The Major Biomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patterns and Drivers of Recent Disturbances Across the Temperate Forest Biome
ARTICLE DOI: 10.1038/s41467-018-06788-9 OPEN Patterns and drivers of recent disturbances across the temperate forest biome Andreas Sommerfeld 1, Cornelius Senf 1,2, Brian Buma 3, Anthony W. D’Amato 4, Tiphaine Després 5,6, Ignacio Díaz-Hormazábal7, Shawn Fraver8, Lee E. Frelich 9, Álvaro G. Gutiérrez 7, Sarah J. Hart10, Brian J. Harvey11, Hong S. He12, Tomáš Hlásny5, Andrés Holz 13, Thomas Kitzberger14, Dominik Kulakowski 15, David Lindenmayer 16, Akira S. Mori17, Jörg Müller18,19, Juan Paritsis 14, George L. W. Perry 20, Scott L. Stephens21, Miroslav Svoboda5, Monica G. Turner 22, Thomas T. Veblen23 & Rupert Seidl 1 1234567890():,; Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were con- sistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001–2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes. 1 University of Natural Resources and Life Sciences (BOKU) Vienna, Institute of Silviculture, Peter Jordan Straße 82, 1190 Wien, Austria. -
Biome-Specific Scaling of Ocean Productivity, Temperature, and Carbon Export Efficiency
UC Irvine UC Irvine Previously Published Works Title Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency Permalink https://escholarship.org/uc/item/9vk7r4v9 Journal Geophysical Research Letters, 43(10) ISSN 0094-8276 Authors Britten, GL Primeau, FW Publication Date 2016 DOI 10.1002/2016GL068778 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Biome-specific scaling of ocean productivity, 10.1002/2016GL068778 temperature, and carbon export efficiency Key Points: Gregory L. Britten1 and François W. Primeau1 • Optimized models predict carbon fi export ef ciency from net primary 1Department of Earth System Science, University of California, Irvine, USA production and sea surface temperature • Biome-specific relationships impact global export inferred from Abstract Mass conservation and metabolic theory place constraints on how marine export production (EP) satellite-derived variables scales with net primary productivity (NPP) and sea surface temperature (SST); however, little is empirically • Individual biomes respond differently known about how these relationships vary across ecologically distinct ocean biomes. Here we compiled in to simulated net primary production fi and sea surface temperature changes situ observations of EP, NPP, and SST and used statistical model selection theory to demonstrate signi cant biome-specific scaling relationships among these variables. Multiple statistically similar models yield a À threefold variation in the globally integrated carbon flux (~4–12 Pg C yr 1) when applied to climatological Supporting Information: • Supporting Information S1 satellite-derived NPP and SST. Simulated NPP and SST input variables from a 4×CO2 climate model experiment • Data Set S1 further show that biome-specific scaling alters the predicted response of EP to simulated increases of • Data Set S2 atmospheric CO2. -
Arachnozoogeographical Analysis of the Boundary Between Eastern Palearctic and Indomalayan Region
Historia naturalis bulgarica, 23: 5-36, 2016 Arachnozoogeographical analysis of the boundary between Eastern Palearctic and Indomalayan Region Petar Beron Abstract: This study aims to test how the distribution of various orders of Arachnida follows the classical subdivision of Asia and where the transitional zone between the Eastern Palearctic (Holarctic Kingdom) and the Indomalayan Region (Paleotropic) is situated. This boundary includes Thar Desert, Karakorum, Himalaya, a band in Central China, the line north of Taiwan and the Ryukyu Islands. The conclusion is that most families of Arachnida (90), excluding most of the representatives of Acari, are common for the Palearctic and Indomalayan Regions. There are no endemic orders or suborders in any of them. Regarding Arach- nida, their distribution does not justify the sharp difference between the two Kingdoms (Paleotropical and Holarctic) in Eastern Eurasia. The transitional zone (Sino-Japanese Realm) of Holt et al. (2013) also does not satisfy the criteria for outlining an area on the same footing as the Palearctic and Indomalayan Realms. Key words: Palearctic, Indomalayan, Arachnozoogeography, Arachnida According to the classical subdivision the region’s high mountains and plateaus. In southern Indomalayan Region is formed from the regions in Asia the boundary of the Palearctic is largely alti- Asia that are south of the Himalaya, and a zone in tudinal. The foothills of the Himalaya with average China. North of this “line” is the Palearctic (consist- altitude between about 2000 – 2500 m a.s.l. form the ing og different subregions). This “line” (transitional boundary between the Palearctic and Indomalaya zone) is separating two kingdoms, therefore the dif- Ecoregions. -
