Proposed Removal of Low Volume Or Discontinued Substances from the Revised in Commerce List Health Canada September 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Peroxy Compounds Human Health and Ecological Draft Risk Assessment DP 455445, 455446
Peroxy Compounds Human Health and Ecological Draft Risk Assessment DP 455445, 455446 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION MEMORANDUM Date: March 11, 2020 SUBJECT: Registration Review Draft Risk Assessment for the Peroxy Compounds PC Code: 000595, 063201, 063604, 063607, DP Barcode: 455445, 455446 063209, 128860 Decision No: 558073, 558074 Docket No: EPA-HQ-OPP-2009-0546 Regulatory Action: Registration Review Case No: 6059, 4072, 5081 Risk Assessment Type: DRA CAS No: 7722-84-1, 79-21-0, 33734-57-5, 15630-89-4, 10058-23-8, 70693-62-8 TO: Kendall Ziner, Chemical Review Manager Rick Fehir, Ph.D., Team Lead Rose Kyprianou, Branch Chief Regulatory Management Branch (RMB) II Antimicrobials Division (7510P) Office of Pesticide Programs FROM: Andrew Byro, Ph.D., Chemist Kathryn Korthauer, Biologist Timothy Dole, Industrial Hygienist Deborah Burgin, Ph.D., DABT, Toxicologist Risk Assessment and Science Support Branch Antimicrobials Division (7510P) Office of Pesticide Programs THROUGH: Judy Facey, Ph.D., Human Health Risk Assessment Process Leader MP for JF Diana Hsieh, Ecological Risk Assessment Process Leader MP for DH Timothy Leighton, Senior Science Advisor MP for TL Laura Parsons, Associate Branch Chief Melissa Panger, Ph.D., Branch Chief Risk Assessment and Science Support Branch Antimicrobials Division (7510P) This document provides the draft human health and ecological risk assessment conducted in support of the antimicrobial use sites of the following peroxy compounds: hydrogen peroxide, peracetic acid, peroxyoctanoic acid, and sodium percarbonate. Page 1 of 74 Peroxy Compounds Human Health and Ecological Draft Risk Assessment DP 455445, 455446 Although the peroxymonosulfate compounds were included in the peroxy compounds Final Work Plan (FWP), they will not be included in this risk assessment. -
Pp-03-25-New Dots.Qxd 10/23/02 2:41 PM Page 778
pp-03-25-new dots.qxd 10/23/02 2:41 PM Page 778 778 PRAESODYMIUM PRAESODYMIUM [7440–10–0] Symbol Pr; atomic number 59; atomic weight 140.908; a lanthanide–series rare earth element; belongs to the cerium group of rare earths; electron con- figuration [Xe] 4f36s2; partially filled f subshell; valence states +3, +4; most 3+ stable oxidation state +3; electrode potential E°/V (aq) for Pr + 3e¯ ↔ Pr is –2.35 V; atomic radius 1.828 Å; first ionization potential 5.46 eV; one natu- rally–occurring isotope, Pr–141; twenty–nine artificial radioactive isotopes known in the mass range 124, 126–140 and 142–154; the longest–lived isotope Pr–143, t1/2 13.57 day, and the shortest–lived isotope Pr–124, t1/2 1.2 second. History, Occurrence, and Uses Mosander extracted from the mineral lanthana a rare earth fraction, named didymia in 1841. In 1879, Boisbaudran separated a rare earth oxide called samaria (samarium oxide) from the didymia fraction obtained from the mineral samarskite. Soon after that in 1885, Baron Auer von Welsbach iso- lated two other rare earths from didymia. He named them as praseodymia (green twin) and neodymia (new twin) after their source didymia (twin). The name praseodymium finally was assigned to this new element, derived from the two Greek words, prasios meaning green and didymos meaning twin. Praseodymium occurs in nature associated with other rare earths in a rel- atively high abundance. It is more abundant than some common metals such as silver, gold, or antimony. The average concentration of this metal in the earth’s crust is estimated to be 8.2 mg/kg. -
Molecular Dynamics Simulation Studies of Physico of Liquid
MD Simulation of Liquid Pentane Isomers Bull. Korean Chem. Soc. 1999, Vol. 20, No. 8 897 Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers Seng Kue Lee and Song Hi Lee* Department of Chemistry, Kyungsung University, Pusan 608-736, Korea Received January 15, 1999 We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic prop erties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liq uid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increas es. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases. -
Article Download
