SCI Lecture Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calcareous Cement: Their Nature and Uses, with Some
•a^^-^ko 1v- MMX. i-" J, < ,v.- ^^fe* jir^MVin ?2f /" CALCAREOUS CEMENTS THEIR NATURE AND USES. STANDARD WORKS FOR ENGINEERS. By W. J. MACQUORN RANKINE, C.E., LL.D., F.R.S., Late Keg. Prof, of Civil Engineering in tlie University of Glasgow. Ill Crown 8vo, Cloth. Thoroughly Revised by W. J. Miliab, C.E., Sec. to the Inst, of Engineers and Shipbuilders in Scotland. I.—APPLIED MECHANICS. Focrteenth Editio;?. 12s. 6d. IL—CIVIL ENGINEERING. Ninetee.nth Edition. IBs. Ill —THE STEAM ENGINE AND OTHER PRIME MOVERS. Thirtebxth Editioh. 12s. 6d. IV.—MACHINERY AND MILLWORK. Sevk.vth Edition. 12s. 6d. v.—USEFUL RULES FOR ENGINEERS, ARCHITECTS, BUILDERS, ELECTRICIANS, &c. Seventh Edition-. 10s. Cd. VI.—A MECHANICAL TEXT-BOOK: A Simple Introduction to the Study of Mechanics. Fourth Edition. 9s. VII.—PROFESSOR RANKINE'S MISCELLANEOUS SCIENTIFIC PAPERS. With Memoir by Professor Tait, M.A., and Fine Portrait on Steel. Royal 8vo, Handsome Cloth. 31s. 6d. HYDRAULIC POWER AND HYDRAULIC MACHINERY. For the Use of Practical Engineers and Students. By Henry Robinson, M.Inst.C.E., F.G.S., Professor of Civil Engineering, King's College, London. SECOKD EDITION. With 69 Lithographic Plates. Large 8vo. 34s. " A book of 6BEAT professional usefulness. "-Iron. MEASUREMENT CONVERSIONS (Eng-lish and Fpench). 43 Graphic TaVtles or Diagrams. Showing at a glance the Mutual Convei-sion of Measurements m Different Units of Lengths, Areas, Volumes, Weights, Stresses, Densities, Quantities of Work, Horse Powers, temperatures, &c. For the Use of Engineers, Surveyors, Architects, and Contractors. By R. H. Smith, A.M.I.C.E., M.I.M.E., M.I.E.E., &c. -
Archaeology South-East ASE
Archaeology South-East ASE LAND AT CRAYLANDS LANE/LONDON ROAD LITTLE SWANSCOMBE, KENT (Centred at NGR 559786 174912) HISTORIC BUILDING RECORD (HISTORIC ENGLAND LEVEL 1 & 3) Commissioned by Swanscombe Developments LLP LAND AT CRAYLANDS LANE/LONDON ROAD, LITTLE SWANSCOMBE, KENT HISTORIC BUILDINGS RECORD (HISTORIC ENGLAND LEVEL 3) NGR: 559786 174912 Commissioned by Swanscombe Developments LLP Site Code: CLI 16 Project No. 160242 Report No. 2016180 OASIS ID: archaeol6-251290 Assistant Prepared by: Hannah Green BA, MA Archaeologist Reviewed and Amy Williamson BA Project Manager approved by: Date of Issue: May 2016 Revision: 2 Archaeology South-East Units 1 & 2 2 Chapel Place Portslade East Sussex BN41 1DR Archaeology South-East Land At Craylands Lane / London Road, Little Swanscombe, Kent Historic Buildings Record SUMMARY In April 2016 Archaeology South-East (a division of the Centre for Applied Archaeology, UCL) carried out a programme of historic building recording of the buildings and tramway tunnels adjacent to Craylands Lane and London Road, Little Swanscombe, Kent, DA10 0LP, prior to the proposed redevelopment of the site for residential use. This recording exercise forms a detailed survey of the extant tramway tunnels at Historic England Level 3 (English Heritage 2006a). The wider site was subject to a Level 1 record, for contextual purposes. A desk-based assessment has previously been produced for the site by Archaeology South-East (ASE 2005). The site was established as a quarry in the early 20th century, forming part of the Swanscombe Works. The Swanscombe Works was one of the largest cement producers throughout the 20th century, and at its closure in 1990 was the oldest cement producer in the world. -
Cavendish the Experimental Life
Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory. -
How Limestone, Rocks, and Volcanic Ash Built the Modern World