Tropical Deciduous Forests and Savannas
2/1/17 Tropical Coastal Communities Relationships to other tropical forest systems — specialized swamp forests: Tropical Coastal Forests Mangrove and beach forests § confined to tropical and & subtropical zones at the interface Tropical Deciduous Forests of terrestrial and saltwater Mangrove Forests Mangrove Forests § confined to tropical and subtropical § stilt roots - support ocean tidal zones § water temperature must exceed 75° F or 24° C in warmest month § unique adaptations to harsh Queensland, Australia environment - convergent Rhizophora mangle - red mangrove Moluccas Venezuela 1 2/1/17 Mangrove Forests Mangrove Forests § stilt roots - support § stilt roots - support § pneumatophores - erect roots for § pneumatophores - erect roots for O2 exchange O2 exchange § salt glands - excretion § salt glands - excretion § viviparous seedlings Rhizophora mangle - red mangrove Rhizophora mangle - red mangrove Xylocarpus (Meliaceae) & Rhizophora Mangrove Forests Mangrove Forests § 80 species in 30 genera (20 § 80 species in 30 genera (20 families) families) § 60 species OW& 20 NW § 60 species OW& 20 NW (Rhizophoraceae - red mangrove - Avicennia - black mangrove; inner Avicennia nitida (black mangrove, most common in Neotropics) boundary of red mangrove, better Acanthaceae) drained Rhizophora mangle - red mangrove Xylocarpus (Meliaceae) & Rhizophora 2 2/1/17 Mangrove Forests § 80 species in 30 genera (20 families) § 60 species OW& 20 NW Four mangrove families in one Neotropical mangrove community Avicennia - Rhizophora - Acanthanceae Rhizophoraceae -
Understanding the Causes of Bush Encroachment in Africa: the Key to Effective Management of Savanna Grasslands
Tropical Grasslands – Forrajes Tropicales (2013) Volume 1, 215−219 Understanding the causes of bush encroachment in Africa: The key to effective management of savanna grasslands OLAOTSWE E. KGOSIKOMA1 AND KABO MOGOTSI2 1Department of Agricultural Research, Ministry of Agriculture, Gaborone, Botswana. www.moa.gov.bw 2Department of Agricultural Research, Ministry of Agriculture, Francistown, Botswana. www.moa.gov.bw Keywords: Rangeland degradation, fire, indigenous ecological knowledge, livestock grazing, rainfall variability. Abstract The increase in biomass and abundance of woody plant species, often thorny or unpalatable, coupled with the suppres- sion of herbaceous plant cover, is a widely recognized form of rangeland degradation. Bush encroachment therefore has the potential to compromise rural livelihoods in Africa, as many depend on the natural resource base. The causes of bush encroachment are not without debate, but fire, herbivory, nutrient availability and rainfall patterns have been shown to be the key determinants of savanna vegetation structure and composition. In this paper, these determinants are discussed, with particular reference to arid and semi-arid environments of Africa. To improve our current under- standing of causes of bush encroachment, an integrated approach, involving ecological and indigenous knowledge systems, is proposed. Only through our knowledge of causes of bush encroachment, both direct and indirect, can better livelihood adjustments be made, or control measures and restoration of savanna ecosystem functioning be realized. Resumen Una forma ampliamente reconocida de degradación de pasturas es el incremento de la abundancia de especies de plan- tas leñosas, a menudo espinosas y no palatables, y de su biomasa, conjuntamente con la pérdida de plantas herbáceas. En África, la invasión por arbustos puede comprometer el sistema de vida rural ya que muchas personas dependen de los recursos naturales básicos. -
Carbon Sequestration in Managed Temperate Coniferous Forests Under Climate Change
Biogeosciences, 13, 1933–1947, 2016 www.biogeosciences.net/13/1933/2016/ doi:10.5194/bg-13-1933-2016 © Author(s) 2016. CC Attribution 3.0 License. Carbon sequestration in managed temperate coniferous forests under climate change Caren C. Dymond1, Sarah Beukema2, Craig R. Nitschke3, K. David Coates1, and Robert M. Scheller4 1Ministry of Forests, Lands and Natural Resource Operations, Government of British Columbia, Victoria, Canada 2ESSA Technologies Ltd., Vancouver, Canada 3School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Australia 4Department of Environmental Science and Management, Portland State University, Portland, USA Correspondence to: Caren C. Dymond ([email protected]) Received: 16 November 2015 – Published in Biogeosciences