wjpls, 2018, Vol. 4, Issue 8, 153-159 Research Article ISSN 2454-2229 Sathyamurthy et al. World Journal of Pharmaceutical World Journal and Lifeof Pharmaceutical Sciences and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 5.088 GCMS AND FTIR ANALYSIS ON THE METHANOLIC EXTRACT OF RED VITIS VINIFERA PULP 1Naresh S., 1Sunil K. S., 1Akki Suma, 1Ashika B. D., 1Chitrali Laha Roy, *2Dr. Balasubramanian Sathyamurthy 1Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. *2Professor, Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. *Corresponding Author: Dr. Balasubramanian Sathyamurthy Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. Article Received on 12/06/2018 Article Revised on 02/07/2018 Article Accepted on 23/07/2018 ABSTRACT Red Vitis Vinifera pulp has major components such as Organic acids, Malate, Tartrate and Sugars and contains higher moisture content. Our work is designed to identify the possible phytochemicals compounds present in the methanolic extract of red grape pulp by using GCMS along with functional group analysis through FTIR. From the GCMS analysis of red Vitis Vinifera pulp nearly 61 compounds were identified. By FTIR analysis, strong absorption band was found at 3400 cm–1, which represents the amine groups and ketones at a frequency of –1 1066.02 cm gave maximum peaks. Hence, we can conclude that the red Vitis Vinifera pulp extract is rich in amines, ether and ester groups. KEYWORDS: GCMS, FTIR, spectral analysis, NIST. 1. INTRODUCTION biochemical and organic mixtures and it is also highly compatible.[4] Infrared spectroscopy is most powerful Red Grapes or Vitis vinifera is a Berry fruit and belongs technique for materials analysis and used in the to the group of versatile fruits which are used in a wide laboratories. -
Strontium Iodide Radiation Instrument (SIRI) – Early On-Orbit Results Lee J
Strontium Iodide Radiation Instrument (SIRI) – Early On-Orbit Results Lee J. Mitchella, Bernard F. Phlipsa, J. Eric Grovea, Theodore Finnea, Mary Johnson-Ramberta, b W. Neil, Johnson a United States Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 b Praxis Inc., 251 18th Street South, Suite 610, Arlington, VA 22202 Abstract— The Strontium Iodide Radiation Instrument (SIRI) or proven components to reduce costs associated with drawing is a single detector, gamma-ray spectrometer designed to down that risk. space-qualify the new scintillation detector material europium- A number of new gamma-ray scintillation materials look doped strontium iodide (SrI2:Eu) and new silicon promising and have been proposed for space missions [1] [2] photomultiplier (SiPM) technology. SIRI covers the energy [3] [4], while silicon photomultiplier (SiPM) readout range from .04 - 8 MeV and was launched into 600 km sun- technologies are also quickly replacing traditional synchronous orbit on Dec 3, 2018 onboard STPSat-5 with a photomultiplier tubes (PMTs) in instrument concepts [5] [6] one-year mission to investigate the detector’s response to on- [7]. The goal of the Strontium Iodide Radiation Instrument orbit background radiation. The detector has an active volume (SIRI) mission is to study the performance of new SiPM of 11.6 cm3 and a photo fraction efficiency of 50% at 662 keV technology and a new scintillation material, europium-doped for gamma-rays parallel to the long axis of the crystal. Its strontium iodide (SrI2:Eu), for space-based gamma-ray spectroscopic resolution of 4.3% was measured by the full- spectrometry. -
Effects of Intravenous Injections of Radium Bromide. by R
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central EFFECTS OF INTRAVENOUS INJECTIONS OF RADIUM BROMIDE. BY R. BURTON-OPITZ AND GUSTAVE M. MEYER. (From the Laboratories of Physiology and Physiological Chemistry of Colum- bia University, at the College of Physicians and Surgeons, New York.) PLATE XVI. The present study was undertaken with a view of determining in a general way the effects of intravenous administration of ra- dium upon the circulation and respiration. The problem was sug- gested to us by Dr. William J. Gies, under whose guidance a number of researches, dealing with the more extensive question of the action of radium upon animal and vegetable cells, have re- cently been carried on in the laboratories of Columbia University.1 For the radium used in these experiments we are greatly in- debted to Mr. Hugo Lieber. It was supplied to us in the form of the bromide, in preparations of 240 , iooo, and io,ooo activities. The strength of the solution used was the same in all cases. It contained 45 rag. of the dry substance in 25 c. c. of the solvent; each cubic centimeter of the solution, therefore, contained 1.8 rag. of the radium preparation. The amount of the radium present varies directly with the ra- dio-activity. Preparations of ~,5oo,ooo activity are said to repre- sent pure radium bromide3 Taking this figure as the standard of purity, ~ .8 rag. of the radium preparation of io,ooo activity contained approximately only o.o~ 26 mg., the same quantity of the preparation of ~ooo activity contained o.ooi26 rag. -
