.popularmechanics.com/technology/infrastructure/a28502/rock-solid-history-of-concrete/ 1/22 26/11/2017 The Rock Solid History of Concrete your handprints into the sidewalk and sign your name to history. This is the story of concrete. The First Cement—and Maybe Concrete? Let's get this out of the way right here: cement and concrete are not the same thing. Cement, a mixture of powdered limestone and clay, is an ingredient in concrete along with water, sand, and gravel. Concrete's invention was made possible by the development of cement, and to trace the history of cement, we must trace the use of its components. ADVERTISEMENT - CONTINUE READING BELOW The earliest known use of limestone in a structure has been dated back about 12,000 years. -
Portland Cement
International Conference on Transport, Civil, Architecture and Environment engineering (ICTCAEE'2012) December 26-27, 2012 Dubai (UAE) Portland Cement Alireza Baghchesaraei1 , Omid Reza Baghchesaraei2 kiln is fired by coal, the ash of the coal acts as a secondary raw Abstract— portland cement is the most common type of cement material. in general usage in many parts of the world, as it is a basic ingredient Portland cement was developed from cements (or correctly of concrete, mortar, stucco and most non-specialty grout. There are hydraulic limes) made in Britain in the early part of the different standards for classification of Portland cement. The two nineteenth century, and its name is derived from its similarity major standards are the ASTM C150 used primarily in the U.S. and to Portland stone, a type of building stone that was quarried on European EN-197. EN 197 cement types CEM I, II, III, IV, and V do the Isle of Portland in Dorset, England. Joseph Aspdin, a not correspond to the similarly-named cement types in ASTM C 150. Portland cement manufacture can cause environmental impacts at all British bricklayer, in 1824 was granted a patent for a process stages of the process. When cement is mixed with water a highly of making a cement which he called Portland cement. His alkaline solution (pH ~13) is produced by the dissolution of calcium, cement was an artificial hydraulic lime similar in properties to sodium and potassium hydroxides. the material known as "Roman Cement" (patented in 1796 by James Parker) and his process was similar to that patented in Keywords—New,Material,Portland Cement 1822 and used since 1811 by James Frost who called his cement "British Cement". -
Concrete Story-Telling (By New-Territories)
Concrete Story-Telling (by New-Territories) 1 ) Concrete in general Concrete is a material used in building construction, consisting of a hard, chemically inert particulate substance, known as an aggregate (usually made from different types of sand and gravel), that is bonded together by cement and water. The Assyrians and Babylonians used clay as the bonding substance or cement*1. The Egyptians used lime and gypsum cement. In 1756, British engineer, John Smeaton made the first modern concrete (hydraulic cement) by adding pebbles as a coarse aggregate and mixing powered brick into the cement. In 1824, English inventor, Joseph Aspdin invented Portland Cement, which has remained the dominant cement used in concrete production. Joseph Aspdin created the first true artificial cement by burning ground limestone and clay together. The burning process changed the chemical properties of the materials and Joseph Aspdin created a stronger cement than what using plain crushed limestone would produce. *1 cement : the word “cement” traces to the Romans, “caementicium”= masonry made from crushed rock with burnt lime as bindern referred to as “cementum,” “cimentum,” “cäment” and cement. The other major part of concrete besides the cement is the aggregate. Aggregates include sand, crushed stone, gravel, slag, ashes, burned shale, and burned clay. Fine aggregate (fine refers to the size of aggregate) is used in making concrete slabs and smooth surfaces. Coarse aggregate is used for massive structures or sections of cement. Concrete that includes embedded metal (usually steel) is called reinforced concrete or ferroconcrete. Iron reinforced concrete was invented (1849) by Joseph Monier, who received a patent in 1867. -
I on the Historv Oi Portland After 1 150 Years
Christopher Hall De~artmentof Bulldlnq I On the Historv oi Portland after University of Manchester . Institute of Science and Technology Manchester. England M60 1QD 1 150 Years Cementitious building materials have a long history, and began to build the third Eddystone lighthouse off the the date 1824, traditionally taken as the origin of portland southwest coast of Britain (4),apparently a labor of Hercu- cement, is in fact only the date of a patent (I) granted to les in the absence of a good hydraulic cement. Smeaton, ap- Joseoh Asodin (1778-1855) of Leeds. Eneland. who mav preciating the need to obtain the best component materials not at that'time have made portland cemeit at all. ~oday; fur the lime-pozzolana cement he intended to use, exam- cement is the successor to a line of materials with a historv ined a number of mixtures, and found that the quality de- reaching hack to the ancient world; it has a chemistry o? pended on the limestone (5). He made the important dis- perhaps unsurpassed complexity amongst major inorganic covery that the best mortars were made from limes con- industrial materials and is still the subject of intense study. taining clay impurities. We recognize now that the alumi- At some ~ointin the second quarter of the 19th century, nosilicate clay minerals are closely related to those in the about 150 ago, the cement as we know it now was fir& pozzolana, with this essential difference: that they are produced. burned intimately with the lime in the calcining process. It The very simplest of the mineral cements are those based soon emerged that certain heavily clay-bearing limestones on gypsum, hydrated calcium sulfate. -
Background Facts and Issues Concerning Cement and Cement Data
Background Facts and Issues Concerning Cement and Cement Data By Hendrik G. van Oss Open-File Report 2005-1152 U.S. Department of the Interior U.S. Geological Survey ii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. iii Preface This report is divided into two main parts. Part 1 first serves as a general overview or primer on hydraulic (chiefly portland) cement and, to some degree, concrete. Part 2 describes the monthly and annual U.S. Geological Survey (USGS) cement industry canvasses in general terms of their coverage and some of the issues regarding the collection and interpretation of the data therein. The report provides background detail that has not been possible to include in the USGS annual and monthly reports on cement. These periodic publications, however, should be referred to for detailed current data on U.S. production and sales of cement. It is anticipated that the contents of this report may be updated and/or supplemented from time to time. -
Technological Changes in the Cement Manufacturing Industry. By- Wesson, Carl E
REPOR TRESUMES ED OM 582 VT 003 669 TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY. BY- WESSON, CARL E. CALIFORNIA STATE DEPT. OF EMPLOYMENT, SACRAMENTO BUREAU OF EMPLOYMENT SECURITY, WASHINGTON, D.C. PUB DATE OCT 66 EDRS PRICE MF-$0.25 HC-$1.32 31P. DESCRIPTORS- *TECHNOLOGICAL ADVANCEMENT, *AUTOMATION, *CEMENT INDUSTRY, JOB ANALYSIS, COMPUTERS, EMPLOYMENT TRENDS, EMPLOYMENT OPPORTUNITIES, *OCCUPATIONAL INFORMATION, THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT MANUFACTURERS OF CEMENT, LIKE THOSE IN SO MANY OTHER INDUSTRIES, ARE AUTOMATING THEIR MANUFACTURING PROCESSES. THE CEMENT INDUSTRY IS GOING THROUGH ONE OF THE GREATEST REMODERNIZATION ERAS THAT COULD BE EXPERIENCED BY ANY INDUSTRY. INFORMATION IS PROVIDED ON THE OCCUPATIONAL STRUCTURE OF THE CEMENT PLANT BEFORE AND AFTER INTRODUCTION OF A COMPUTER CONTROL SYSTEM, THE JOSS ELIMINATED AND NEW JOBS CREATED, THE KIND OF WORK THE NEW JOBS ENTAIL, THE KINDS OF KNOWLEDGE AND SKILLS THE NEW JOBS DEMAND, AND THE SOURCE OF WORKERS FOR FILLING THE NEW JOBS. HISTORICAL MATERIALS, *PROCESS FLOWCHARTS, AND OTHER PERTINENT INFORMATION ARE PRESENTED FOR EACH PROCESS IN THE AUTOMATED PLANT DESCRIBED. CHANGEOVER TO AN AUTOMATED SYSTEM IN THE ABC CEMENT COMPANY INDICATED A DECREASE IN EMPLOYMENT OF ABOUT 13 PERCENT. AVERAGE PRODUCTION WAS INCREASED. (PS) United States Employment Service October 1966 Technological Changes in the Cement Manufacturing Industry Department of Employment State of California U. -
Chairman's Report
Newsletter No. 101 – May 2021 Free to members Chairman’s Report In this Issue: Bob Flanagan John Bazley Good news this month is that restoration of the monu- White (1784- ment to dramatist and judge Sir Thomas Noon Talfourd 1867): Solid (1795–1854; grave 1,452, square 34) has been completed save for work on the brickwork that will be finished once Foundations (if) the weather improves. The elegant cross atop the Page 5 monument had been demolished and the vault damaged The Mabey by a falling tree (see Newsletter 87, September 2016). Sculptors : An Thanks to the Old Reding- Immense ensians Association, the Dickens Fellowship, Kev- Contribution in Crook & Jacqueline Page 10 Landy (Lambeth) and to monumental masons Row- The Curlings, land Brothers. They have The Hunters, as always done an ex- and the Dunns cellent job! Page 14 Other news is that the con- Tidying-up the tract for the roadways and drainage package of the Cemetery NHLF grant has been aw- Page 15 arded to idverde UK Ltd. However, seemingly work Forthcoming cannot start until May at Events Page 15 the earliest. Inevitably this work will be disruptive, A Bit of Mystery but a one-way traffic sys- Page 16 tem is being planned that should allow unimpeded access to all parts of the cemetery. The restored Talfourd cross Planning for the new entrances on Robson Road and at Hubbard Road continues. At Hubbard Road it is apparent that one of the original gateposts has been hit recently by a high-sided vehicle. The damage will be repaired as part of the works to enable this entrance to be reopened. -
Roman Cement – Key Historic Material to Cover the Exteriors of Buildings
This paper was published in “RILEM Workshop Repair Mortars for Historic Masonry”, ed. C. Groot, RILEM Publications SARL, 2009, 2-11 The original publication is available at the publisher’s web site: http://www.rilem.net/ The article is copyrighted by RILEM. Readers must contact RILEM for permission to reprint or use the material in any form. ROMAN CEMENT – KEY HISTORIC MATERIAL TO COVER THE EXTERIORS OF BUILDINGS G. Adamski1, L. Bratasz1, R. Kozlowski1, N. Mayr2, D. Mucha1, , M. Stilhammerova3 and J. Weber2 1Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Poland 2Institute of Conservation Sciences and Restoration Technology, University of Applied Arts Vienna, Austria 3The Monuments Board of Slovak Republic, Slovakia Abstract Roman cements were key materials for the economic and easy manufacture of the stuccoes for the exterior of buildings during the nineteenth and early twentieth centuries. The survey of historic buildings across Europe has revealed a considerable diversity of the historic application techniques from architectural castings, to in-situ applied renders and hand-run elements. A wide range of aggregate contents between 20 –50% was identified. The microstructure of the Roman cement pastes showed a very fine ‘groundmass’ encapsulating a significant amount of partially hydrated remnants of original cements. Historic Roman cement mortars generally combine high porosity with high mechanical strength and excellent durability. Two categories of pores have been distinguished: fine pores characteristic of well-hydrated mature Roman cement matrix and large pores characteristic of mortars strongly exposed to air. The current ROCEM project is bringing back Roman cements to the market. A broad research on the compatibility between the historic stuccoes and the new repair mortars is described. -
The Manufacture and Testing of Portland Cement.”’ by Major-General HENRYYOUNG DARRACOTT SCOTT, C.B., R.E., F.R.S., Assoc
Proceedings.] SCOTT AND REDGRAVE ON PORTLAXDCEMENT. 67 11 May, 1880. WILLIAM HEKRY BARLOW, F.R.S., President, in the Chair. (Paper No. 1649.) “The Manufacture and Testing of Portland Cement.”’ By Major-General HENRYYOUNG DARRACOTT SCOTT, C.B., R.E., F.R.S., Assoc. Inst. C.E., and G1LBER.r RICHARDBEIIGKAVE, Assoc. Inst. C.E. NOTWITHSTANDINGthat much has been written concerning Portland cement, the history of its early manufacture is involved in con- siderableobscurity. Theinvestigations of Smeaton andPasley in England, of Fuchsand John in Germany, and of Vicat in France, into the nature and causes of the hydraulicity of limes, are well known ; but the discovery of the exact conditions of the manufacture of the cement now recognised as Portland seems to have been only gradually arrive& at. The first mention of acement named, in consequence of its fancied resemblance to Portland stone, “ Portland cement,” occurs inthe specification of a patent, KO. 5,022, grantedto Joseph Aspdin,a bricklayer of Leeds, dated October 21st, 1824. The cement originally made by Aspdin does not, however, appear tu have been a true Portland, nor was his process identical with that which has since been generally adopted in the production of this material. He used, in fact, a double system of calcination, as he employed a hard limestone in lieu of a soft and friable chalk. He specified, first burning t.he limestone to lime, so as to obtain a readily pulverised quicklime ; this lime he mixed with a suitable, or, as he terms it, “a specific quantity, of argillaceous earth or clay,” and then he directed that the mixture should be calcined “in a furnacesimilar to a limekiln, till the carbonic acid is entirely expelled.” This process of double calcination is perhaps, 1 The diacnssion upon this Paper wa8 taken together with that upon the two followiug ones. -
Victorian Stucco
Victorian Stucco Editor: Miles Lewis Victorian Succo Victorian Stucco Editor: Miles Lewis Published by the Heritage Council of Victoria, Melbourne References throughout to the heritage website or Heritage Victoria website refer to: www.heritage.vic.gov.au which includes the searchable Victorian Heritage Database. Published by the Heritage Council of Victoria, Melbourne, February 2011. Also published at www.heritage.vic.gov.au © State of Victoria, Heritage Council of Victoria 2011. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. ISBN 978-1-921607-97-4 (online) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Heritage Victoria/Heritage Council of Victoria, Level 4, 55 Collins St, Melbourne 3000 GPO Box 2392, Melbourne, Victoria 3001 Phone: (03) 8644 8800 Fax: (03) 8644 8811 Email: [email protected] Web: www.heritage.vic.gov.au Donald Ellsmore: further editing and coordination Sue Balderstone: Index Cover images: From left ( back cover) to right Photographs by Donald Ellsmore: Detail of weathered stucco on St Patrick’s Hall, Ballarat Detail of incised decoration on house Gore Street, Fitzroy Detail on facade of Smith