Discuss.: 21 December 2015 Revised: 11 March 2016 – Accepted: 16 March 2016 – Published: 30 March 2016 Abstract. Management of temperate forests has the poten- 1 Introduction tial to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by nega- tive climate change impacts. We therefore need a better un- As a global society, we depend on forests and land to take −1 derstanding of climate change alterations to temperate for- up about 2.5 C 1.3 PgC yr , about one-third of our fossil est carbon dynamics before developing mitigation strategies. emissions (Ciais et al., 2013). A reduction in the size of The purpose of this project was to investigate the interac- these sinks could accelerate global change by further increas- tions of species composition, fire, management, and climate ing the accumulation rate of greenhouse gases in the atmo- change in the Copper–Pine Creek valley, a temperate conifer- sphere. -
Shrubl Maritime Juniper Woodland/Shrubland
Maritime Juniper Woodland/ShrublWoodland/Shrublandand State Rank: S1 – Critically Imperiled The Maritime Juniper Woodland/ substrate stability; even Shrubland is a predominantly evergreen in stable situations community within the coastal salt spray community edges may zone; The trees tend to be short (less not be clear. Different than 15 feet) and scattered, with the types of communities tops sculpted by winds and salt spray; grade into and interdigitate with each forests, in areas of continuous changes of other. Very small patches levels of salt spray and substrate types. of any type within The dominant species is eastern red cedar another community (also called juniper), though the should be considered to Maritime Juniper Woodland/Shrubland above a abundance of red cedar is highly variable. be part of the variation of salt marsh. Photo: Patricia Swain, NHESP. It grows in association with scattered trees the main community. Description: Maritime Juniper and shrubs typical of the surrounding Maritime Pitch Pine Woodland/Shrublands occur on and vegetation such as pitch pine, various Woodlands on Dunes are between sand dunes, on the upper edges oaks, black cherry, red maple, blueberries, dominated by pitch pine. Maritime provide habitat for shrubland nesting birds of salt marshes and on cliffs and rocky huckleberries, sumac, and very often, Shrubland communities are dominated by and are important as feeding and resting/ headlands: all areas receiving salt spray poison ivy. Green briar can be abundant in a dense mixture of primarily deciduous roosting areas for migrating birds. from high winds. The maritime juniper more established woodlands, particularly shrubs, but may include red cedar. -
Russia's Boreal Forests
Forest Area Key Facts & Carbon Emissions Russia’s Boreal Forests from Deforestation Forest location and brief description Russia is home to more than one-fifth of the world’s forest areas (approximately 763.5 million hectares). The Russian landscape is highly diverse, including polar deserts, arctic and sub-arctic tundra, boreal and semi-tundra larch forests, boreal and temperate coniferous forests, temperate broadleaf and mixed forests, forest-steppe and steppe (temperate grasslands, savannahs, and shrub-lands), semi-deserts and deserts. Russian boreal forests (known in Russia as the taiga) represent the largest forested region on Earth (approximately 12 million km2), larger than the Amazon. These forests have relatively few tree species, and are composed mainly of birch, pine, spruce, fir, with some deciduous species. Mixed in among the forests are bogs, fens, marshes, shallow lakes, rivers and wetlands, which hold vast amounts of water. They contain more than 55 per cent of the world’s conifers, and 11 per cent of the world’s biomass. Unique qualities of forest area Russia’s boreal region includes several important Global 200 ecoregions - a science-based global ranking of the Earth’s most biologically outstanding habitats. Among these is the Eastern-Siberian Taiga, which contains the largest expanse of untouched boreal forest in the world. Russia’s largest populations of brown bear, moose, wolf, red fox, reindeer, and wolverine can be found in this region. Bird species include: the Golden eagle, Black- billed capercaillie, Siberian Spruce grouse, Siberian accentor, Great gray owl, and Naumann’s thrush. Russia’s forests are also home to the Siberian tiger and Far Eastern leopard. -
Sanderson Et Al., the Human Footprint and the Last of the Wild