Manipulating Nonproportionality of Strontium Iodide Crystals with High-Flux Irradiation by 137Cs Gamma Rays
Manipulating Nonproportionality of Strontium Iodide Crystals with High-Flux Irradiation by 137Cs Gamma Rays By David D. Caudel Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics May 2017 Nashville, Tennessee Approved: Keivan Stassun, Ph.D. Arnold Burger, Ph.D. Richard Haglund, Ph.D. Ashley Stowe, Ph.D. In dedication to my children and in loving memory of my father. Also, to the Fisk-to-Vanderbilt Bridge Program, for giving me the chance to fulfill my dream of becoming a physicist. ii ACKNOWLEDGMENTS The work in this dissertation has been supported by the following entities and funding sources: the Fisk-to-Vanderbilt Bridge Program, the BOLD fellowship, the GAANN fellowship CFDA 84.200, the NSF Grant HRD 1547757 (CREST-BioSS Center), the Vanderbilt Discovery Grant, and Fisk University’s subaward with ORNL GO under prime contract DE-AC52-07NA27344 from the United States Department of Energy. iii TABLE OF CONTENTS Page DEDICATION .......................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF TABLES ....................................................................................................................... vi LIST OF FIGURES ......................................................................................................... -
Measurements of Higher Alkanes Using NO Chemical Ionization in PTR-Tof-MS
Atmos. Chem. Phys., 20, 14123–14138, 2020 https://doi.org/10.5194/acp-20-14123-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Measurements of higher alkanes using NOC chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China Chaomin Wang1,2, Bin Yuan1,2, Caihong Wu1,2, Sihang Wang1,2, Jipeng Qi1,2, Baolin Wang3, Zelong Wang1,2, Weiwei Hu4, Wei Chen4, Chenshuo Ye5, Wenjie Wang5, Yele Sun6, Chen Wang3, Shan Huang1,2, Wei Song4, Xinming Wang4, Suxia Yang1,2, Shenyang Zhang1,2, Wanyun Xu7, Nan Ma1,2, Zhanyi Zhang1,2, Bin Jiang1,2, Hang Su8, Yafang Cheng8, Xuemei Wang1,2, and Min Shao1,2 1Institute for Environmental and Climate Research, Jinan University, 511443 Guangzhou, China 2Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 511443 Guangzhou, China 3School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, China 4State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China 5State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China 6State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese -
THE INFLUENCE of LIGHT ANION IMPURITIES UPON Sri2(EU) SCINTILLATOR CRYSTALS 2831
2830 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 6, DECEMBER 2016 The Influence of Light Anion Impurities Upon SrI2(Eu) Scintillator Crystals S. E. Swider, S. Lam, and A. Datta, Member, IEEE Abstract— To better identify the influence of light anion impu- as metallic strontium is known to react aggressively with rities on the scintillation performance, small boules of SrI2(Eu) nitrogen Halide impurities such as chlorine and bromine may were grown by the vertical Bridgman-Stockbarger method, each 0 2− 3− be introduced via impurities in the hydrogen-iodide acid used co-doped with 0.2% of one of the following: C ,CO3 ,N , 2− − 3− 2− 2− − − to convert strontium carbonate into strontium iodide. Likewise, O ,OH ,PO4 ,S ,SO4 ,Cl and Br . Residual impurity concentrations were measured, and the scintillation performance residual phosphorous may be present in the hydrogen-iodide of resulting detectors was characterized. Oxygen was tolerated acid, or in the minerals from which strontium is mined. up to 0.2% on a molar basis. Sulfur proved to be highly To maintain and improve purity, crystal growers handle SrI2 detrimental to both crystallinity and scintillation performance. and similar salts in low-moisture, argon-filled glove boxes. Nitrogen produced additional emission near 480 nm. This study They also employ melt-filtration [5] and reactive gasses such suggests that SrI2(Eu) readily incorporates anion impurities, which may substitute for iodine, but these may also be removed as HI(g) [10]–[11]. However, since it is not clear which light before and during growth by volatilization. Purity metrics for impurities are most detrimental to single-crystal growth and starting materials should include sulfur and carbon, as well as scintillation performance, current purification efforts are not oxygen and H2O. -
624 — 632 [1974] ; Received January 9, 1974)
Some ab Initio Calculations on Indole, Isoindole, Benzofuran, and Isobenzofuran J. Koller and A. Ažman Chemical Institute “Boris Kidric” and Department of Chemistry, University of Ljubljana, P.O.B. 537, 61001 Ljubljana, Slovenia, Yugoslavia N. Trinajstić Institute “Rugjer Boskovic”, Zagreb, Croatia, Yugoslavia (Z. Naturforsch. 29 a. 624 — 632 [1974] ; received January 9, 1974) Ab initio calculations in the framework of the methodology of Pople et al. have been performed on indole, isoindole, benzofuran. and isobenzofuran. Several molecular properties (dipole moments, n. m. r. chemical shifts, stabilities, and reactivities) correlate well with calculated indices (charge densities, HOMO-LUMO separation). The calculations failed to give magnitudes of first ionization potentials, although the correct trends are reproduced, i. e. giving higher values to more stable iso mers. Some of the obtained results (charge densities, dipole moments) parallel CNDO/2 values. Introduction as positional isomers 4 because they formally differ Indole (1), benzofuran (3) and their isoconju only in the position of a heteroatom. Their atomic gated isomers: isoindole (2) and isobenzofuran (4) skeletal structures and a numbering of atoms are are interesting heteroaromatic molecules1-3 denoted given in Figure 1. 13 1 HtKr^nL J J L / t hü H 15 U (3) U) Fig. 1. Atomic skeletal structures and numbering of atoms for indole (1), isoindole (2), benzofuran (3), and isobenzofuran (4). Reprint requests to Prof. Dr. N. Trinajstic, Rudjer Boskovic Institute, P.O.B. 1016, 41001 Zagreb I Croatia, Yugoslavia. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V. -
Supporting Information for Modeling the Formation and Composition Of
Supporting Information for Modeling the Formation and Composition of Secondary Organic Aerosol from Diesel Exhaust Using Parameterized and Semi-explicit Chemistry and Thermodynamic Models Sailaja Eluri1, Christopher D. Cappa2, Beth Friedman3, Delphine K. Farmer3, and Shantanu H. Jathar1 1 Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA, 80523 2 Department of Civil and Environmental Engineering, University of California Davis, Davis, CA, USA, 95616 3 Department of Chemistry, Colorado State University, Fort Collins, CO, USA, 80523 Correspondence to: Shantanu H. Jathar ([email protected]) Table S1: Mass speciation and kOH for VOC emissions profile #3161 3 -1 - Species Name kOH (cm molecules s Mass Percent (%) 1) (1-methylpropyl) benzene 8.50×10'() 0.023 (2-methylpropyl) benzene 8.71×10'() 0.060 1,2,3-trimethylbenzene 3.27×10'(( 0.056 1,2,4-trimethylbenzene 3.25×10'(( 0.246 1,2-diethylbenzene 8.11×10'() 0.042 1,2-propadiene 9.82×10'() 0.218 1,3,5-trimethylbenzene 5.67×10'(( 0.088 1,3-butadiene 6.66×10'(( 0.088 1-butene 3.14×10'(( 0.311 1-methyl-2-ethylbenzene 7.44×10'() 0.065 1-methyl-3-ethylbenzene 1.39×10'(( 0.116 1-pentene 3.14×10'(( 0.148 2,2,4-trimethylpentane 3.34×10'() 0.139 2,2-dimethylbutane 2.23×10'() 0.028 2,3,4-trimethylpentane 6.60×10'() 0.009 2,3-dimethyl-1-butene 5.38×10'(( 0.014 2,3-dimethylhexane 8.55×10'() 0.005 2,3-dimethylpentane 7.14×10'() 0.032 2,4-dimethylhexane 8.55×10'() 0.019 2,4-dimethylpentane 4.77×10'() 0.009 2-methylheptane 8.28×10'() 0.028 2-methylhexane 6.86×10'() -
Supplementary Material (ESI) for Chemical Communications This Journal Is © the Royal Society of Chemistry 2012
Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 Supplementary Material Guest-controlled Self-Sorting in Assemblies driven by the Hydrophobic Effect Haiying Gan, Bruce C. Gibb* Department of Chemistry University of New Orleans LA 70148 Email: [email protected] S1 Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 Table of Contents General p S3 1H-NMR spectra of 1 and 2, and mixture of hosts, in the absence of guests p S4 1H-NMR spectra of the complexes of 1.2 and hydrocarbons n-pentane through n-heptadecane p S5-S8 Example COSY and NOESY NMR data (for n-undecane hetero-complex) p S9 Pulse-gradient stimulated spin-echo NMR studies p S11 Table of Percentage of Hetero-complex Formation p S12 References p S13 S2 Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 Experimental section General All reagents were purchased from Aldrich Chemical Company and used as received without further purification. Host 1 and 2 were synthesized as previously reported.1,2 NMR spectra were recorded on a Varian Inova 500 MHz spectrometer. Chemical shifts are reported relative to D2O (4.80 ppm). Endo Me c O O O O O O O O O O g O O g O O O d O d HO O HO O HO f O OH OH HO f O OH OH O b O O b O H H H H H H H H O e O e O O O O O O O O O O O O O O j j H H a H H H Ha H H m l m l HO O HO O O OH O OH HO O HO O O OH O OH 1 2 S3 Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 1H-NMR spectra of host 1, 2 and mixture of hosts in the absence of guests Figure S1: 1H NMR spectra of: 1) 1 mM of 1; 2) 1 mM of 2; 3) 0.5 mM of both 1 and 2 (all 10 mM sodium tetraborate solution).