26/11/2017 The Rock Solid History of Concrete ALEXANDERVANLOON/WIKIMEDIA The Rock Solid History of Concrete By Jonathan Schifman Oct 12, 2017 1.5k HOW LIMESTONE, ROCKS, AND VOLCANIC ASH BUILT THE MODERN WORLD. The story of concrete is so ancient that we don't even know when and where it begins. It is a story of discovery, experimentation, and mystery. Emperors and kings became legends for erecting great concrete structures, some of which are still a mystery to engineers today. Many of history's most skilled architects found inspiration in slabs of the gray building material. Common bricklayers advanced the technology, and a con man played a crucial role in the development of concrete recipes. Today, the world is literally filled with concrete, from roads and sidewalks to bridges and dams. The word itself has become a synonym for something that is real and tangible. Press http://www.popularmechanics.com/technology/infrastructure/a28502/rock-solid-history-of-concrete/ 1/22 26/11/2017 The Rock Solid History of Concrete your handprints into the sidewalk and sign your name to history. This is the story of concrete. The First Cement—and Maybe Concrete? Let's get this out of the way right here: cement and concrete are not the same thing. Cement, a mixture of powdered limestone and clay, is an ingredient in concrete along with water, sand, and gravel. Concrete's invention was made possible by the development of cement, and to trace the history of cement, we must trace the use of its components. ADVERTISEMENT - CONTINUE READING BELOW The earliest known use of limestone in a structure has been dated back about 12,000 years. -
Portland Cement
International Conference on Transport, Civil, Architecture and Environment engineering (ICTCAEE'2012) December 26-27, 2012 Dubai (UAE) Portland Cement Alireza Baghchesaraei1 , Omid Reza Baghchesaraei2 kiln is fired by coal, the ash of the coal acts as a secondary raw Abstract— portland cement is the most common type of cement material. in general usage in many parts of the world, as it is a basic ingredient Portland cement was developed from cements (or correctly of concrete, mortar, stucco and most non-specialty grout. There are hydraulic limes) made in Britain in the early part of the different standards for classification of Portland cement. The two nineteenth century, and its name is derived from its similarity major standards are the ASTM C150 used primarily in the U.S. and to Portland stone, a type of building stone that was quarried on European EN-197. EN 197 cement types CEM I, II, III, IV, and V do the Isle of Portland in Dorset, England. Joseph Aspdin, a not correspond to the similarly-named cement types in ASTM C 150. Portland cement manufacture can cause environmental impacts at all British bricklayer, in 1824 was granted a patent for a process stages of the process. When cement is mixed with water a highly of making a cement which he called Portland cement. His alkaline solution (pH ~13) is produced by the dissolution of calcium, cement was an artificial hydraulic lime similar in properties to sodium and potassium hydroxides. the material known as "Roman Cement" (patented in 1796 by James Parker) and his process was similar to that patented in Keywords—New,Material,Portland Cement 1822 and used since 1811 by James Frost who called his cement "British Cement". -
The Alf Mattison Collection Figure at Leeds Central Library Meadowcroft, Michael
(68) ‘Chronicles of the Old Leeds Cloth Market’ (69) ‘England’s Future Queen – Her Passage through Leeds a Century Ago: 14 September, 1835’ (70) ‘Historic Doncaster Races’ (71) ‘A Historic Landmark; The Old George Hotel’ (10 November, 1933) (typescript) (72) ‘The Tercentenary of Sir Christopher Wren’ (73) ‘Old Yorkshire Assizes, Some Notable Trials’ (74) ‘Sandy Lobby, An Exiled Leeds Loiner’s Early Recollection’ (75) ‘Leeds in the Olden Days’ (incomplete lecture notes) (76) Miscellaneous Newscuttings Notes MS. indicates the item is available in manuscript form MIC indicates the item is also available on microfilm. Contact us to request scanned or printed copies Bibliography Local and Family History Crump, W.B. ‘Alfred Mattison,’ Thoresby Society, 37. (1945) Henderson, Lesley A. Alf Mattison: Collector and Socialist – A Survey of Research Guides the Mattison Collection in the Brotherton Library (MA Thesis; 1987, typescript) Isaac, Rhian. ‘Alf Mattison: A Hidden Figure,’ available at: The Alf Mattison Collection https://secretlibraryleeds.net/2016/02/26/alf-mattison-a-hidden- figure at Leeds Central Library Meadowcroft, Michael. ‘Leeds Archivist and Labour Archivist,’ available at: http://www.independentlabour.org.uk/main/2013/12/16/ilp120- Our Research Guides list some of the most useful, interesting and alf-mattison-%E2%80%93-leeds-archivist-and-labour-activist (a hard- unique items in Local and Family History at Leeds Central Library. copy of this article can be found at the Central Library) Many others are listed in our online and card catalogues. Thornton, David. Leeds: A Historical Dictionary of People, Contact us for more information: Places and Events (2013) Visit: www.leeds.gov.uk/localandfamilyhistory Email: [email protected] Tel. -
Concrete Story-Telling (By New-Territories)
Concrete Story-Telling (by New-Territories) 1 ) Concrete in general Concrete is a material used in building construction, consisting of a hard, chemically inert particulate substance, known as an aggregate (usually made from different types of sand and gravel), that is bonded together by cement and water. The Assyrians and Babylonians used clay as the bonding substance or cement*1. The Egyptians used lime and gypsum cement. In 1756, British engineer, John Smeaton made the first modern concrete (hydraulic cement) by adding pebbles as a coarse aggregate and mixing powered brick into the cement. In 1824, English inventor, Joseph Aspdin invented Portland Cement, which has remained the dominant cement used in concrete production. Joseph Aspdin created the first true artificial cement by burning ground limestone and clay together. The burning process changed the chemical properties of the materials and Joseph Aspdin created a stronger cement than what using plain crushed limestone would produce. *1 cement : the word “cement” traces to the Romans, “caementicium”= masonry made from crushed rock with burnt lime as bindern referred to as “cementum,” “cimentum,” “cäment” and cement. The other major part of concrete besides the cement is the aggregate. Aggregates include sand, crushed stone, gravel, slag, ashes, burned shale, and burned clay. Fine aggregate (fine refers to the size of aggregate) is used in making concrete slabs and smooth surfaces. Coarse aggregate is used for massive structures or sections of cement. Concrete that includes embedded metal (usually steel) is called reinforced concrete or ferroconcrete. Iron reinforced concrete was invented (1849) by Joseph Monier, who received a patent in 1867. -
Philosophical Transactions (A)
INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX. -
I on the Historv Oi Portland After 1 150 Years
Christopher Hall De~artmentof Bulldlnq I On the Historv oi Portland after University of Manchester . Institute of Science and Technology Manchester. England M60 1QD 1 150 Years Cementitious building materials have a long history, and began to build the third Eddystone lighthouse off the the date 1824, traditionally taken as the origin of portland southwest coast of Britain (4),apparently a labor of Hercu- cement, is in fact only the date of a patent (I) granted to les in the absence of a good hydraulic cement. Smeaton, ap- Joseoh Asodin (1778-1855) of Leeds. Eneland. who mav preciating the need to obtain the best component materials not at that'time have made portland cemeit at all. ~oday; fur the lime-pozzolana cement he intended to use, exam- cement is the successor to a line of materials with a historv ined a number of mixtures, and found that the quality de- reaching hack to the ancient world; it has a chemistry o? pended on the limestone (5). He made the important dis- perhaps unsurpassed complexity amongst major inorganic covery that the best mortars were made from limes con- industrial materials and is still the subject of intense study. taining clay impurities. We recognize now that the alumi- At some ~ointin the second quarter of the 19th century, nosilicate clay minerals are closely related to those in the about 150 ago, the cement as we know it now was fir& pozzolana, with this essential difference: that they are produced. burned intimately with the lime in the calcining process. It The very simplest of the mineral cements are those based soon emerged that certain heavily clay-bearing limestones on gypsum, hydrated calcium sulfate. -
Celebrating 75 Years of Irish Cement
CELEBRATING 75 YEARS OF IRISH CEMENT 1938 - 2013 introduction from small importance OF 75 Years beginnings... construction There was early recognition of the importance of Irish Cement commenced operations in 1938. Initial cement construction and that the new State should be capable of Of Irish CemenT production capacity installed at Limerick and Drogheda was providing the basic materials for the industry from its own 225,000 tonnes of cement per annum and this has grown over resources. This led to the passing of the Cement Act by three quarters of a century to a current installed capacity in th the Oireachtas in 1933, the formation of Cement Limited THIS Publication mARkS THe 75 2013 of over 4 million tonnes per annum. in 1936 and the commissioning of production plants at AnnIveRSARy Of THe COmmenCemenT Drogheda and Limerick in 1938. Of CemenT PRODuction by IRISH Over the past 75 years capacity has been increased to meet CemenT LImITeD at LImeRICk AnD ‘portland’ cement the needs of the developing Irish economy, the plants have DROGHeda In 1938. been upgraded and expanded, and a new green field plant was constructed at Platin in the early 1970s to replace the original Drogheda plant. Platin was subsequently While the production and use of cement have their roots cement manufacture in the 19th century – uk in antiquity, the story of modern cement making dates expanded twice through two major investments. As back to the early nineteenth century and the work of Leeds technology moved forward, product composition and 1 stonemason Joseph Aspdin who in 1824 filed the first patent performance have been continuously improved, modified for ‘Portland’ cement. -
Back Matter (PDF)
[ 395 ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s A, V o l . 193. A. Abney (W. de W.). The Colour Sensations in Terms of Luminosity, 259. Atmospheric electricity—experiments in connection with precipitation (Wilson), 289. Bakebian Lectube. See Ewing and Kosenhain. C. Colour-blind, neutral points in spectra found by (Abney), 259. Colour sensations in terms of luminosity (Abney), 259. Condensation nuclei, positively and negatively charged ions as (W ilson), 289. Crystalline aggregates, plasticity in (Ewing and Rosenhain), 353. D. Dawson (H. M.). See Smithells, Dawson, and Wilson VOL. CXCIII.— Ao : S F 396 INDEX. Electric spark, constitution of (Schuster and Hemsalech), 189; potential—variation with pressure (Strutt), 377. Electrical conductivity of flames containing vaporised salts (Smithells, Dawson, and Wilson), 89. Electrocapillary phenomena, relation to potential differences between‘solutions (Smith), 47. Electrometer, capillary, theory of (Smith), 47. Ewing (J. A.) and Rosenhain (W.). The Crystalline Structure of Metals.—Bakerian Lecture, 353. F. Filon (L. N. G ). On the Resistance to Torsion of certain Forms of Shafting, with special Reference to the Effect of Keyways, 309. Flames, electrical conductivity of, and luminosity of salt vapours in (Smithells, Dawson, and Wilson), 89. G. Gravity balance, quartz thread (Threlfall and Pollock), 215. H. Hemsalech (Gustav). See Schuster and Hemsalech. Hertzian oscillator, vibrations in field of (Pearson and Lee), 159. Hysteresis in the relation of extension to stress exhibited by overstrained iron (Muir), 1. I. Ions, diffusion into gases, determination of coefficient (Townsend), 129. Ions positively and negatively charged, as condensation nuclei (Wilson), 289. Iron, recovery of, from overstrain (Muir), 1. -
Background Facts and Issues Concerning Cement and Cement Data
Background Facts and Issues Concerning Cement and Cement Data By Hendrik G. van Oss Open-File Report 2005-1152 U.S. Department of the Interior U.S. Geological Survey ii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. iii Preface This report is divided into two main parts. Part 1 first serves as a general overview or primer on hydraulic (chiefly portland) cement and, to some degree, concrete. Part 2 describes the monthly and annual U.S. Geological Survey (USGS) cement industry canvasses in general terms of their coverage and some of the issues regarding the collection and interpretation of the data therein. The report provides background detail that has not been possible to include in the USGS annual and monthly reports on cement. These periodic publications, however, should be referred to for detailed current data on U.S. production and sales of cement. It is anticipated that the contents of this report may be updated and/or supplemented from time to time.