Articles The Human Footprint and the Last of the Wild ERICW. SANDERSON,MALANDING JAITEH, MARC A. LEVY,KENT H. REDFORD, ANTOINETTEV. WANNEBO,AND GILLIANWOOLMER n Genesis,God blesses humanbeings and bids us to take dominion over the fish in the sea,the birdsin the air, THE HUMANFOOTPRINT IS A GLOBAL and other We are entreatedto be fruitful every living thing. MAPOF HUMANINFLUENCE ON THE and multiply,to fill the earth,and subdueit (Gen. 1:28).The bad news, and the good news, is that we have almost suc- LANDSURFACE, WHICH SUGGESTSTHAT ceeded. Thereis little debatein scientificcircles about the impor- HUMANBEINGS ARE STEWARDS OF tance of human influenceon ecosystems.According to sci- WE LIKEIT OR NOT entists'reports, we appropriateover 40%of the net primary NATURE,WHETHER productivity(the greenmaterial) produced on Eartheach year (Vitouseket al. 1986,Rojstaczer et al.2001). We consume 35% thislack of appreciationmay be dueto scientists'propensity of the productivityof the oceanicshelf (Pauly and Christensen to expressthemselves in termslike "appropriation of net pri- 1995), and we use 60% of freshwaterrun-off (Postel et al. maryproductivity" or "exponentialpopulation growth," ab- 1996). The unprecedentedescalation in both human popu- stractionsthat require some training to understand.It may lation and consumption in the 20th centuryhas resultedin be dueto historicalassumptions about and habits inherited environmentalcrises never before encountered in the history fromtimes when human beings, as a group,had dramatically of humankindand the world (McNeill2000). E. O. Wilson less influenceon the biosphere.Now the individualdeci- (2002) claims it would now take four Earthsto meet the consumptiondemands of the currenthuman population,if Eric Sanderson(e-mail: [email protected])is associatedirector, and every human consumed at the level of the averageUS in- W. -
The Coastal Scrub and Chaparral Bird Conservation Plan
The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego). -
7. Shrubland and Young Forest Habitat Management
7. SHRUBLAND AND YOUNG FOREST HABITAT MANAGEMENT hrublands” and “Young Forest” are terms that apply to areas Shrubland habitat and that are transitioning to mature forest and are dominated by young forest differ in “Sseedlings, saplings, and shrubs with interspersed grasses and forbs (herbaceous plants). While some sites such as wetlands, sandy sites vegetation types and and ledge areas can support a relatively stable shrub cover, most shrub communities in the northeast are successional and change rapidly to food and cover they mature forest if left unmanaged. Shrub and young forest habitats in Vermont provide important habitat provide, as well as functions for a variety of wildlife including shrubland birds, butterflies and bees, black bear, deer, moose, snowshoe hare, bobcat, as well as a where and how they variety of reptiles and amphibians. Many shrubland species are in decline due to loss of habitat. Shrubland bird species in Vermont include common are maintained on the species such as chestnut-sided warbler, white-throated sparrow, ruffed grouse, Eastern towhee, American woodcock, brown thrasher, Nashville landscape. warbler, and rarer species such as prairie warbler and golden-winged warbler. These habitat types are used by 29 Vermont Species of Greatest Conservation Need. While small areas of shrub and young forest habitat can be important to some wildlife, managing large patches of 5 acres or more provides much greater benefit to the wildlife that rely on the associated habitat conditions to meet their life requirements. Birds such as the chestnut- sided warbler will use smaller areas of young forest, but less common species such as golden-winged warbler require areas of 25 acres or more. -
Grassland to Shrubland State Transitions Enhance Carbon Sequestration in the Northern Chihuahuan Desert
Global Change Biology Global Change Biology (2015) 21, 1226–1235, doi: 10.1111/gcb.12743 Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert M. D. PETRIE1 ,S.L.COLLINS1 ,A.M.SWANN2 ,P.L.FORD3 andM.E. LITVAK1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA, 2Department of Biology, Sevilleta LTER, University of New Mexico, Albuquerque, New Mexico, USA, 3USDA Forest Service, Rocky Mountain Research Station, Albuquerque, New Mexico, USA Abstract The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state tran- sition where different ecological communities can exist under similar environmental conditions. These state transi- tions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan À2 À1 Desert, we found established shrubland to sequester 49 g C m yr on average, while nearby native C4 grassland À À was a net source of 31 g C m 2 yr 1 over this same period. Differences in C exchange between these ecosystems were pronounced – grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosys- tem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry.