o

Chapter0:Introduction 1/210

Belgian stress tests National report for nuclear power plants ThisnationalreportisprovidedbytheBelgianregulatorybodytotheEuropeanCommission,aspartof thestresstestsprogramappliedtoEuropeannuclearpowerplantsinresponsetotheFukushima Daiichiaccident. Review Review date Modification description By 0 20111223 Firstedition FANCBelV Introduction has always been a pioneering country in the development of nuclear sciences and technologies for peaceful purposes. As such, the country is endowed with seven pressurized water reactorscurrentlyinoperationontwodistinctsites: • TheDoelsite,locatedontherivercloseto(),homeoffourreactors: o Doel1/2:twinunitsof433MWeeach,commissionedin1975, o Doel3:singleunitof1006MWe,commissionedin1982, o Doel4:singleunitof1039MWe,commissionedin1985. • The Tihange site, located on the Meuse river close to Liège (Wallonia), home of three reactors: o Tihange1:singleunitof962MWe,commissionedin1975, o Tihange2:singleunitof1008MWe,commissionedin1983, o Tihange3:singleunitof1054MWe,commissionedin1985. Bothsitesareoperatedbythesamelicensee,namelyElectrabel,acompanyoftheGDFSUEZenergy andservicesGroup. For all nuclear safety related matters, the licensee’s activities areunderthe controlofthe Belgian regulatorybody 1,whichiscomposedof: • theFederalAgencyforNuclearControl(FANC), • andBelV,itstechnicalsubsidiary. ThecurrentfeaturesofthenuclearpowerplantsoperatedinBelgiumresultfrom: • thedesignbasisofeachunit, • themodificationsthatwereimplementedsubsequentlyoverthelifeofthefacilities. During the design phase, the power plants were dimensioned to fulfil the safety, reliability and availability requirements applicable at that time, and to resist predefined accidents and hazard scenarios. The design rules that were used included safety margins in the process (conservative assumptions in the models, safety coefficients in the calculations, penalizing hypothesis in hazard scenarios…). The design rules in force at a given period take into account the latest scientific knowledge (e.g. evaluationoftheseismichazardatagivenlocation),theavailabletechniques(e.g.prestressofthe concrete),aswellasthebestpracticeusuallyapplied in the considered field (e.g. use of a double containmentbuilding).Thesedesignruleshaveevolvedovertime,andthereforetheunitscurrentlyin operationinBelgiumpresentsomedifferencesdependingontheirdateofcommissioning. Insomecases,specifichazardswerenottakenintoaccountduringthedesignphase,eitherbecause the threat was not considered plausible at that time (e.g. terrorist aircraft crash), or because the annual probability of facing an accident leading to unacceptable consequences was negligible (e.g. tornado). This is particularly true for the earliestunits(Doel1/2and Tihange 1).Inthosespecific cases, theresistance of the units was evaluated retrospectively in order to determine the maximal admissiblesollicitations,andtodecidetherelevantcorrectiveactionstoundertakewherenecessary. Somemodificationshavethereforebeenimplementedoverthelifeofthefacilities,inordertobring the necessary improvements where appropriate, according to the latest knowledge and available technologies, as well as the current state of the art. These improvements take into account the feedbackoftheaccidentsthatoccurredabroad(ThreeMileIsland,Tchernobyl),andtheevolutionof 1 Additional information about the Belgian regulatory body and nuclear facilities isavailable on the FANCwebsite(http://www.fanc.fgov.be ),specificallyinthe2010reportfortheConventiononNuclear Safety

Chapter0:Introduction 3/210 the doctrine at the national level (federal regulation) and at the international level (standards and guides from the International Atomic Energy Agency, rules of the American Nuclear Regulatory Commission…).Theyare putinto effect duringthe periodic (tenyearly) safety reviews, or through specificactionplansimplementedspontaneouslyby thelicenseeorattherequestoftheregulatory body. The basic safety principles, such as defence in depth, redundancy of safety related equipment, physical or geographic separation, and diversification, were applied from the design phase, and upgradeswereperformedontheearliestunitstoincreasetheirrobustnesswhenfacingscenariosthat werenotconsideredyet.Somestructurereinforcementswerealsoachievedwhererequired. Allunitsnowhave: • firstlevelsafetysystems,aimedatfacinginternalandexternalhazardsthat mightthreaten thefacilities; • secondlevelemergencysystems,aimedatcompensatingthelossofthefirstlevelequipment, e.g.asaresultofhazardsthatwerenotconsideredinthedesignofthefirstlevel; • multiplepowersupplysources:highvoltagelinesfromtheexternalgrid,selfpoweringduring houseloadoperation,backupdieselgenerators,battery/invertersets; • multipleultimateheatsinks,withseveralmeanstodrawwater:riverbythesite(Scheldtriver at Doel, Meuse river at Tihange), artificial ponds (Doel), and wells in the water table (Tihange); • internal emergency plans in line with the public authorities’ emergency plans: emergency managementcentres,diagnostictools,emergencyprocedures… Theseresourcesallowtodealwithaccidentscenariosconsideredindividually. However, the accident that occurred on 11 March 2011 at the Japanese FukushimaDaiichi nuclear powerplantshowedthattheconjunctionofseveralevents(earthquake,tsunami,flooding,hydrogen explosion)couldleadtoparticularly unfavourableconditionsforwhichthefacilitiesandthelicensee werenotsufficientlyprepared:failureofthecontainment, total lossof powersupplies, total loss of coolingmeans,difficultiesinaccessingthesite… Thefactthatseveralunitsonthesamesitewere affected at the same time also constituted an aggravating factor with respect to the accident management. Asaconsequence,awidescaletargetedsafetyreassessmentprogramwassetupamongthemember statesoftheEuropeanUnionoperatingnuclearpowerplantsontheirsoil.This“stresstests”program is designed to reevaluate (based on technical studies, calculations and engineering judgment) the safetymarginsoftheEuropeannuclearpowerplantswhenfacedwithextremenaturalevents,andto take relevant action wherever needed. The approach is meant to be essentially deterministic, and shouldfocusnotonlyonthepreventivemeasuresbutalsoonthemitigativemeasures. ThescopeoftheBelgianstresstestscoversallsevenreactorunitsoperatedbyElectrabel,including thespentfuelpoolsofeachreactorunitandthededicatedspentfuelstoragefacilitiesatbothsites, namely: • “SCG”buildingatDoel(drycaskspentfuelstoragefacility), • “DE”buildingatTihange(wetspentfuelstoragefacility). In accordance with the European methodology, the stress tests of the nuclear power plants are performedinthreestages: 1. Thelicenseecarriesoutthestresstestsinitsfacilitiesandcommunicatesafinalreporttothe Belgian regulatory body. In this report, the licensee describes the reaction of the facilities when facing the different extreme scenarios, and indicates, where appropriate, the improvementsthatcouldbeimplementedtoreinforcesafety.

Chapter0:Introduction 4/210 2. The regulatory body examines the licensee’s report and evaluates the approach and the results.Basedonthesedata,theregulatorybodywritesitsownnationalreport. 3. The report of all national regulatory bodies is subject to an international peer review: the national reports are examined by other regulatory bodies representing 27 European independent national Authorities responsible for the nuclear safety in their country. This method increases consistency in the whole process and ensures the sharing of experience betweenregulatorybodies. Fromthatstage,theEuropeanCommissionwillestablishafinalreportthatwillbepresentedtothe European Council, soas toprovide an overall view of the current situation in the European power plants. ThefirstphaseoftheBelgianstresstestsfornuclearpowerplantswasachievedbythelicenseeona shorttime period until 28 October 2011 (communication of the licensee’s reports to the regulatory body). This phase mobilized around 40 engineers and experts from Electrabel and its technical subsidiaryTractebelEngineering,aswellasanumberofthirdpartyresourcesspecializedinselected fields(seismichazard,flooding…). ThesecondphaseoftheprogramwasthencarriedoutbytheFANCanditstechnicalsubsidiaryBelV, whose experts have a thorough knowledge of the facilities. The assessment of the approach and resultsprovidedbythelicenseeincludeddetailedexaminationofthelicensee’sstresstestsreportsand thesupportingdocuments,technicalmeetingswiththelicensee,andonsiteinspectionstocheckon the field the reality, relevance and robustness of the key data valued in the licensee’s safety demonstrations.Thatprocessledtothepublicationofthepresentnationalreport. AsrequiredbytheENSREGspecifications,theBelgiannationalreportfornuclearpowerplantscovers thefollowingrisks: • earthquake, • flooding, • extremeweatherconditions, • lossofelectricalpowerandlossofultimateheatsink, • severeaccidentmanagement. Upon demand of theBelgian FederalGovernment,terrorist attacks (aircraft crash) and otherman made events (cyber attack, toxic andexplosive gases,blast waves) were also included as possible triggeringeventsintheBelgianstresstestsprogram.Theassessmentofthesemanmadeeventswere howevernotinthescopeoftheEuropeanstresstestsprograms,andarethusdevelopedinaseparate nationalreportwhichwillnotbepartofaninternationalpeerreview. In order to provide a selfstanding national report for the subsequent peer review process, the relevantdatasuppliedbythelicenseeinitsstresstestsreportsarerecalledineachchapter. Attheendofeachchapter,afinalsectionprovidestheconclusionsandtheassessmentoftheBelgian regulatorybody(FANCandBelV). AspartoftheAuthorities’transparencypolicy,thisnationalreportismadeavailabletothepublicand mediaontheBelgianregulatorybody’swebsite( http://www.fanc.fgov.be ).

Chapter0:Introduction 5/210 Table of Contents Introduction...... 3 TableofContents...... 6 ListofFigures ...... 8 1.Generaldescription...... 9 1.1.Sitecharacteristics ...... 9 1.1.1.Maincharacteristicsoftheunits ...... 10 1.2.Significantdifferencesbetweenunits...... 13 1.2.1.Doelsite...... 13 1.2.2.Tihangesite...... 16 1.3.Useofprobabilisticsafetyassessmentsaspartofthesafetyassessment...... 19 1.4.Listofacronyms...... 20 2.Earthquake ...... 26 2.1.Designbasis ...... 26 2.1.1.Earthquakeagainstwhichtheplantsaredesigned ...... 26 2.1.2.Provisionstoprotecttheplantsagainstthedesignbasisearthquake ...... 30 2.1.3.Complianceoftheplantwithitscurrentlicensingbasis ...... 38 2.2.Evaluationofsafetymargins ...... 40 2.2.1.RangeofearthquakeleadingtoseverefueldamageDescriptionofSMRmethodology ... 40 2.2.2.Rangeofearthquakeleadingtolossofcontainmentintegrity ...... 47 2.2.3.Earthquakeexceedingthedesignbasisearthquakefortheplantsandconsequentflooding exceedingdesignbasisflood ...... 49 2.3.Synthesisofthemainresultspresentedbythelicensee...... 52 2.4.Assessmentandconclusionsoftheregulatorybody ...... 53 3.Flooding...... 54 3.1.DesignBasis ...... 54 3.1.1.Floodingagainstwhichtheplantsaredesigned...... 54 3.1.2.Provisionstoprotecttheplantsagainstthedesignbasisflood ...... 56 3.1.3.Plantscompliancewithitscurrentlicensingbasis ...... 60 3.2.Evaluationofsafetymargins ...... 62 3.2.1.Estimationofsafetymarginagainstflooding...... 62 3.2.2.Measureswhichcanbeenvisagedtoincreaserobustnessoftheplantsagainstflooding... 69 3.3.Synthesisofthemainresultspresentedbythelicensee...... 72 3.3.1.TihangeNPP ...... 72 3.3.2.DoelNPP ...... 73 3.4.Assessmentandconclusionsoftheregulatorybody ...... 75 3.4.1.TihangeNPP ...... 75 3.4.2.DoelNPP ...... 76 4.Extremeweatherconditions ...... 77 4.1.Heavyrainfalls ...... 77 4.1.1.Reassessmentofheavyrainfallsusedasdesignbasis...... 77 4.1.2.Evaluationofsafetymarginsagainstheavyrainfalls ...... 79 4.1.3.Measuresthatcanbeenvisagedtoincreaserobustnessagainstheavyrainfalls ...... 80 4.2.Highwinds...... 81 4.2.1.Reassessmentofhighwindsusedasdesignbasis...... 81 4.2.2.Evaluationofsafetymarginsagainsthighwinds ...... 81 4.2.3.Measuresthatcanbeenvisagedtoincreaserobustnessagainsthighwinds...... 82 4.3.Tornadoes ...... 83 4.3.1.Reassessmentoftornadoesusedasdesignbasis ...... 83 4.3.2.Evaluationofsafetymarginsagainsttornadoes...... 84 4.3.3.Measuresthatcanbeenvisagedtoincreaserobustnessagainsttornadoes ...... 86 4.4.Lightning ...... 88 4.4.1.Reassessmentoflightningusedasdesignbasis ...... 88 4.4.2.Evaluationofsafetymarginsagainstlightning...... 88 4.4.3.Measuresthatcanbeenvisagedtoincreaserobustnessagainstlightning ...... 88 4.5.Snowfalls ...... 89 4.5.1.Reassessmentofsnowfallsusedasdesignbasis ...... 89 4.5.2.Evaluationofsafetymarginsagainstsnowfalls...... 89

Chapter0:Introduction 6/210 4.5.3.Measuresthatcanbeenvisagedtoincreaserobustnessagainstsnowfalls ...... 90 4.6.Hail ...... 91 4.7.Otherextremeweatherconditions...... 92 4.8.Synthesisofthemainresultspresentedbythelicensee...... 93 4.9.Assessmentandconclusionsoftheregulatorybody ...... 94 5.Lossofelectricalpowerandlossofultimateheatsink ...... 95 5.1.Lossofelectricalpower ...... 96 5.1.1.Lossofoffsitepower(LOOP) ...... 99 5.1.2.Lossofoffsitepower(LOOP)andlossofthefirstlevelonsitebackuppowersupplies (StationBlackout)...... 102 5.1.3.Lossofexternalpower(LOOP)andlossofallonsitebackuppowerprovisions(total StationBlackout) ...... 110 5.2.Lossofheatsink ...... 116 5.2.1.Lossoftheprimaryultimateheatsink(LUHS) ...... 116 5.2.2.Lossoftheprimaryultimateheatsinkandalternateultimateheatsink(s) ...... 125 5.3.Lossoftheprimaryultimateheatsinkcombinedwithlossofoffsitepowerandlossoffirstlevel onsitebackuppowersupply ...... 134 5.3.1.Autonomyofthesitebeforefueldamage ...... 134 5.3.2.(External)actionsprovidedtopreventfueldamage...... 136 5.3.3.Measuresthatcanbeconsideredtoimprovetherobustnessoftheinstallations...... 136 5.4.LossoftheprimaryultimateheatsinkcombinedwithatotalStationBlackout ...... 137 5.5.LossoftheprimaryultimateheatsinkcombinedwiththelossofoffsitepowerandDesign BasisEarthquake ...... 138 5.5.1.Autonomyofthesitebeforefueldamage ...... 138 5.5.2.(External)actionsforeseentopreventfueldamage...... 140 5.6.Spentnuclearfuelstorage ...... 141 5.7.Synthesisofthemainresultspresentedbythelicensee...... 142 5.7.1.Scenario“Lossofoffsitepower(LOOP)” ...... 144 5.7.2.Scenario“StationBlackOut(SBO)” ...... 144 5.7.3.Scenario“TotalSBO”...... 144 5.7.4.Scenario“Lossoftheprimaryultimateheatsink”...... 145 5.7.5.Scenario“Lossofprimaryandalternateultimateheatsinks” ...... 146 5.7.6.Scenario“LossoftheprimaryUHSwithSBO” ...... 146 5.7.7.Scenario“LossoftheprimaryUHSwithtotalSBO”...... 146 5.7.8.Scenario“LossoftheprimaryUHS,LOOPandearthquakeDBE” ...... 146 5.7.9.SpentFuelPools ...... 147 5.8.Assessmentandconclusionsoftheregulatorybody ...... 148 6.Severeaccidentmanagement ...... 150 6.1.Organisationandarrangementsofthelicenseetomanageaccidents...... 150 6.1.1.Organisationofthelicenseetomanagetheaccident ...... 150 6.1.2.Possibilitytouseexistingequipment ...... 155 6.1.3.Evaluationoffactorsthatmayimpedeaccidentmanagementandrespectivecontingencies ...... 161 6.2.Lossofcorecooling:accidentmanagementmeasuresinplaceatthevariousstagesofa scenariooflossofcorecoolingfunction ...... 167 6.2.1.Beforeoccurrenceoffueldamageinthereactorpressurevessel ...... 167 6.2.2.Afteroccurrenceoffueldamageinthereactorvessel ...... 168 6.2.3.Afterfailureofthereactorvessel ...... 169 6.2.4.Cliffedgeeffectsandtiming ...... 170 6.2.5.Adequacyofcurrentaccidentmanagementandpossibleadditionalmeasures...... 174 6.3.Accidentmanagementmeasurestomaintainthecontainmentintegrityaftercoredamage ... 178 6.3.1.Managementofhydrogenrisksinsidethecontainment...... 178 6.3.2.Preventionofoverpressureofthecontainment ...... 178 6.3.3.Preventionofrecriticality ...... 179 6.3.4.Preventionofbasematmeltthrough...... 180 6.3.5.NeedforandsupplyofelectricalACandDCpowerandcompressedairtoequipmentused forprotectingcontainmentintegrity...... 180 6.3.6.Cliffedgeeffectsandtiming ...... 182 6.3.7.Currentaccidentmanagementmeasuresforareturntoastableandcontrolledstate .... 184

Chapter0:Introduction 7/210 6.3.8.Overviewoftheaccidentmanagementstrategiesandmeans ...... 185 6.4.Accidentmanagementmeasurestorestricttheradioactivereleases ...... 188 6.4.1.Mitigationoffissionproductsreleases ...... 188 6.4.2.Injectionofwaterintothesteamgeneratorstotrapthefissionproductsleakingfrom damagedsteamgeneratortubes ...... 188 6.4.3.Injectionofwaterintotheprimarysystemtotrapfissionproductsreleasedfromthecore debris ...... 188 6.4.4.Injectionofwaterintothecontainmentbuilding ...... 189 6.4.5.Monitoringcontainmentbuildingconditions ...... 189 6.4.6.Injectionofwaterinthereactorpit...... 189 6.5.Accidentmanagementmeasuresforlossofcoolingofspentfuelpools...... 190 6.5.1.Currentaccidentmanagementmeasures ...... 190 6.5.2.Cliffedgeeffectsandtiming ...... 191 6.5.3.Instrumentationneededtomonitorthespentfuelandtomanagetheaccident ...... 193 6.5.4.Hydrogenaccumulation ...... 194 6.5.5.Adequacyofcurrentmanagementmeasuresandpossibleadditionalarrangements ...... 195 6.5.6.Returningtoastableandcontrolledstate...... 195 6.6.Synthesisofthemainresultspresentedbythelicensee...... 196 6.7.Assessmentandconclusionsoftheregulatorybody ...... 197 7.Generalconclusions...... 199 7.1.Mainsresultsandsafetyimprovementsproposedbythelicensee...... 199 7.1.1.Earthquakes ...... 199 7.1.2.Flooding ...... 200 7.1.3.Extremeweatherconditions...... 201 7.1.4.Lossofelectricalpowersupplyorheatsink ...... 201 7.1.5.Emergencyorganisationandsevereaccidentmanagement...... 202 7.1.6.Actionplan ...... 203 7.2.Synthesisoftheassessmentandadditionalimprovementsrequiredbytheregulatorybody.. 205 7.2.1.Earthquake ...... 206 7.2.2.Flooding ...... 206 7.2.3.Extremeweatherconditions...... 207 7.2.4.Lossofelectricalpowerandlossofultimateheatsink...... 208 7.2.5.Severeaccidentmanagement ...... 209

List of Figures Figure1NuclearpowerplantsitesinBelgium...... 9 Figure2FacilitiesatDoelsite ...... 9 Figure3FacilitiesatTihangesite ...... 10 Figure4DoublecontainmentoftheDoel3andDoel4reactorbuilding...... 11 Figure5ComparisonofthedesignspectraofthethreeTihangeunits...... 28 Figure6SpectrumatgroundlevelbasedontheROBstudy...... 29 Figure7ClassificationofSSCincategoriesH,L,M...... 42 Figure8ComparisonoftheRLEspectrumandtheTihangeDBEspectrum...... 43 Figure9ComparisonoftheRLEspectrumandtheDoelDBEspectra ...... 43 Figure10ThedifferentaltimetriczonesoftheTihangesite ...... 57 Figure11DesignprovisionsattheDoelNPPagainstDBF(Crosssectionoftheembankment) ...... 57 Figure12Exampleofdecamillenialfloodandproposalforperipheralprotectionofthesite...... 70 Figure13PlanoftheelectricitypowersuppliesinTihange2and3...... 97 Figure14PlanoftheelectricitypowersuppliesinDoel3and4...... 98 Figure15PlanofheatsinksinTihange...... 116 Figure16PlanofheatsinksinDoel...... 117

Chapter0:Introduction 8/210 1. General description 1.1. Site characteristics The Belgian nuclear power plants are located on two distinct sites: Doel and Tihange. They are operatedbyElectrabel,acompanyoftheGDFSUEZenergyandservicesGroup.

Figure 1 - Nuclear power plant sites in Belgium Doel NPP TheDoelnuclearpowerplantislocatedintheportofAntwerp,ontheleftbankoftheScheldtriver,at 15kmnorthwestofAntwerp(Flanders)andatonly3kmfromtheborderbetweenBelgiumandthe . Thesitehousesthefollowingfacilities: • Doel1/2twinreactorsunits(A), • Doel3reactorunit(B), • Doel4reactorunit(C), • SCGbuilding(spentfueldrystorage)(D).

D C B A Figure 2 - Facilities at Doel site

Chapter1–GeneralDescription 9 Tihange NPP ThesiteislocatedontheterritoryoftheformermunicipalityofTihangealongtherightbankofthe Meuseriver.TihangeisnowpartoftheCityofHuyatadistanceof25kmfromLiege. Thesitehousesthefollowingfacilities: • Tihange1reactorunit(A), • Tihange2reactorunit(B), • Tihange3reactorunit(C), • DEbuilding(spentfuelwetstorage)(D).

C D B A

Figure 3 - Facilities at Tihange site

1.1.1. Main characteristics of the units

1.1.1.1. Doel site ThetablehereafterliststhemaincharacteristicsoftheunitslocatedatDoelsite: Table 1: Characteristics of Doel site units Thermal Date of Containment Steam Fuel storage pool Units Type power first building generator Designer capacity (MWth) criticality characteristics replacement

Double PWR Doel1 1312 1974 containment(steel 2009 Westinghouse (2loops) andconcrete) 664positions Double PWR Doel2 1312 1975 containment(steel 2004 Westinghouse (2loops) andconcrete) Double PWR Doel3 3064 1982 containmentwith 1993 672positions Framatome (3loops) innermetallicliner Double PWR Doel4 3000 1985 containmentwith 1997 628positions Westinghouse (3loops) innermetallicliner Spentfuel SCG 165spentfuel Tractebel dry building containers Engineering storage

Chapter1–GeneralDescription 10 ThefourDoelreactorbuildingsareequippedwithadoublecontainment. At Doel 1/2, the primary (inner) containment consists of a steel bulb. The secondary (outer) containmentconsistsofa reinforced concretecylinderonwhichareinforcedconcretehemispherical domeisplaced.Thesecondarycontainmentencapsulatestheprimarycontainment,thusprotectingit againstaccidents. AtDoel3andDoel4,theprimarycontainmentconsistsofacylinderonwhichadomeintheshapeof a spherical cap is placed. Both structures are made of prestressed concrete. This containment is internally covered with a steel liner guaranteeing its air tightness. The secondary containment of Doel3 and Doel 4 reactor buildings also consists of a reinforced concrete structure enclosing the primarycontainmentandthusprotectingtheprimarycontainmentagainstexternalaccidents.

Metallic liner Pre-stressed concrete

Annulus space

Reinforced concrete

Figure 4 - Double containment of the Doel 3 and Doel 4 reactor building ThespentnuclearfuelofDoel1/2isstoredinsharedpoolshousedinthenuclearservicesbuilding (GNH). ThespentnuclearfuelofDoel3andDoel4isstoredinpoolsoneachunit.Thepools,aswellasthe coolingsystems,arehousedinthebunkerednuclearfuelbuilding(SPG). After a sufficient cooling period in the pools, the spent fuel from Doel 1/2, Doel 3 and Doel 4 is transferredtothespentfuelcontainerbuilding(SCG).Thisreinforcedconcretebuildingfunctionsasa dry storage where the spent fuel is placed in special shielded containers and under inert gas. The residual heat is evacuated via natural convection. The containers are designed to resist severe accidents(aircraftcrash,fireandearthquake).

Chapter1–GeneralDescription 11 1.1.1.2. Tihange site ThetablehereafterliststhemaincharacteristicsoftheunitslocatedatTihangesite:

Table 2: Characteristics of Tihange site units

Thermal Date of Containment Steam Fuel storage pool Units Type power first building generator Designer capacity (MWth) criticality characteristics replacement

Double 324positions PWR Framatome/ Tihange1 2873 1975 containmentwith 1995 +49removable (3loops) Westinghouse innermetallicliner positions Double PWR Tihange2 3054 1982 containmentwith 2001 700positions Framatome (3loops) innermetallicliner Double PWR Tihange3 2988 1985 containmentwith 1998 820positions Westinghouse (3loops) innermetallicliner Spentfuel 3720positions Tractebel DEbuilding wet Bunkeredbuilding +30temporary Engineering storage positions Each of the three reactors has a cooling pool designed for the temporary storage of spent fuel assemblies. After at least two years in the cooling pools of the units, the fuel assemblies are transferred to the DE building that houses 8 storage pools, each with a capacity of 465 spent assemblies.ThepowerofthisbuildingissuppliedbyTihange3unit. SafetyrelatedsystemsandcomponentsfortheDEbuildingweredesignedtoresisttotheeffectsof naturalevents,earthquakesandaccidentsofexternalorigin(aircraftcrash,explosion)withoutlosing theirsafetyfunctions. The reactor buildings of all three units in Tihange have a double containment structure. The inner containment is made of prestressed reinforced concrete with internalmetallic linerwhile the outer containmentismadeofreinforcedconcrete.

Chapter1–GeneralDescription 12 1.2. Significant differences between units

1.2.1. Doel site Withrespecttotheinitiatingeventsconsideredatthedesignphase,therearedifferencesbetweenthe Doel1/2units,andtheDoel3andDoel4units: • anumberofsystemsaresharedbytheDoel1/2twinreactors, • thereisastrictphysicalseparationbetweentheredundantsafetysystemsatDoel3andDoel 4, • duringtheinitialdesignofDoel3andDoel4,thefollowinginternalorexternalhazardswere considered: o aircraftcrash, o largescalefire, o explosion(includinggasexplosion), o maliciousact, o andconditionsleadingtoinaccessibilityorunavailabilityofthemaincontrolroom. Theaccidentsoreventsmentionedaboveweretakenintoconsiderationwithintheframeworkofthe tenyearlyperiodicsafetyreviews,andtheyledforDoel1/2totheimplementationofspecificsafety systems,suchastheemergencysystemsbuilding(GNS)whichisseismicallyqualified. AllDoelunitshavetwotypesofsafetysystems:thefirstlevelsafetysystemsintendedforincidents andaccidentsofinternalorigin(e.g.alossofprimarywaterinventoryorasecondarypipingrupture) andearthquakes,andthesecondlevelemergencysystemsdedicatedtoexternalhazards. Thefirstlevel systemsareoperatedfromthemain controlroomandthesecondlevelsystemsare operatedfromaseparatecontrolroom. Thefirstlevelandthesecondlevelareentirelyindependentfrom oneanother.Thisappliestothe electrical diesel power supplies, control rooms, water supplies, instrumentation, compressed air, primarypumps’sealsinjection,steamgeneratorsfeedwater,shutdowncoolingsystems… ThetablehereunderliststhespecificitiesofthefirstlevelsafetysystemsofDoel1/2units,andDoel3 andDoel4units.

Table 3: First level safety systems on Doel site reactors First level Doel 1/2 Doel 3 and Doel 4 safety systems • Notallofthefirstlevel systemsarephysically separated,butallsystems havebeentestedformutual interaction(e.g.highenergy linebreak)soastoensure thatinternalaccidentswould havenoimpactonthese Physicalseparation • Thefirstlevelsystemsare,asarule,physicallyseparated. systems • Theaccidentsleadingtothe potentialunavailabilityof multiplesafetysystemsare coveredbythephysically separatedGNS(building housingthesecondlevel systems) • Notallofthefirstlevel systemsaredesignbasis earthquake(DBE)resistant, butallsystemsessentialto functionaftertheDBEhave • Thefirstlevelsystemsare,asarule,seismicallydesignedfor Seismicdesign beenseismicallydesignedfor theDBE theDBE • Thefunctionsthatarenot guaranteed,areperformed fromthesecondlevel(GNS)

Chapter1–GeneralDescription 13 • Thefirstlevelsystemswith regardtoelectricalpower supplyandinstrumentation • Thefirstlevelsystemsare,asarule,designedpertrainand Traindesign are,asarule,designedper thesetrainsarenotlinked trainandthetrainsare mechanicallylinkedtoone another

• Manyofthefirstlevelsystems aresharedbybothunits • FortheDoel3andDoel4units’firstlevelsystems,thereis,in Sharedsystems • Thecapacity/redundancylevel additiontothealreadyexistentsafetydiesels,asparebackup ofthesesystemsissufficient dieselsharedbybothunits forbothunits

• 4highpressureinjection pumpssharedbythetwo reactors • 4injectionpathsperunit:2 injectionpathsonthecold legsand2injectionpathsat • 3independenttrainswith: thetopofthereactorvessel o 3highpressureinjectionpumps, • 2safetyinjectionreservoirs o 6injectionpathsperunit:2pertrain,1onevery Highpressure forhighandlowsafety hotlegandoneoneverycoldleg safetyinjection(SI) injectionpressure(1reservoir o 3safetyinjectionreservoirsforhighandlow perunit) pressuresafetyinjection(1reservoirpertrain) • 2accumulatorsperunit(1on o 3accumulatorsperunit(1oneverycoldleg) everycoldleg) o 3(independent)lowpressureinjectionpumps • 3lowpressureinjection pumpsperunit • Thesamepumpsperformthe shutdowncoolingfunctionof theunit

• 4commonlysharedspraying pumps(fordirectinjection) Containmentspray • Sprayingfunctionpossiblevia • 3independenttrainswiththreesprayingpumps system(SP) thelowpressureinjection circuit(duringrecirculation)

• 3physicallyseparatedand independentlysuppliedpumps perunit,alsoperformingthe • 3independenttrainswith: lowpressureinjectionfunction o 3shutdowncoolingpumps, Shutdowncooling • 2physicallyseparated o 3shutdownheatexchangersperunit,also system(SC) shutdownheatexchangers performingtheheatevacuationfunctionduring perunitwithpotential therecirculationphase interconnectionwitheveryone ofthe3pumps • Sharedcomponentcooling circuitconsistingoffour • 3independenttrainswith3parallelandidenticalcooling Componentcooling pumpsandfourheat circuits,eachequippedwithitsownpumpandheat circuit(CC) exchangers,dividedintotwo exchanger groups • Thereare4independent electricalpolarities(2per unit).Thesafetyfunctions consistingof3equipments makeuseofthepolarityof • Thereare3independent,physicallyseparatedelectrical theotherunit.Incaseadiesel polarities,1pertrain Electricalpower isunavailable,oneofthe • Eachtrainisequippedwithitsownindependent supplyand otherunit’sdieselswill instrumentationthatisphysicallyseparatedfromtheother instrumentation automaticallytakeoverthis trains polaritysoastoguaranteea • Thereisalsoamanualtakeoverpossibleviathebackup maximumindependence dieselincaseofafailureofafirstleveldiesel betweenthepolarities.There isalimitedphysicalseparation oftheelectricalpowersupply andinstrumentationcabling

Chapter1–GeneralDescription 14 • 2pumps:onewithelectrical powerandonewithdiesel Fireextinctionwater supply • 3independenttrainswithseismicallydesignedpumpswith system(FE) • Nonseismicdesign,with electricalpowersupplyfedbythesecondleveldiesels exceptionofthefillingofthe secondlevelfeedwater • 3pumps:aturbinedriven pumpandtwomotordriven pumps. Auxiliaryfeedwater • Theamountofauxiliary • 3independenttrainswithaturbinedrivenpumpandtwo forthesteam feedwaterissufficienttobring motordrivenpumps generators(AF) bothunitstoacoldshutdown, inwhichcasethecooling continuesviatheshutdown coolingsystem

• Theventilationformanyof thesafetysystemsisshared Safetyrelated • 3independenttrainswithsafetysystemsventilationforeach bybothunitsandthe4trains; ventilation train inthiscase,theventilationis singlefailureproof Withregardtotheaccidentscoveredbythesecondlevelemergencysystems,thefollowingdifferences canbenoticed: • thesecondlevelsystemsatDoel1/2unitsarenothousedinbunkeredbuildings,butthereisa physicalseparationbetweentheDoel1/2firstandsecondlevelsystems. • The second level systems at Doel 1/2 units are mainly manually operated from the GNS building emergencycontrol room,while Doel3and Doel 4 units benefit from a threehour automatic(unmanned)controlphase. ThetablehereunderliststhespecificitiesofthesecondlevelemergencysystemsofDoel1/2units,and Doel3andDoel4units. Table 4: Second level emergency systems on Doel site reactors

Second level Doel 1/2 Doel 3 and Doel 4 emergency systems

• Oneemergencyfeedwatercircuitperunit feedingbothsteamgeneratorsofevery Emergencyfeedwaterfor unit • Oneemergencyfeedwatercircuitforeach thesteamgenerators(EF) • Itispossibletofeedbothunitswithone ofthethreesteamgenerators emergencyfeedwatercircuitofonesingle unit

• Thereisanemergencycoolingpond • Theemergencycomponentcoolingcircuit circuitperunitconsistingofalarge partiallyassumesthefunctionsoftheraw coolingpondandthreeindependent Emergencycomponent waterandcomponentcoolingcircuits circulationpumps cooling(EC)and • Twoaircoolerslinkedinparallelare • Thereisalsoabackupcoolingpond emergencycoolingponds connectedtotheshutdowncooling sharedbyDoel3andDoel4units (LU) system’scoolersandmotorsbymeansof • Theheatisevacuatedbynatural twocirculationpumps evaporationofthewaterpresentinthese coolingponds

• Incasethenormalcompressedairsupply • Theemergencycompressedaircircuit isunavailable,theemergencycompressed Emergencycompressedair consistsof3independentemergency aircircuitsendscompressedairtothe (EIandIAK) compressorswiththecorresponding mostimportantvalvessothatthereactor distributionnetwork unitcanbebroughttoacoldshutdown

Chapter1–GeneralDescription 15 • Thecircuitregulatesthewaterinventory • Thecircuitalsoregulatesthewater oftheprimaryreactorcoolingcircuit inventoryoftheprimaryreactorcooling • Thecircuitisstronglyboratedandadds circuit boricacidinordertocompensateforthe Emergencyboricacid • Thecircuitisstronglyboratedandadds addedreactivityasaresultofthe injectioncircuit(RJandEA) boricacidinordertocompensateforthe contractionofthereactorcoolant addedreactivityasaresultofthe • Thesystemdisposesof3independent contractionofthereactorcoolant pumpsatDoel3unitandof2 independentpumpsatDoel4unit

• Thereisanindependentcircuitperunit. Manualoperationscanbeperformedto • Thereare2volumetricpumpsperunitfor enabletheinjectionofbothunits’pump theintakeofboricacidfroman sealsbythecircuitofonesingleunit Emergencyinjectionatthe emergencyboricacidtankwithshared • Thereareconnectionswithmanually primarypumps’seals(RJ) filter operatedvalvesoneveryoneofthetwo • Thepipingleadinguptothecontainment circuits isredundant • Thecircuithas1pumpand1boricacid tank

1.2.2. Tihange site Withrespecttotheinitiatingeventsconsideredatthedesignphase,therearedifferencesbetweenthe Tihange1unitandtheTihange2andTihange3units: • partiallyphysicallyseparatedredundantsafetysystemsatTihange1, • totallyphysicallyseparatedredundantsafetysystemsatTihange2andTihange3, • forTihange2andTihange3,externalhazardsweretakenintoaccountrightfromthedesign phase,inparticular: o militaryandcommercialaircraftcrash, o largescalefire, o explosion(includinggasexplosion), o maliciousact, o andconditionsleadingtoinaccessibilityorunavailabilityofthemaincontrolroom. Tihange2andTihange3bothhavetwotypesofsafetysystems:thefirstlevelsafetysystemsandthe secondlevel. Thedifferencesrelatedtothefirstlevelsafetysystemsforeachreactorarehighlightedinthefollowing table. Table 5: First level safety systems on Tihange site reactors

First level Tihange 1 Tihange 2 and Tihange 3 safety systems

• 3highpressurepumps(180bar)also • 3fullyindependentcircuits usedaspumpsinthechemicaland • 3highpressurepumps(120bar) volumecontrolsystem • 3injectionaccumulatorsof35m³ • 3injectionaccumulatorsof25m³ • 3lowpressuresafetyinjectionpumps(20 • 2lowpressuresafetyinjectionpumps(8 Safetyinjectionsystem bar)backedupby3containmentspray bar)thatcanbeautonomouslyreplaced (CIS) systempumps bythe2containmentspraysystempumps • 3heatexchangersforrecirculationwater ifunavailable cooling • Noheatexchangeronsafetyinjection • 3interconnected(onlyforTihange2)pool lines watertanks • 1poolwatertank

Chapter1–GeneralDescription 16 • 6pumps • 2directinjectionlinesfromthetank(with noexchanger) • 3fullyindependentcircuits • 2internalrecirculationlinesfromthe • 3injectionlines–eitherdirectinjection Containmentspraysystem reactorbuildingsumps(withexchangers) fromthetank,recirculationfromthe (CAE) • 2lines–eitherdirectinjectionfromthe sumps(withexchanger)–whichcan tankorrecirculationfromthesumps(with autonomouslyreplacethelowpressure exchangers)–whichcanautonomously safetyinjectionpumps replacethelowpressuresafetyinjection pumps

• 2circuitswithcommonpipingparts (collectors) • Pumpinginhotleg2andinjectionincold Shutdowncoolingsystem legs3and1 • 3fullyindependentcircuits (RRA) • Thelowpressuresafetyinjectionpumps canautonomouslyreplacetheshutdown coolingsystempumps

• 2safetydieselgenerators • 3safetydieselgenerators • Asparebackupdieselgeneratorcanbe • Asparebackupdieselgeneratorcanbe Safetydieselgenerators connectedtounits1,2or3shoulda connectedtounits1,2or3shoulda safetydieselgeneratorbeunavailable safetydieselgeneratorbeunavailable

• Apumpthatcanbepoweredbyasafety • Electricpumpspoweredbythesafety Firewatersystem(CEI) dieselgeneratorandathermalmotor dieselgenerators drivenpump(diesel)

• 1turbinedrivenpump(100%)withwater • 1turbinedrivenpump(100%)withwater Auxiliaryfeedwatersystem supplyfromtheemergencysystemand2 supplyfromtheemergencybuildingand2 (EAAandEAS) motordrivenpumps(2x50%)powered motordrivenpumps(2x50%)powered bythesafetydieselgenerators. bythesafetydieselgenerators.

The second level emergency systems had not been considered in the initial design of Tihange 1. However,asaresultofthefirstperiodicsafetyreview(in1986),anemergencysystem(SUR)was installedtorespondtoseveralaccidentalscenariosofexternalorigin.Thissystemincludes: • two distinct emergency power supplies (a 380 V diesel generator and a 380 V turbo alternator), • awatercoolingcircuitwithtwopumpsdrawinggroundwaterfromtwodifferentwells, • aninjectionpumptotheprimarypumpsseals. Tihange 2 and Tihange 3 benefit from a threehour automatic (unmanned) control phase after an accidentofexternalorigin. ThefeaturesofthesecondlevelemergencysystemsforTihange2andTihange3arehighlightedin thefollowingtable. Table 6: Second level emergency systems on Tihange 2 and Tihange 3 units

Second level Tihange 2 and Tihange 3 emergency systems

Emergencyinjectionsystem • 3fullyindependentcircuitsand2boricacidinjectionpumps(7000ppm) (CIU)

Emergencyinjectioninthe • ForTihange2andTihange3,thesystemcoolsthethermalbarriersoftheprimarypumps sealsoftheprimarypumps (1pumpforeachprimaryloop) (CRUandIJU) • ForTihange3,thesystemprovidesinjectiontopumpseals(2pumps100%)

Emergencycorecooling • 3redundantcircuitscoolingthethermalbarriersoftheprimarypumpsandcoolingthe system(CUS) exchangersandpumpsoftheEmergencySystemandDEbuilding

Chapter1–GeneralDescription 17 • 3circuitsensuringwatersupplytosteamgenerators.Watercomesfroma100m³tankin Emergencyfeedwater eachcircuitthatcanberefilledwithdemineralisedwater(fromthenormalwatersystem), system(AUG) groundwaterorMeuseriverwater

Meuseriverandground • WatercanbesuppliedbythreewellsordirectlypumpedfromtheMeuseriver watersupplyingsystem

Emergencydiesel • 3emergencygeneratorswithfueltankprovidingupto7daysautonomy generators

Chapter1–GeneralDescription 18 1.3. Use of probabilistic safety assessments as part of the safety assessment Theprobabilisticsafetyassessments(PSA)werestartedontheinitiativeofthelicenseepriortotheir integrationinthetenyearlyreviews.ThePSAstudiescontain: • level1PSA,determiningtheprobabilityofanuclearcoremelt(coredamagefrequency), • level2PSA,calculatingtheprobabilityofareleaseintotheenvironment(releasefrequency). Theassessmentscoverthefollowingnuclearpowerplantconditions: • poweroperation, • shutdown(shutdowncoolingsystemconnected), • operationwithlowwaterinventory(midloopoperation). ThePSAstudiesdealwitheventsofinternalorigin.Theconsideredgroupsofinitiatingeventsare: • lossofprimarycoolantaccident(LOCA), • secondarypipingruptures(insideandoutsidecontainment), • lossofelectricalboardspower(safetyandnonsafety,ACandDC), • lossofoffsitepower(LOOP)(shortandlongperiod), • lossofinstrumentcompressedair, • steamgeneratortuberupture,whetherornotcombinedwithsecondarypiperuptures, • primarytransientswith,amongotherthings,lossofsafetycoolingcircuits, • secondarytransientswith,amongotherthings,lossofnormalandauxiliaryfeedwater, • untimelysignals, • lossofthecoolingsystem,consideredasaninitiatingevent. Thestationblackout(SBO)scenarioisconsideredthroughtheLOOPinitiatingeventcombinedwith thepotentialfailureoffirstlevelandsecondleveldieselgenerators. Probabilistic safety assessments have been initiated to evaluate the risk of fire and flooding on all Belgianunits.Sofar,thePSAfortheBelgianunitshavenotconsideredanyaccidentofexternalorigin orinitiatingeventrelatedtothespentfuelpools.Thefailuremodesofthecontainmentbuildingwere withinthescopeofthePSAconductedinthe1990’sontheunitsDoel1/2andTihange1.Currently,a complete PSA – including fission product releases in the various failure modes of the containment building–isinprogressforeveryrepresentativeBelgianunit.

Chapter1–GeneralDescription 19 1.4. List of acronyms Acronym Dutch or French meaning Translation to English AC Alternatingcurrent AF AuxiliaryFeed AFW AuxiliaryFeedwater ASME AmericanSocietyofMechanicalEngineers ATWS AnticipatedTransientWithoutScram AUG AlimentationUltimesecoursdesGV Emergencyfeedwatersystem(Tihange) BBâtimentbureau Officebuilding B01BiRéservoirderemplissagepiscinedeRefuelingwaterstoragetank(Tihange1) Tihange1 BAE BâtimentAuxiliairesÉlectriques Electricalauxiliaryservicesbuilding BANBâtimentsAuxiliairesNucléaires Nuclearauxiliaryservicesbuilding BANDBâtimentsAuxiliairesNucléairesD NuclearauxiliaryservicesbuildingSpentfuel (DpourpiscinedeDésactivation) pool BANNBâtimentsAuxiliairesNucléairesN NuclearauxiliaryservicesbuildingMain (NpourNormaux) BAN BâtimentsAuxiliairesNucléaires Nuclearauxiliaryservicesbuilding(units2and3) profond(unités2et3) BAR Gebouwreactorhulpdiensten Reactorauxiliaryservicesbuilding BDBE BeyondDesignEarthquake BDBF BeyondDesignBasisFlooding BK/BKR Bunker Bunker BKZ BunkerControleZaal Bunkercontrolroom BMMT BaseMatMeltThrough BPBassePression Lowpressure BRBâtimentRéacteur Reactorbuilding BURBâtimentd’UltimeRepli(Tihange1) EmergencyBuilding(Tihange1) BUSBâtimentd’UltimeSecours(TihangeEmergencyBuilding(Tihange23) 23) CABCircuitd’AppointenBore Boroninjectionsystem CAECircuitd’Aspersiond’Enceinte Containmentspraysystem CARCircuitd’AircomprimédeRégulationRegulatedcompressedairsystem CARACentred’AccueiletdeReplidesEmergencyandreceptionCentreofAwirs Awirs CAUCircuitd’AirUltime EmergencyAirsystem CCVCircuitdeChargeetdecontrôleChargingandLetdownsystem Volumétrique CD CoolingDiesels CEBCircuitd’EauBrute Rawwatersystem CECCircuitd’EaudeCirculation Recirculationsystem CEGCircuitd’EauGlacée Coldwatersystem CEICircuitd’Eaud’Incendie Firewatersystem CEUCircuitd’EauUltime(Tihange23) Emergencysystem(Tihange23) CEXCircuitd’exhauredanslesbâtimentsDrainingcircuit nucléaires CF GekoeldWater Cooledwater CFRCodeofFederalRegulations CodeofFederalRegulations CGCCRCentreGouvernementalde Coordinationandcrisiscentreofthefederal CoordinationetdeCrise government CISCircuitd’InjectiondeSécurité SafetyInjectionSystem CIUCircuitd’InjectionUltime Emergencyinjectionsystem CMCPBCentredeManagementdeCrise ProductionBelgique CrisisManagementCentreProductionBelgium CMUCircuitdeMoyensUltimes Ultimatemeanscircuit

Chapter1–GeneralDescription 20 CNSI CommitteeontheSafetyofNuclearInstallations CNTCentraleNucléairedeTihange NuclearpowerplantofTihange COSCentreOpérationneldeSite Siteoperationcentre(Tihange) CO TCentreOpérationneldeTranche Unitoperationcentre(Tihange) CPRCircuitdeProtectionduRéacteur Reactorprotectionsystem CRDM ControlRodDriveMechanism CRDS ControlRodDriveShaft CRICircuitdeRéfrigérationIntermédiaire Intermediatecoolingcircuit CRPCircuitdeRéfrigérationPrimaire Primarycoolingcircuit CRUCircuitdeRefroidissementUltime Ultimatecoolingcircuit CTPCircuitdeTraitementdesPiscinesdeSpentfuelpoolloopsystem(Tihange) désactivation CUSCircuitd’UltimeSecours Emergencycorecoolingsystem CV Chemischeenvolumetrischecontrole Chemicalandvolumetriccontrol CVACircuitVapeurAuxiliaire Auxiliarysteamsystem CVCCircuitdeVapeurdeContournement Steambypasssystem CVDContournementVapeurDésurchauffe Steambypasssystemtocondensor(Tihange1) condenseur(Tihange1) CVPCircuitdeVapeurPrincipal Mainsteamsystem CW CoolingWaterpipes D BâtimentDésactivation Spentfuelbuilding DBE Desi gnBasisEarthquake DBF DesignBasisFlooding DC DirectCurrent DD Ontgastgedemineraliseerdwater Degasseddemineralizedwater(secundary) (secundair) DE Bâtimententreposagedes Buildingforwetstorageofspentfuel(Tihange) assemblagesdecombustibleusé DG Dieselgroepen Dieselgroups DURDieseld’UltimeRepli(Tihange1) Emergencydiesel(Tihange1) DW Ontgastgedemineraliseerdwater Degasseddemineralizedwater(primary) (primair) EA Noodboorzuurinjectiekring Emergencyboricacidinjectioncircuit EAEspaceannulaire Annulusspace EAAEauAlimentaireAuxiliaire(Tihange2 Auxiliaryfeedwatersystem(Tihange2&3) 3) EANEauAlimentaireNormale Mainfeedwatersystem EASEauAlimentairedeSecours(Tihange Auxiliaryfeedwatersystem(Tihange1) 1) EC Emergencycomponentcooling ECA EmergencyContingencyActions ECOS EmergencyCallOutSystem ED EmergencyDieselgroepen EmergencyDieselgroups EDMG ExtensiveDamageMitigatingGuidelines EDNEauDéminéraliséeNormale Demineralizedwater EF EmergencyFeedwater EF 2VitessesuréchelleFujitaentre50 Windspeedbetween50m/sand60m/sonFujita m/set60m/s tornadoscale EF3VitessesuréchelleFujitaentre61 Windspeedbetween61m/sand75m/sonFujita m/set75m/s tornadoscale EF4VitessesuréchelleFujitaentre75 Windspeedbetween75m/sand89m/sonFujita m/set89m/s tornadoscale EI Emergencycompressedair ENSREG EuropeanNuclearSafetyRegulators’Group EOP EmergencyOperationsProcedures EPACircuitd’Échantillonnageduliquide PostAccidentalLiquidsamplingsystem PostAccidentel

Chapter1–GeneralDescription 21 EPRI ElectricPowerResearchInstitute EQE EuropeanQualifyingExamination ERF EmergencyResponseFacility ERG EmergencyResponseGuidelines EV EmergencyVentilation EW Extractiewater ExtractionWater FE Firewatersystem FR Filter Filter FRG FunctionRestorationGuidelines FRC FunctionRestorationcoreCooling FROG FRamatomeOwnerGroup GBRÉchantillonnagedesGazdansleGassamplinginthereactorbuilding BâtimentRéacteur GCHÉchantillonnagerejetatmosphérique Atmosphericreleasessampling(gaschimney) (GazCHeminée) GDR GroupeDieseldeRéserve Backupdieselgroup GDSGroupeDieseldeSecours Safetydieselgroup GDUGroupeDieselUltime(Tihange23) Emergencydieselgroup(Tihange23) GMH GebouwMechanischeHulpdiensten Mechanicalauxiliaryservicesbuilding GNH GebouwNucleaireHulpdiensten Nuclearauxiliaryservicesbuilding GNSGebouwvoordeNoodSystemen Emergencysystemsbuilding (Bâtimentd'ultimesecoursDoel12) GRCGroupeDieselderéservecircuitde FuelsystembackupdieselgroupofGDR/M03 combustibleduGDR/M03 GSCGroupesDieseldesecourscircuitdeFuelsystememergencydieselgroup combustible GUSGroupeturboalternateurd’Ultime EmergencyTurboAlternator(Tihange1) Secours(Tihange1) GVGénérateurdeVapeur SteamGenerator GVD GebouwvolledigeDemineralisatie Completedemineralizationbuilding HCLPF HighConfidence,LowProbabilityofFailure HKZ Hoofdcontrolezaal Maincontrolroom HP HautePression HighPressure IAEA InternationalAtomicEnergyAgency IAIAK Emergencycompressedair IDFIntensitéDuréeFréquence IntensityDurationFrequency IJUInjectionauxJointsUltime(TihangeEmergencyinjectioninprimarypumpseals 3) (Tihange3) IPSImportantPourlaSûreté Relevanttosafety IREInstitutNationaldesRadioéléments Nationalinstituteforradioelements(Belgium) IRMInstitutRoyalMétéorologique RoyalmetrologicalinstituteofBelgium(ROB) ISInjectiondeSécurité Safetyinjectionsystem ISBPInjectiondeSécuritéBassePression Lowpressuresafetyinjectionsystem ISHPInjectiondeSécuritéHautePression Highpressuresafetyinjectionsystem ISLOCAInterfacingSystemLossOfCoolantInterfacingSystemLossOfCoolantAccident Accident JCOJustificationforContinuedOperation JustificationforContinuedOperation KBâtimentdespompesEAA BuildingforEAApumps KD Bunker/gelijkstroomnet Bunker/directcurrent KVR Koelvijver Emergencycoolingponds KZ Controlezaal Controlroom LDSI LageDrukSafetyInjection Lowpressuresafetyinjection LOCA LossOfCoolantAccident LOOP LossOfOffsitePower LPALiquidePostAccidentel PostAccidentLiquid LTO LongTermOperation LU Koelvijver Emergencycoolingponds

Chapter1–GeneralDescription 22 LUHS LossofUltimateHeatSink MORV MotorisedOperatedReliefValve MPAMotoPompeAlimentaire(Tihange2 Feedwatermotorpump 3) MSK MedvedevSponheuerKamikschaal MedvedevSponheuerKamikschale(for earthquakes) MTUAlimentationélectriqueUltimes Emergencyelectricalsupply Secours MW Nietontgastgedemineraliseerdwater Nondegasseddemineralizedwater MW Megawatt MWP Gebouwpompkelder Buildingwithbasementforpumps NBâtimentdesauxiliairesnucléaires Nuclearauxiliaryservicesbuilding NA Notapplicable NEI NuclearEnergyInstitute NKZ Noodcontrolezaal Emergencycontrolroom NP Noodplan EmergencyPlan NPK Noodplankamer EmergencyoperationsfacilityDoel NPP NuclearPowerPlant NPSH NetPositiveSuctionHead NRC NuclearRegulatoryCommission NUREG NuclearRegulatoryGroup OBâtimentstockagefuelGDU FuelstockbuildingGDU OBE OperatingBasisEarthquake OTSC OnSitetechnicalSupportCenter OVG OndergrondseVerbindingsGalerij Subterraneanconnectionduct PStationdepompage Pumpingstation PAMS PostAccidentMonitoringSystem PAR PassiveAutocatalyticRecombiner PassiveAutocatalyticHydrogenRecombiner PB Boorzuurbereidingskring Boricacidpreparationsystem PCA PiègeàCharbonActif Activatedcarbonfilter PEDCircuitdeProductiond’Eau Demineralizedwaterproductionsystem Déminéralisée PGA PeakGroundAcceleration PISPomped’InjectiondeSecours Emergencyinjectionpump(Tihange1) (Tihange1) PIUPlanInterned’Urgence Emergencyplan(interal) PL PoolLoop PORV PressurizedOperatedReliefValve PORV PowerOperatedReliefValve PP Pump PR Pressurizer PRPanneaudeRepli Panelforemergencysituations PS PrimaireStaalname Primarysampling PSA ProbabilisticSafetyAssessment PSHA ProbabilisticSeismicHazardAnalysis PU Zuiveringprimairekring Purificationofprimarycircuit PURPanneaud’UltimeRepli(Tihange1) Panelforemergencysituations(Tihange1) PWR PressurizedWaterReactor PWROG PWROwnersGroup RC Reactorkoeling ReactorCoolantSystemPrimaryCircuit RFRésistantauFeu FireResistant RG RegulatoryGuide RGB Reactorgebouw Reactorbuilding RJ Noodkoelsysteemdichtingenprimaire Emergencycoolingsystemofprimarypumps (RC)pompen seals RLE ReviewLevelEarthquake RM RadioactivityMonitoring

Chapter1–GeneralDescription 23 RN KoelingCCWkring(WAB) CoolingCCWsystem(WAB) ROB RoyalObservatoryofBelgium RPPCircuitdeRégulationdePression Controlsystemofprimarypressure Primaire RR Reservoir RRARefroidissementRéacteuràl’Arrêt Shutdowncoolingsystem RSRapportdesûreté Safetycase RTGVRuptureTubeGénérateurdeVapeur Steamgeneratortuberupture RW RuwWaterkring Rawwatersystem RWST Refuelingwaterstoragetank SAM SevereAccidentManagement SAMG SevereAccidentManagementGuidelines SBO StationBlackOut SC Stilstandskoeling Shutdowncoolingsystem SCG SplijtstofContainerGebouw Spentfuelcontainerbuilding SCKCENCentred’Étudedel’Énergie BelgiumNuclearResearchCentre(inMol) Nucléaire/Studiecentrumvoor Kernenergie(Mol) SEBIM Typegepiloteerdeveiligheidsklep Typeofpressurizerreliefvalve SETHYServiced’ÉtudesHYdrologiquesdela Waterstudiesdepartmentinthewalloonregion RégionWallonne SEUCircuitd’EauUltimedespiscinesdu DEpoolsEmergencyWaterSystem DE SEXCircuitd’exhauredubâtimentDE DEbuildingexhaustSystem SFP SinglefailureProof SG SteamGenerators SGHSimpson,Gumpertz&Heger Simpson,Gumpertz&Heger SI Veiligheidsinjectie SafetyInjection SMA SeismicMarginAssessment SMR SeismicMarginReview SOER SignificantOperatingExperienceReport SP Sproeikringreactorgebow SpraySystemofReactorBuilding SPG Splijtstofgebouw Spentfuelbuilding SQUG SeismicQualificationUtilityGroup SRICircuitderéfrigérationintermédiaire IntermediatepoolcoolingcircuitofDEbuilding dubâtimentDE SSC Structures,SystemsandComponents SSE SafeShutdownEarthquake STPCircuitTraitementd’eaudespiscines DEpoolsWaterTreatmentSystem duDE SURSystèmed’UltimeRepli(Tihange1) Emergencysystem(Tihange1) TAcTableaud’alimentationducontrôle ControlandMonitoringsupplyPanel(115VDC) commande(115VDC) TAmTableaud'alimentationmoyenne MediumVoltagePanelSupply(380VAC) tension(380VAC) TAr Tableaud’alimentationàtension SupplyPanelwithRegulatedVoltage(220VAC) régulée(220VAC) TAW TweedeAlgemeneWateraanpassing Representsthereferencelevelinwhichheight measurementsareexpressed.ATAWheightof0 metreequalsthesealevelatlowtideinthecity ofOostende,Belgium TEFTraitementdesEffluents EffluentsTreatement TEGTraitementdesEffluentsGazeux GaseousEffleuntsTreatment TPATurboPompeAlimentaire(Tihange2 Feedwaterturbopump 3) TPAEAATurboPompeAlimentaireEau AuxiliaryFeedwaterturbopump AlimentaireAuxiliaire

Chapter1–GeneralDescription 24 TPSTurboPompedeSecours(Tihange1) Emergencyfeedwaterturbopump(Tihange1) TS TechnicalSpecifications TUR Tussenruimtereactorgebouw Annulusspacecontainmentbuilding TW Stadswater Surfacewaterinurbanareas UCLUniversitéCatholiquedeLouvain CatholicUniversityofLeuven ULgUniversitédeLiège UniversityofLuik/Liege USNRC UnitedStatesNuclearRegulatoryCommission VAN Ventilatiegebouwnucleaire Ventilationsystemofnuclearauxiliaryservices hulpdiensten(GNH)niet buildingnotsafetyrelated veiligheidsdeel VAS Ventilatiegebouwnucleaire Ventilationsystemofnuclearauxiliaryservices hulpdiensten(GNH)veiligheidsdeel buildingsafetyrelated VBA Stoomontlastingsklep Steamreliefvalve VBPVentilationBANPiscinede VentilationSpentfuelpoolsofNuclearauxiliary désactivation servicesbuilding VBRVentilationBâtimentRéacteur Ventilationofreactorbuilding(Tihange2&3) (Tihange23) VBUVentilationBâtimentUltime EmergencyReactorBuildingVentilation VC VentilatieReactorgebouw Ventilationsystemofreactorbuilding VDA Atmosferischeontlastingsafsluiters AtmosphericReliefvalves VDAVannesdeDéchargeàl’Atmosphère AtmosphericReliefvalves VDEVentilationbâtimentDE VentilationsystemofDEbuilding VE VentilatieElectrischehulpdiensten Ventilationsystemofelectricalauxiliaryservices (building) VEAVentilationEspaceAnnulaire Ventilationsystemofannulusspace VEEVentilationEnceinteÉtanche(Tihange Ventilationsystemofcontainmentbuilding 1) (Tihange1) VEN VentilatieElectrischehulpdiensten Ventilationsystemofelectricalauxiliaryservices (GEH)nietveiligheidsdeel buildingnotsafetyrelated VES VentilatieElectrischehulpdiensten Ventilationsystemofelectricalauxiliaryservices (GEH)veiligheidsdeel buildingsafetyrelated VF Ventilatiesplijtstofgebouw Ventilationofspentfuelbuilding VH Ventilatiegebouwmechanische Ventilationofmechanicalauxiliaryservices hulpdiensten building VI Ventilatietussenruimteen Ventilationofannulusspaceandreactorbuilding waterbekkensreactorgebouw pools VK VentilatieBunker VentilationofBunker VLEVentilationdesLocauxÉlectriques Ventilationofelectricrooms VP VentilatieControlezaal ControlRoomVentilation WBâtimentBUS EmergencyBuilding WAB Wateren Waterandwastetreatmentbuilding AfvalBehandelingsinstallatie WANO WorldAssociationofNuclearOperators WENRA WesternEuropeanNuclearRegulators’ Association WOG WestinghouseOwnersGroup(renamedPWR OwnersGrouporPWROG) WVP WatervangPompstationDoel3&4 WaterintakeofpumpingstationDoel3&4 ZEspaceannulaire Annulusspacecontainmentbuil ding

Chapter1–GeneralDescription 25 2. Earthquake Inordertoprovideaselfstandingnationalreportforthesubsequentpeerreviewprocess,firstthe relevantinformationsuppliedbythelicenseeinitsstresstestsreportsisrecalled. Attheendofthischapter,afinalsectionprovidestheconclusionsandtheassessmentoftheBelgian regulatorybody(FANCandBelV). 2.1. Design basis

2.1.1. Earthquake against which the plants are designed

2.1.1.1. Characteristics of the design basis earthquake (DBE) TheseismicactivityinnorthwesternEuropeislow.Nevertheless,theinstallationsinTihangeandDoel aredesignedtowithstandanearthquakeofgreaterintensitythantheseismicpotentialofthiszone. Tihange site TheexaminationofthegeologicalandseismotectonicenvironmentoftheTihangesitewasconducted overanareacoveringaradiusof320kmaroundthesite.Fromageologicalviewpoint,theTihange site is situated on the northern edge of the ArdennesMassif.Thesiteof Tihangeislocatedinthe floodplain on the right bank of the river Meuse. Detailed studies have also demonstrated that the compositionofthesoilcannotcorrespondwithafaultlinethatrunsacrossthesite. Tihange1wasdesignedtowithstandaDBEcharacterizedbyapeakgroundaccelerationof0.1g.In accordancewiththeregulatorypracticeinthenuclearindustry(10CFR100,IAEA50SGS1)atthe time, this value was determined by applying a deterministic approach. This seismic level also corresponds to the standard minimum recommended by the regulations applicable at the time of constructionofTihange2and3. Anewassessmentoftheseismiclevelduringthefirst PeriodicSafetyReviewof Tihange 1 (1985) raised the peak ground acceleration of the DBE to 0.17g for all three units in Tihange. This re evaluation took place after construction of Tihange 1 and during construction of Units 2 and 3. Modificationsatthattimeallowedaneffectiveincrease. Doel site ThesiteofDoelislocatedontheleftbankoftheriverScheldt.Fromageologicalviewpoint,theDoel siteispartoftheLondonBrabantMassif.TheBrabantMassifisboundedbyacoalfieldtothenorth, eastandsouth.ThisfieldseparatesthemassiffromtheLowerRhinerifttothenorth,theArdennes Massiftothesoutheast,andtheParisBasintothesouthandsouthwest. DuringdesignofDoel1&2,theDoelsitewasconsideredtobenonseismic.Asaresult,theoriginal designofthetwounitsdidnottakeintoaccounttheriskofanearthquake.Atthetimeofthefirst PeriodicSafetyReview(1985)itwasneverthelessdecidedtoincorporatetheriskofanearthquake. ThePGAoftheDBEforDoel1&2wassubsequentlysetat0.058g. Inaccordancewiththeregulatorypractice,aDBEof0.1gwasusedforthedesignofDoel3&4.

2.1.1.2. Methodology used to evaluate the design basis earthquake TwodifferentdeterministicapproacheswereusedtodefinetheDBEoftheDoelandTihangeNPPs. Theseismotectonicdeterministicmethod: • Definitionofseismicsourceparameters:splittingBelgiumintodifferentseismiczonesandlist allearthquakeseveroccurred;

Chapter2Earthquake 26 • Takethestrongestearthquakebyzonesandassumeconservatively that earthquake would occuronthesiteitselforintheimmediatevicinityoftheseismiczoneofthesite. • The intensity of the DBE on siteis obtained from an attenuation law,giving intensity as a functionofmagnitudeanddistance. Analternativehistoricaldeterministicmethod: • Determinethemaximumintensityeverobservednearthesiteresultingofanearthquake; • Addasafetymargincorrespondingtoonedegreeofintensity. For both deterministic approaches, the peak ground acceleration is given by correlation curves betweenintensityandpeakgroundacceleration Tihange NPP Bothdeterministicapproachesyieldedthesameresult,namelyanearthquakeofanintensityofVIIon the MSK scale. The peak ground acceleration corresponding to this intensity was 0.1g, by using Medvedevcorrelationcurves. For the first Periodic Safety Review of Tihange 1 (1985) new regulatory guides recommended a differentschemeofattenuation.Thisrecommendationpromptedthelicenseetoconsideramaximum earthquake on the Tihange site of VII 1/2 on the MSK scale. The use of intensityacceleration correlation curves prescribed in the document NRC NUREG0143 resulted in an upgrading of the peakgroundaccelerationoftheDBEfrom0.1gto0.17g. Thehorizontalresponsespectrum,atgroundleveloftheTihangesitewasdeterminedfortheDBEby compilationofseismicrecordingstakenoncomparablesites. Doel NPP TheearthquakewiththegreatestimpactonDoelsofaristheZulzekeNukerkeearthquake(1938):the epicentre was located approximately 75 km from the site. This earthquake is the most relevant in historicalterms,reachingthehighestintensityandwastakenasreferencepointinthedesignphase. Thetremorhadamagnitudeof5.6ontheRichterscaleandwasobservedinDoelwithanintensityof VontheMSKscale. Both deterministic methods were applied for the Doel site based on that earthquake. They both producedapproximatelythesameresult.ThehighestvalueforthePGAwasfinallytakenintoaccount for the site. The corresponding horizontal acceleration at ground level for the frequencies ≥33 Hz amountsto0.058g. Responsespectrumwasthendeterminedtakingintoaccountthespecificpropertiesofthesubsoilin Doel. This sitespecific spectrum was adopted as the basis for checking the seismic capability of structures.Asalreadymentioned,ahigherPGAof0.1gwasappliedforDoel3&4.

2.1.1.3. Conclusion on the adequacy of the design basis for the earthquake WithintheframeworkofadditionalsafetyevaluationsconductedfollowingtheincidentinFukushima, andinordertoassurethevalidityandupdatedcharacteroftheseismicdata,thelicenseerequested the Royal Observatory of Belgium (ROB) to conduct a new study of seismic risk based on a probabilisticseismichazardanalysis(PSHA)takingaccountofthemostrecentinformationanddata. Inrecentyearstwodevelopmentshavetakenplaceinrelationtodefiningtheseismicrisk: • withregardtotheknowledgeoftheseismicriskinBelgium,theearthquakeinVerviers(1692) waschartedandmoreaccuratelystudied; • withregardtothemethodusedforestablishingtheseismicrisk,theprobabilisticmethodis beingusedmoreandmore.Bydoingthis,allhistoricallyknownearthquakesofsignificanceto the site are taken into consideration. This way the most recent knowledge of the seismic zonesinandaroundBelgiumisused.

Chapter2Earthquake 27 TheprobabilisticstudyfromtheROBgivesfirstlytheaccelerationinfunctionofexceedancerateand secondlytheuniformhazardspectra.

Tihange NPP The probabilistic study by the ROB established the seismic level, expressed in terms of peak accelerationandspectrumatbedrocklevel(nearthesurfaceinTihange).Themaximumaccelerations atthatdepthare: • 0.064gforanearthquakewithareturnperiodof1,000years(84 th percentile); • 0.21gforanearthquakewithareturnperiodof10,000years(meanvalue). Foraperiodof100,000yearsthemedianvalueislessthan0.21g.Mostpenalizingvaluewaschosen, i.e.0.21gonthebedrock. Thecurrentdesignseismiclevelsofthethreeunitsin Tihangewerecomparedwith those deduced fromthisnewROBstudyofseismichazardinBelgium.Withthecomparisonbeingmadeatground level, the ROB data is translated in terms of PGA and response spectrum at ground level of the Tihangesite,takingintoaccountthespecificcharacteristicsofthesoil. ThePGAcalculatedbytheROBonthebedrockwasincreasedto0.23gonthesurface(10%margin) toallowforgroundamplification.Thenewsitespectrumgivesapeakground accelerationof0.23g andthespectralformoftheearthquaketothesiteispreservedbyapplyinganamplificationfactorof 2.64(consideredtobeconservative,expressedat84%confidence).

Figure 5 - Comparison of the design spectra of the three Tihange units with the new site spectrum deduced from the ROB study

Itshouldbenotedthatthedifferencebetweenthenewspectrum,derivedfromtheROBstudy,and theDBEisverylimitedwithregardstothemarginstakenintheinitialcalculations.Infact,thedesign assumptions are those required by the applicable construction codes; these requirements are recognizedasconservative,especiallyinthenucleardomain,wherethedemandsgreatlyexceedthose oftheEurocodes. ThespectrumdeducedfromthepreliminaryROBstudyslightlyexceedstheDBEfortheTihangeunits butthisdoesnothaveanyconsequencesforthefollowingreasons: • beingqualifiedforaDBEbasedonmethodsconsideredasbeingconservative,andbearingin mindthedesignpracticesinherentintheconceptionofnuclearstructures,thegreatmajority ofstructures,systemsandcomponentskeeptheirqualificationfortheearthquakededucedin theROBstudy; • the evaluation of the margin based on the SMA methodology, conducted as part of this exerciseanddescribedlater,confirmsthisresult.

Chapter2Earthquake 28

Nevertheless, a more detailed and complete seismic hazard analysis for the Tihange site will be conductedandwillallowconclusionswithregardtotheadequacyoftheDBE.

Doel NPP TheprobabilisticstudyconductedbytheROBdeterminedhowgreattheseismiclevelisexpressedin terms of maximum acceleration and spectrum at a depth of approximately 600 m (bedrock). The maximumaccelerationsatthatdepthare: • 0.053gforanearthquakewithareturnperiodof1,000years(meanvalue), • 0.146gforanearthquakewithareturnperiodof10,000years(meanvalue). Themaximumaccelerationsoftheearthquakeofwhichitcanbesaidwith84%certaintythatthey onlyoccuronceevery10,000years,aswellasthe‘median’valuesfor100,000years,arebothlower than0.146g. The most penalising value of the maximum acceleration at bedrock level, i.e. the mean value for 10,000 years, was rounded up to 0.15g and surface response spectrum was obtained with the site transfer function. The response spectrum used was coming fromthe US NRC R.G. 1.60. This then allowedmakingacomparisonwiththecorrespondingvaluesinthedesignbasis.Theillustrationbelow demonstratestheresults:

Figure 6 - Spectrum at ground level based on the ROB study and the design spectrum of Doel 1&2, Doel 3 and Doel 4. • The frequencies to be considered in order to evaluate the resistance of the buildings are between1.5and5Hz.Inthisrange,thenewevaluationproducesasubstantiallylowervalue fortheaccelerationatgroundlevelthanthosetakenintoaccountinthedesignofDoel1&2 andDoel3&4; • Higherfrequenciesaresignificantfortheequipmentinsidebuildings.Thenewevaluationgives aPGAof0.081g.ThisvalueisslightlyhigherthanthedesignvaluesofDoel1&2andlower thanthedesignvaluesofDoel3&4.Thissmalldifferenceisoflittlesignificanceforthereal seismicresistanceoftheequipmentinthecaseofsuchanearthquake.Allseismicallyqualified equipment is, after all, designed and constructed with due observance of extensive safety factors. This was confirmed by the SMA study that evaluated the integrity of the relevant equipmentatanaccelerationof0.3g.

Chapter2Earthquake 29 2.1.2. Provisions to protect the plants against the design basis earthquake

2.1.2.1. Structures, systems and components necessary for stable, controlled shutdown and remaining available after the earthquake

Tihange NPP Buildingsandstructures Buildingsandstructuresprotectthefollowingsystemsagainstexternallyinducedaccidents: • primarysystem; • spentfuelstoredonthesite; • tankscontaininggaseouseffluents; • systemsthatensureasafereactorshutdownincaseofunavailabilityofthenormalshutdown systems. Thesestructuresareseismiccategory1buildingsaccordingtoRG1.29(revision2,February1976). TheyarethereforedesignedtowithstandtheDBE. Systems To ensure a safe shutdown of the unit and its maintenance in a stable and controlled state, the followingsystemsthatprovidethevitalfunctionsmustbecapableofwithstandingaDBE: • corecoolingsystem:primarysystem(andbytheEAS/EAAfeedingthesteamgenerator,and theAUGforthesecondlevelofTihange2&3); • reactivitycontrol:CCV,CIU(secondlevelTihange2)andIJU(secondlevelTihange3); • primarypressurecontrol:CCVCISRPP; • coreinventorycontrol:CCV,CIU(secondlevelTihange2)andIJU(secondlevelTihange3); • removalofresidualheat:RRACRICEBbackedupbythegroundwatercircuit(Tihange1) orsecondlevelsystemsRRACRUCEU(Tihange2&3). Furthermore a seismic capability is also required for the safety systems performing the following functions: • safetyinjectionsystem:CIS; • containmentspraysystem:CAE; • depressionandfiltrationoftheannularspace:VEA; • isolationofthereactorbuilding; • inhabitabilityofthecontrolroom:CSC; • inhabitability of the BUS control room situated in the reinforced building in case of unavailabilityofthenormalcontrolroomofTihange2or3. Inordertoguaranteethesafetyofthefuelstoredinthepoolsofthereactorunits,thepoolcooling functionisalsoguaranteedincaseofaDBE. In accident conditions it is also necessary to measure and control the radioactivity. The following systemsenablethiscontrol:CENLPA,GBRandtheVBPchains(forTihange1)andEPA,GBR,GCH (forTihange2&3).Thisallowsgeneratingreliableinformationonpotentialreleasesofradioactivityinto theenvironment. All these systems or the parts of these systems that have to function in case of an accident are designedasseismiccategory1andarelocatedintheinteriorofseismiccategory1structures.The ventilation/coolingofcertainsafetyequipmentisvitalfortheirgoodfunctioning. Itisalsonecessarytokeepenvironmentalconditionswithinthelimitsdefinedforthehabitablezone. Forthesereasonsthefollowingsystemsarelikewisequalifiedorpartiallyqualifiedforwithstandinga DBE:VEA,VLE,CSC,VBPandventilationoftheBUR.

Chapter2Earthquake 30 ThefirstperiodicsafetyreviewofTihange1(1985)resultedinthedefinitionofanemergencysystem to manage events not taken into consideration in the initial design of the electric building of the reactor.ThisistheEmergencySystem( Systèmed’UltimeRepli SUR)whichrepresentsanextralevel ofprotectionforTihange1.

ControlCommand The control room and the BUS control room (for Tihange 2&3) and its panels, desks, instrument cabinets and switch cabinets assure the remote command and control of all the required systems previouslymentioned.TheyarethereforealsoqualifiedtowithstandaDBElevelearthquake. These control and command systems ensure the automatic protection of the reactor in normal operatingconditions,andtheactuationofthesafetysystemsandtheirauxiliarysystems.

Electricalsystems In the event of total loss of offsite power supply, autonomous production sources consisting of electricitygeneratorswithGDSdieselenginesareused. In case of loss of this first level of protection, a second completely independent level of electrical power supply (three GDU diesel engine generators per unit) powers the secondlevel emergency equipment of Tihange 2&3. For Tihange 1, a turbinetype generator driven by secondary steam (groupe d’ultime secours GUS) and a diesel generator (diesel d’ultime repli DUR) constitute an emergencypowersource. Abackupdieselgenerator( GroupeDieselde Réserve GDR),presentinTihange2,offersadditional backupavailableforthethreeunits.Infactitcanreplaceoneofthediesels(GDS)ofeachofthe units. TheGDS,GUS,GDRandDURgeneratorsarequalifiedasseismiccategory1andarelikewiselocated insideseismiccategory1structures.

DESpentfuelpoolbuilding ThespentfuelelementsfromthethreeunitsontheTihangesitethathavebeenunloadedforatleast twoyearsarestoredunderwater(inpools)intheDEbuildingfor"intermediatestorageofspentfuel". Thistooisaseismiccategory1structure. ThecircuitsoftheDEbuilding,thatis,thespentfuelpoolcooling(STP,SRIandCRI),theventilation ofthebuilding(VDE)andtheisolationofthedrainingcircuit(SEX/CEX)aredesignedaccordingtothe samebasesandbyapplyingthesamerulesasthoseusedforthecorrespondingsystemsofTihange3. Forthesesystemsthefitnessforfunctioningoftheactivepumps,activevalvesandtheirmotorsor actuators,andtheirrespectivevitalfixturesandmountingsisdemonstrated.Theinstrumentationand equipmentoftheDEbuildingisclassified1E. Doel NPP ForbothDoel1&2andDoel3&4therequiredstructures,systemsandcomponentsthatareessential forasafeshutdownarecategorisedasseismiccategoryI.

Doel1&2 The General Design Criterion 2 of 10 CFR 50 (appendix A) requires structures, systems and components that are of significance for safety to be designed in such a way as to provide for resistance to natural phenomena. Their safety function may not be compromised under any circumstances. Thesestructures,systemsandcomponentsareclassifiedasseismiccategoryIandaredesignedin accordancewiththeseismiccriteriaapplicableforthatcategory. InthedesignofDoel1and2,theseismicityoftheareawasconsideredtobetoolowforittobe takenintoaccount.AsaresultoftheFirstPeriodicSafetyReview(1985),theriskofearthquakeswas examinedonceagain.Thedecisionwastakenatthattimeto • considerareferenceearthquake(DBEwithPGAof0.058g); • provideforthenecessarymeanstoenablecriticalsafetyfunctionstobeguaranteedifsuchan earthquakewastooccur.

Buildingstructures

Chapter2Earthquake 31 The resistance of the reactor building (RGB), the reactor auxiliary services building (BAR) and the nuclearauxiliaryservicesbuilding(GNH)totheDBEwerecalculatedbasedonamathematicalmodel ofthebuildings.ThecalculationsshowedthatthebuildingscanwithstandaDBE.

Systems ThesafetysystemsrequiredtocarryoutasafeshutdownofDoel1&2guaranteethatthefollowing functionsaremaintained: • removalofresidualheat,includingcoolingoftheprimarycircuitbythesecondarycircuit; • preserving the subcritical state of the reactor, also when proceeding with and during cold shutdown; • monitoringthewaterbalanceintheprimarycircuit; • monitoringthepressureintheprimarycircuit. These functions make it possible to carry out an instant hot shutdown and maintain that state. Proceeding with and maintaining the cold shutdown will be possible over the longer term. These functionsalsopermitremovaloftheheatfromaunitalreadyinacoldshutdownstateatthemoment oftheearthquake(heatremovalviatheSCsystem). An additional safety function concerns the cooling of the spent fuel pools in the nuclear auxiliary servicesbuilding(GNH). Foreachunit,theemergencysystemsbuilding(GNS)containsanumberofadditionalprovisionswhich makeitpossibletobringtheunitsintoasafeshutdownmodeafteranearthquake. Theseemergencysystemscompriseperunit: • anemergencyfeedwatercircuit(EF); • anemergencyinjectionsystemfortheseals(RJ)oftheprimarypumpswhichalsomakesit possibletomonitorthewaterbalanceintheprimarycircuitandthereactivityofthereactor; • anumberofsupportsystems:compressedair(EI),ventilation(EV),coolingoftheequipment (EC circuit that can take over the function of the CC circuit), electrical supply by diesel generators(ED)andbatteries,instrumentation; • anemergencycontrolroom(NKZ)thatenablesthemonitoringofalltheemergencysystems; • anemergencycoolingforthespentfuelpools(PLcircuit). Anumberoftheexistingsystemswasalsoseismically qualified in order toguarantee theabilityto bringtheunitsinhotshutdownmodeandsubsequentlythecoldshutdownmodeinresponsetoan earthquakeandtoguaranteeabilitytocoolthespentfuelpools.Thesesystemsare: • the primary circuit, down to and including the second active isolation element of the first passive,normallyclosedisolationelement; • the secondary circuit, from the steam generators up to and including the first isolation element,withtheaimtomaintainingtheintegrityofthispartofthecircuit; • residualheatremovalcircuit(SC)–forremovingresidualheatoverthelongerterm; • thecoolingcircuitofthespentfuelpools(PL)–forremovalofresidualheat; • (partsof) systemsandequipment,thefailureofwhichcan,astheresultofanearthquake, causedamagetotheabovementionedsystemsandequipment. Maintaining the water inventory in the primary circuitaswellascoolingandremovingtheresidual heatcanthereforebeensuredbyseismically qualified systems and equipment. These systems and equipmenthavebeenqualifiedagainsttheDBEduringthefirstPeriodicSafetyReview(1985). Electricalequipment The electrical equipment under category 1E (according to the definition in norm IEEE 3231974) neededtosupportthesystemsreferredtoaboveisresistanttoearthquakes. Doel3&4 Depending on the cause of an incident – internal or external – a different safety level comes into effect.

Chapter2Earthquake 32 • thefirstlevel(safetyequipment)protectstheenvironmentagainstanyincidentcausedwithin theinstallations; • the second level (emergency equipment) protects the environment against any incident causedoutsidetheinstallations. Thestructures,systemsandcomponentsofbothlevelsaredesignedinsuchawaythattheirsafety functionremainsintactafteranearthquake.These SSC’scanwithstandtheconsequencesofaDBE andalsocomplywiththestandardsofseismiccategoryIaccordingtoRG1.29.

Buildingstructures Specificsafetyfunctionshavebeenassignedtothebuildingstructuresofthefirstsafetylevel:leak tightness,biologicalshielding,protectionagainstprojectilesofaninternalorigin,etc… Thebuildingstructuresofthesecondsafetylevelprovideprotectionfortheprimarycircuit,thenuclear fuelstoredinthepowerstationaswellastheothersystemsofthesecondlevel. AllthesestructuresareclassifiedunderseismiccategoryI.

Systems Thesystemsofthefirstsafetylevelhavethefollowingfunctions: • coolingthecore(ECCS); • boratingtheprimarycircuit(injectionofboricacid); • safeguardingtheintegrityofthecontainment; • maintaininghabitabilityofthecontrolroom. Inthecaseofanincidentwithanexternalcause,thesystemsofthesecondsafetylevelensurethe coolingofthecore. Electricalequipment The electrical equipment under category 1E are subjected to a qualification program in which the seismicpropertiesandenvironmentalfactorsareexamined.

SpentFuelContainerBuilding ThespentfuelisstoredinleaktightcontainersintheSpentFuelContainerBuilding(SCG). ThecontainersweredesignedinaccordancewiththerequirementsofIAEASafetySeriesno.6ofthe SafetyStandardSeriesNo.TSR1. The seismic spectra taken into account are those for the Tihange site, which means that the containerscanalsobeusedthere.Theapplicablevalues–0.17ghorizontalacceleration,0.11gvertical acceleration–arehigherthanthosenecessaryfortheDoelsite.

2.1.2.2. Main operating dispositions

InstructionsafterEarthquake On both the Doeland Tihange site the EPRI (ElectricPowerResearch Institute) guidance has been used to define, after an earthquake, the shutdown requirements, the conditions of restart and the longterm actionto be taken to ensure that the unitcancontinuetofunctionatthelevelofsafety required by the design basis. As required by regulation (10 CFR 100), the sites are equipped with adequateinstrumentationallowingrapidassessmentoftheintensityoftheearthquakeandtodecide whethertheNPPisabletocontinuetofunctionsafely. The Tihange procedures for postearthquake action are in compliance with the EPRI Guides. Formalisedbycommandinstructionsforeachunit(incidentprocedureinTihange1),theysetoutthe appropriateactionsstaggeredovertime.Doel1&2andDoel3&4haveaspecificprocedure‘actions afteranearthquake’thatisbasedon10CFR50,app.S(92)andtheEPRIguidelines. Theinstructionsaredescribedinproceduresdependingontheinitialstateofthereactorunitwhenan incident occurs. The unit may in fact be in normal operation (or in hot shutdown), in intermediate shutdownorincoldshutdown(RRAconnected).Theshiftcrewteamsaretrainedtofollowthesepost accidentalinstructions.

Chapter2Earthquake 33 Internalemergencyplan TheDoelandTihangeNPPshaveaninternalemergencyplanthatisflexibleenoughtocounterany incidentwhichcouldthreatenthesafetyoftheinstallationsorpersonsorwhichcouldhaveanimpact ontheenvironment. Operationalprocedures Thepurposeoftheseoperationalproceduresistolaydownelementaryrulesofbestpracticeinorder tocontrol/eliminatetemporaryseismicinteractionsduringeachoperation.Thepersonnelistrainedto payparticularattentiontoavoidunderminingtheseismicqualificationofequipmentthroughchanging theirenvironment: • temporarily by introducing the tools, machinery, etc., necessary for the execution of their tasks(scaffolding,ladders,stepladders,etc.); • permanentlybeleavinganynonfixedobjectintheproximityofasafetydevice. Ontheirdailyroundstheoperationssupervisorswillalsocheckthatnomaterialinstalled/placednear safety equipments can adversely affect these equipments by falling, collapsing, shifting or toppling over. Mobileequipment DoelandTihangeareabletocopewiththeDBEwithouthavingtousemobiledevices.Thelicensee, nevertheless,keepsanumberofdevicesonstandbyforthepurposeofmitigatingtheresidualriskin theunlikelycasethatthesafetysystemsofboththefirstandthesecondgroupfail. • electricalpowersupplycables; • mobilecompressor; • mobiledieselpump.

2.1.2.3. Indirect effects of earthquakes taken into account during design Tihange NPP

The studies conducted in the framework of seismic margin assessment show that the systems mentionedintheearlierparagraphsallowtheshutdownoftheunitinthefollowingscenarios: • abreachofthedamcausedbyanearthquake; • anearthquakecombinedwithaLossofOffsitePower(LOOP). They also allow, in each of these scenarios, the management of internal flooding following an earthquake. Internalflooding DuringthesecondPeriodicSafetyReview(1995)astudywasconductedtoanalysetheeffectsofan internal flood in the buildings containing safety equipment. SQUG inspections (Seismic Qualification UtilityGroup)wereorganizedfortheunclassifiedpipework(mediumenergylines)toensurethatpipes willnotruptureasaresultoftheDBE. BuildingNinTihange1,buildingsZ,P,O,B,D,N,W,galleriesK,BAE,GDS/GDRinTihange2and buildings BAE, W, K, B, P and galleries in Tihange 3 have had SQUG inspections. A study of the consequencesofaninternalfloodhasbeenconductedforthenonseismicbuildings. Itmaybeconcludedthat,forthebuildingsinspectedaccordingtotheSQUGmethod,aninternalflood following an earthquake would not represent any hazard. For the other buildings the most critical scenariothatistosay,abreakinaCECpipeinthemachineroomhasnotbeenstudiedinany greatdepthbut,giventhespeedofflowcomparedwiththesurfaceandthevolumeofthebuilding, thealarmsshouldallowtheshiftcrewteamstoreactrapidlyinordertoavoiddamagetoimportant equipment.

Externalflooding AnassessmentofpotentialfloodingwasconductedontheTihangesitetakingintoconsiderationthe sourcesoffloodingsituatedoutsidethebuildings:coolingtowers,tanks,CECcircuit,etc.

Chapter2Earthquake 34 The ruptureofeach of these pieces of equipment was analysed. For the specific case of packing 2 fallingfromthecoolingtowers,anoverflowdischargefromtheCECintheorderofaround2m³/shas beenstudied(partialpackingfall).Noneofthesecasesrepresentasafetyproblemontheirown. Theseconclusionshavebeenreusedandtwoadditionalhypotheseswereadded: • the simultaneous rupture of all equipment (water tanks, diesel fuel tanks) that does not withstandtheDesignBasisEarthquake; • thefallofallthepackingatthefeetofthecoolingtowers,whichinducesanoverflowof50% ofthenominalCECflowrate.

Effectsofsimultaneousruptureofwatertanks Alltankspresentingariskofrupturearesituatedoutsidethebuildings.Thewaterthatescapesfrom thesetanksincaseofrupturewillfollowtheslopeofthegroundandrunsoffawayfromthebuildings intothedrainagechannelsandgutters. The water will very quickly be evacuated by the drainage network, the capacity of which is 540 m³/ha/h(150l/ha/s).Thewaterthereforecannotreachtheentranceleveltothebuildings(71.5m) exceptforaveryshortperiod.Onlyaminimumquantityofwatercanpenetrate,giventhepresenceof industrialdoorsthatareobligatorilyclosed.Consequentlynosafetyequipmentwillbeaffectedifthese tanksshouldburst. Effectsofsimultaneousruptureofdieselfueltanks Thetwodieselfueltanksareplacedinaconcretecontainerstructure.Evenifthetanksarecrackedby theearthquake,thesecontainerswillconsiderablyslowdownthespreadofdieselfuelescaping. Effectsofpackingfallingonthethreeunits In2002twoofthenumerousconcretepillarssupportingthepackingofthecoolingtowerofTihange3 fellaftertheruptureofoneoftheirbases.Thiscausedthefallofthepacking,whichthenpartially obstructed the outlet grid at the foot of the tower. During this incident about half of the rated dischargeoftheCECoverflowedinsteadofreturningtotheMeuse.Alargequantityofwaterspilled overthesite. Followingthisincident thedesign of the packingwasreviewedon Tihange 2 and 3.Based on the experiencefeedbackofthe2002incidenttheoverflowdischargeisconservativelyestimatedat50%. Impactonthesite InTihange1thefallofthepackinghasnoeffectbecausethewallaroundthecoolingtowerbasinhas anaperturecreatingapreferredrunoutlargeenoughtoshed50%oftherateddischarge,or100% oftheoverflowdischarge,inthedirectionawayfromthesafetyrelatedbuildings.InTihange2and3, 50%oftherateddischargeoftheCECcircuitwilloverflowthecoolingtowerbasininlessthanone minuteandthenbeginto floodthesite. Thewaterlevelcanvarybetween15cmand25cm.This meansthatTihange2and3aresurroundedbywaterexceptontheNorth,facingtheriverMeuse. Impactontheunits Water infiltration in the various zones is analysed taking intoaccount allopeningsin thebuildings (suchastheairinletholesinthedoors,theaperturesunderthedoors,thefreegapsandpassagesin the walls, etc.). The analysis is conducted taking account of the fact that the CEC pumps will reasonablybestopped30minutesafterthepackingfall. Tihange1 Tihange1willbethelasttobeaffected,beingfarthestremovedfromthecoolingtowersofTihange2 and 3, and would be concerned for only a very brief period. It is expected that the unit’s diesel generatorswillbeimmersed.Theywillbetheonlyaffectedcomponents.Withtheoffsitepowersupply undamaged,allthecomponentswillremainpoweredandavailable,inparticularthosenecessaryfor thestableandcontrolledshutdownofthecoreandforthecoolingofthepool.Theconsequencesare identicalintimeofshutdown. 2Thepackingisthewaterdispersionmodulesinthecoolingtower.Theyconsistofabedofathicknessofabouttwometresof honeycombstructuredpolyethylene.Ithelpstodispersethewatertomaximizetheexchangesurfacewiththeair.

Chapter2Earthquake 35 Tihange2 ThefirstbuildingstoreceivesignificantquantitiesofwaterwillbethemachineroomandtheBANN. WaterinfiltrationstowardstheBANDorthelowerfloorswillnothavetimetobuildupintovolumes sufficienttocauseseriousdamage.TheBUSequipmentswillinanycasebeavailableforthecoolingof thefuelastheinfiltrationswillbereduced,the volumestofilllargeandthepumpingsystemsstill operational.However,twoofthethreeCEUgroundwaterpumpswillbelostsincetheystandinthe directlineofthewaterflowfromthetowerofTihange2towardstheMeuse.Thiswillnotentailany nonavailability of theequipment supported by thesepumps,sincethreeadditionalCEUpumpscan drawwaterfromtheMeuseandserveasasourceofcooling.BuildingOwillbeflooded,buttheoffsite power supply will still be available, so this will be without consequence for the safety equipment necessaryforthecoolingofthefuel. ThankstotheirlocationalongsidetheMeuse,ontheNorthsideandthereforeshelteredfromwater flows,theGDS(andtheirdieselfuelstoragebuilding),theCEBandCEUMeusepumpsandtheEAA zoneswillnotexperienceanydirectwaterattackandwillremainavailable. Despitethevolumeoftheflowandthesizeofthe affected zone, the systems and equipment still availablewillallowtomaintainefficientcoolingforanunlimitedtimethankstofirstorsecondlevel safetyequipment. Inashutdownstate,the CECpumpsstoprunningfor80%ofthetime(duringmaintenanceofthe equipmentofthesecondarycircuit).Theother20%ofthetimealargenumberofstaffarepresenton thesite,andtheoverflowofthetowertankwillveryrapidlybereportedandthenhalted(atanklevel alarmisalsoavailable). Tihange3 Thefirstpartsoftheinstallationaffectedwillbethemachineroom,theworkshopandbuildingE.This will not have any consequence for the safety equipment. In fact, although building E contains classifiedequipment(themainelectricswitchboards),thesearesituatedontheupperfloorsandwill thereforenotbeaffectedbywaterfromtheCEC. OnlyoneoftheCEUwellpumpswillbelost.ThethreeMeuseCEUpumpswillremainavailable. ThewateringressintheDEspentfuelbuildingwillcomefromoutsideandfromitsconnectionwith thePHIbuilding.Bearinginmindthelargesurfaceofthesubsoil,lowingressflowsandtheavailability ofpumpingsystems,thespentfuelpoolcoolingpumpswillremainavailable. Furthermore,thepassiveinertiaoftheDEpoolsallowsformorethan24daysbeforethefuelrodsare uncovered,evenifthepumpsarestoppedandnoactionisundertaken. TheCEBpumps,theEAApumps,theEAAtank,theGDSandthemainfuelcoolingequipmentsituated intheBUS,theBANNandtheBANDwillremainoperational.BuildingOwillbefloodedbut,sincethe offsitepowersupplywillstillbeavailable,thiswillbewithoutconsequenceforthesafetyequipment necessaryforcoolingthefuel. AswithTihange1and2,theequipmentstillavailablewillallowtomaintainefficientcooling,foran unlimitedtime,bythefirstandsecondlevelsafetyequipment.Theanalysisforashutdownstateis identicaltothatforTihange2. Foreseeablemeasurestoincreaserobustnessofthesite Evenifthismajorbutunlikelyeventdoesnot haveseriousconsequences,thefollowingactionsare undertakenforTihange2and3: • modificationoftheearthquakemanagementproceduresinordertoveryquicklysendanagent toverifywhetherthecoolingtowerisoverflowing.InthatcasetheCECpumpswillberapidly stopped; • studyoftherelevanceofanautomaticstopofone ofthetwoCECpumpsin caseofhigh waterlevelinthecoolingtowerbasin.

Accesstothesiteandaccesstobuildingsandzones

Chapter2Earthquake 36 Variousaccessroutesareidentifiedtothecontrolroomafteranearthquake:twopedestrian/vehicular accessroutesarethefavouredroutesinapostaccidentsituation.Theseaccessroutesmaylaterbe cleared of debris by a bulldozertype heavy vehicle. If the pedestrian access is not possible, a helicopterliftcanbearrangedandvariouslandingzonesarepossible. Withtheconcernedbuildingsbeingseismicallyqualified,theaccessroutesthatmustbeusedafteran earthquakearedesignedinsuchawayastoprovidefreeaccessafteranearthquake.

Doel NPP

Interactionsbetweenstructures,systemsandcomponents Structures,systemsandcomponentsthatcannotwithstandtheDesignBasisEarthquakecouldcause damagetootherSSCswithasafetyfunction. Forthisreason,SQUGinspectionswereorganisedaspartofthePeriodicSafetyReviewsofthefour Doelunitsinallbuildingswheresafetyequipmentispresent.Wherenecessary,equipmentnotcapable ofwithstandingtheDBEwasremovedorseismicallyqualified. Internalflooding DuringthelastPeriodicSafetyReviewastudywas conductedtoanalysetheeffectsofaninternal flood in the buildings containing safety equipment. SQUGinspections were organized for the unclassified pipework (medium energy line) to ensurethatpipeswillnotruptureasaresultofthe DBE. SuchSQUGinspectionshavetakenplaceinthefollowingbuildings: • Doel1&2:GNS,TUR½,BAR,MWP,GNH.TherehasnotbeenanySQUGinspectionforMAZ andGMH,thoughtherehasbeenastudyoninternalflooding. • Doel 3&4: GEH, BKR, GMH. There has not been any SQUG inspection for GVD and GNH, thoughtherehasbeenastudyoninternalflooding. In buildings where an SQUG inspection was conducted, the safety equipment is not exposed to potentialinternalfloodingastheresultofanearthquake.Intheotherbuildingsmeasureshavebeen takentoprotectthesafetyequipmentagainstfloodingastheresultofaruptureofapipeline. Externalflooding Thedangeroffloodingwasalsoexaminedextensively,takingaccountofallpossiblesourcesoutside thebuildings:coolingtowers,tanksetc.Preventivemeasureshavealreadybeentakeninthecontext ofthePeriodicSafetyReview(subjectB4).Analysisoftheconsequencesofthistypeoffloodingshows thattherisksarefullycoveredbythemeasuresandproceduresprovidedforinthePeriodicSafety Review.

Accesstothesiteandaccesstobuildingsandzones TherearetwoaccessroutestothesiteinDoel.Ahelipadisavailableintheeventofbothoverland accessroutesbeingblocked.AccesscanalsobegrantedalongtheriverScheldtviaalandingstageat thewaterintakeforDoel1&2. Onthesite,allentrancestothecontrolroomsandemergencycontrolroomswerechecked.InDoel 1&2,thecontrolroomisnotlocatedinabuildingseismicallyqualifiedundercategory1.Inviewofthe manyaccesspossibilities,itcanbeassumedthatthecontrolroomremainsaccessible. InDoel3&4,thecontrolroomislocatedinaseismicallyqualifiedbuilding,whichmeansthataccessis notcompromisedafteranearthquake. Theemergencycontrolroomsofthefourunitsareallaccessibleviaatleasttwodifferentroutes. Thefireservicetruckshaveequipmenttoclearawaysmallobstaclessoastoforceapassagethrough fencing,etc. Accountwasalsotakenofthepossibilityoftheearthquakecausingthereleaseofatoxicgascloud outsidethe site. The normal controlroomsare, for this purpose, equipped with a detectionsystem thatautomaticallyisolatesthecontrolroomfromtheoutsideair.Fullfacegasmaskswithafilterare also provided for, as well as autonomous oxygen bottles for the work shift and assisting executive staff.InDoel1&2,oxygenbottlesarealsoprovidedintheemergencycontrolroom.

Chapter2Earthquake 37 2.1.3. Compliance of the plant with its current licensing basis

2.1.3.1. General organization of the licensee to guarantee conformity with design basis Theageingofsystems,structuresandcomponentsinvolvedinthesafetyofanuclearinstallationis monitoredinordertoensurethattherequiredsafetyfunctionsremainavailablethroughoutthelifeof theunit. The Technical Specifications (Chapter 16 of the Safety Analysis Report) describe the obligatory surveillance measures for each system. This allows for verification of the availability of equipment throughproceduresindicatingthelimitsofeachmeasuredparameter.Thischapteralsolaysdownthe measures to be taken and the relevant time limits in case of unavailability of equipment. Furthermore,theprogrammeofperiodictestsconductedonthesesystems,describesthesurveillance measuresappliedtoclassifiedequipment.Itconcernsmore particularlythe pipework, tanks,valves andpumps,includingtheirsupportsandshockabsorbers.

2.1.3.2. Organization of the licensee for supplies and mobile equipment The various design scenarios in connection with an earthquake do not normally require the use of mobile equipment. First response equipment may however be used for beyond design scenarios, situationsthatwouldinvolve,forexample,fallingdebrisorfallingpipes. Thenecessarymaterialisstoredonornearthesite. Specialequipmentisprovidedforonthesiteitselfwiththeaimofmakingitpossibletocarryoutthe emergencyprocedures(beyonddesign).Thisequipmentischeckedperiodically.

2.1.3.3. Potential deviations from the referential and corrective action Thetestsandinspectionsdescribedabovemaydetectnonconformities.Iftheyaresoimportantthat theequipmentnolongermeetsitsdesigncriteria,theSafetyAnalysisReportdescribesthetimelimits forinterventionandthemeasurestobetaken.Incertainparticularcases,JustificationsforContinued Operation(JCO)aredraftedbythelicenseeandapprovedbytheregulatorybody.Thesedocuments demonstratethatthe(partial)nonconformityofequipmenttotheregulationdoesnotjeopardisethe safetyfunctioniftherecommendedtemporarymeasuresareapplied. On30June2011theonlydeviationdetectedontheTihangesitefromaseismicpointofviewwasthe subjectofJCO201001:"Theelectricboardallowingtheslowstartupof7dieselsinTihange2isnot seismicallyclassified." FortheDoelsite,thefollowingdeviationsfromtheseismicconceptfortheequipmenthavenotyet beenresolved(situationasper30/06/2011).However,noneofthesedeviationsjeopardisesthedue andproperfunctioningoftheequipment. • Doel1&2: none; • Doel3&4:accordingtotheconclusionsofthePeriodicSafetyReview,subjectA4,thepolar craneinthereactorbuildingshavetobeequippedwithaseismicallyqualifiedemergencystop deviceontheworkingfloor.Thisisnotyetthecase;aseismicallyqualifiedemergencystop deviceisonlypresentinthebridgecab.

2.1.3.4. Specific verification of the conformity of installations following the incident in Fukushima AftertheeventsinFukushimaaspecificverificationwasconductedinordertocheckthatthepower stationrespectedthecurrentrequirementsoftheoperatinglicence. Duringthisverificationitwasthoughtadvisabletoraisethelevelofqualificationofthespentfuelpool coolingcircuitsto0.17gforTihange.Thenecessarystudiesandmodificationswerecarriedoutbefore 30June2011.

Chapter2Earthquake 38 Furthermore,aftertheincidentatthenuclearfacilityinFukushima,thesitealsoorganizedaspecific reliabilityreview:SOER20112,WANO.Thisconcernsverificationof: • measurestolimittheeffectsofbeyonddesignaccidents; • conformityoftheinstallationtothedesignregardingtheresistancetolossofelectricalpower supply; • protectionagainstfloods(internalandexternal); • resistancetofloodorfirecausedbyanearthquake. NodeviationfromseismicdesignwasdetectedduringtheseverificationsontheDoelandTihangesite.

Chapter2Earthquake 39 2.2. Evaluation of safety margins

2.2.1. Range of earthquake leading to severe fuel damage - Description of SMR methodology

2.2.1.1. Safety margins in design of NPPs Nuclear power plants are designed according to strict codes and regulations. Their design includes marginsintrinsictoeachstageofthedesignprocess.Bywayofillustrationherearesomeexamplesof conservatismsrelatedtoseismicdesignstudies: • The seismic response spectra are enlarged and amplification factors are often increased in ordertoallowforthevariabilityofearthquakesandthesoilparameters; • The modal responses of buildings that serve to check the behaviour of mechanical and electrical equipment are obtained using a elastic linear method which is conservative in relation to their real behaviour. The shock absorption value of the ground is less than in reality,andtheresponsespectracalculatedatdifferentlevelsofthebuildingareenlarged; • Theresponseofequipmentisdeterminedwithashockabsorptionvaluelessthanreality;the methodsofcalculationintroducenewconservatisms; • Reserve ductility is not taken into account in the verification of the structural behaviour. Guaranteed minimum values of material properties were used. The construction codes also requirecombinationsofconservativeloads. Theseconservatismsusedinthedesignhaveacumulativeeffectwhichleadstogenerallyveryhigh safety margins. For example, thepipes innuclear power stations are veryductile and maydeform quiteconsiderablybeforetheappearanceofanyfailure.Themarginscommonlyobservedfornuclear pipeworkincaseofearthquakemaybeconsideredtobeintheorderof4.Inotherwords,theseismic loadcanbequadrupledwithoutanyproblemforthesafetyoftheinstallation.Electricalequipmentand components are tested on vibrating tables with seismic loads much higher than those actually required. TheintrinsicseismicmarginsofNPPsarethereforegenerallyveryhigh. Althoughrespectingallthedesigncodesandstandards,someequipmentmaypresentmarginslower thanthosegenerallyobserved.Thissituationarisesinparticularinoldernuclearpowerplantsverified with methods applicable at the time and whose seismic level has since been reassessed, such as Tihange1andDoel1&2.Torespondappropriatelyitisnecessarytoexamineeachstructure,system orcomponentofthenuclearinstallationinvolvedinachievingastableandcontrolledshutdownafter anearthquake.

2.2.1.2. Seismic margin assessment methodology AnassessmentoftheseismicmarginsofthethreeunitsinTihangeandthefourunitsinDoelwas made.Thisassessmentisbasedontwomainelements: • an analysis of the behaviour of structures, systems and components subjected to an earthquakeofgreaterintensitythanthecurrentdesignbasisearthquakeoftheunits.Ituses theavailableseismicanalysesandtheresultsofpreviousSQUGinspections. • a new Seismic Margin Review (using a methodology derived from the Seismic Margin Assessment methodology) based on the judgment of experienced engineers, including eminent international experts having numerous references in the field. In particular, these expertsinspectedduringwalkdownstheSSCnecessaryforstableandcontrolledshutdownfor allreactorunitsofDoelandTihange. ThepurposeofaSeismicMarginAssessment (SMA)istoquantifytheavailablemarginsforanuclear power station beyond its design seismic level. These studies, used and recognized internationally, followamethodologydevelopedbyEPRIanddescribedindocumentNP6041.Themethodisbased onthedefinitionofa "ReviewLevelEarthquake" (RLE)thatallows(theoretical)demonstrationofthe

Chapter2Earthquake 40 seismic behaviour of a nuclear power station beyond its DBE, identification of weak points and determination of available margins. Experience with real events forms the basis of knowledge of behaviourofequipmentincaseofearthquake.This basisisdrawnoninthewritingofprecisesite inspection guides. The SMA studies are therefore used to demonstrate that an NPP is capable of withstandingamuchbiggerearthquakethanthatconsideredduringitsdesign.TheSMAmethodology has been applied to numerous NPPs around the world to demonstrate that the seismic hazards reviewedearlierareacceptable,subjecttopossiblereinforcementsoflowmarginequipment. TheSeismicMarginReviewstudy(basedontheSMAmethodology)fortheBelgianNPPsconsistsof thefollowingphases: • examinationoftheseismicdesignbasisandthedesigndocuments: – dataandresultsofstudiesofthegroundstabilityandthebuildingfoundations, – results of seismic analyses of original structures and the results of reassessment (analyses,vibratingtabletests,etc.); – resultsofapreliminarySMAanalysisconductedforTihange1andDoel3aspartofa PeriodicSafetyReview; • reviewofthestableandcontrolledshutdownstrategy; • draftingandreviewofthelistofSSCnecessaryforstableandcontrolledshutdownforeach unit.ThislistwascompletedwiththeSSCnecessaryforthespentfuelpoolcooling; • reviewoftheRLEspectrumdevelopedbythelicensee; • inspection of these SSC to evaluate the behaviour during an RLElevel earthquake. These inspectionshavealreadybeenconductedinallthebuildingsofthedifferentreactorunitsof Doel and Tihange which are accessible during power operation. For the nonaccessible buildings (example reactor buildings) these inspections will be completed during future plannedoutagesoftheseunits; • additionally, the findings of the first team of experts were verified by another team of internationallyrecognisedexperts.Thisadditionalverificationresultsinaveryhighdegreeof reliabilityoftheresults. TheseinspectionscovertheSSCidentifiedasnecessaryincaseofanearthquaketoprovidestableand controlledshutdownfromthefollowinginitialstates: • Poweroperationorhotshutdown(steamgeneratorsavailable); • coldshutdown(steamgeneratorsunavailable); • corecompletelyunloadedinspentfuelpool. Forthebuildings,theseevaluationsconsistof: • identifyingthepresenceofwallsandmasonryorothernonseismicelementsnearseismically classifiedequipment; • identifyingmodificationsthatmaycompromisestructuralintegrityofthebuildig; • checkingtheexpansionjointsbetweenbuildings/structures; • identifyingpotentialimpactrisksofadjacentbuildings/structures; • identifying seismic loads and potential failure modes based on a detailed evaluation of the plansofthebuildings,includingthedesigndetailsandcalculations. Withregardtotheelectricalandmechanicalequipment,thefollowinginspectionswereconducted: • evaluationaccordingtotheguidelinesofEPRINP6041. • evaluation of the capacity of the equipment that needs to continue functioning after an earthquakewithanRLElevel.Itshouldbenotedthattheminimumaccelerationforwhichthe resistance of the equipment is evaluated according to EPRINP5041 amounts to 0.3g, irrespectiveofthevalueoftheRLEforthehigherfrequencies(0.17ginthecaseofDoel). • checkingtheanchoring. • checkingpossibleinteractionswithneighbouringequipment. • evaluation of the possible indirect consequences of an earthquake such as internal and externalflooding.

Chapter2Earthquake 41 Afterassessmentandinspections,theidentifiedSSCareclassifiedinthreecategories: • structures, systems and components having very high probability (95% confidence) of preservingtheir integrity andperforming their function in an earthquake exceeding theRLE level.TheyareclassifiedasHigh(H); • structures, systems and components having a medium probability (50% confidence) of preservingtheir integrity andperforming their function in an earthquake exceeding theRLE level.TheyareclassifiedasMedium(M).Thiscategoryalsoincludes,inaprovisionalway,the elementsforwhichitisdifficulttovalidatetheirclassificationasHigh(H)withoutadditional dataandcalculations; • structures,systemsandcomponentshavingalowprobability(10%confidence)ofpreserving theirintegrityandperformingtheirfunctioninanearthquakeexceedingtheRLElevel.They areclassifiedasLow(L).

Figure 7 - Classification of SSC in categories H, L, M. TheassessmentofmarginsisconductedwithreferencetotheRLE.AlltheSSCnecessaryforstable andcontrolledshutdownareandremainclassifiedforDBE.Thisclassificationofseismiccomponents providesageneralpictureofthecapacityofthecomponentsoftheinstallationinrelationtotheRLE. Asshowninthefigure3,elementsclassifiedasLowcanhaveacapacityclosetotheRLE,thatcan howevernotbedemonstratedbytheinspection.Adetailedassessment(bycalculationortests)ora modificationmayallowrapideliminationofweaknessesinthecomponents. TheSSCwhoseprobabilityofresistancetotheRLEisclassifiedLowaccordingtotheinspectionwillbe subjectofdetailedcalculationsorexpertjudgmentsinordertodeterminetheirseismicmarginmore accurately.

2.2.1.3. Choice of Review Level Earthquake Theseismiclevelhigherthanthedesignseismicleveloftheunits,knownasReviewLevelEarthquake, isnotanewdesignbasisearthquakebutratheralevelspecifictotheSMAmethod. Thechoicewasmadebasedonthefollowingelements: • the European guide for new nuclear power stations (European Utility Requirements) recommendsaratioof1.4betweenthegroundaccelerations due to RLEand those dueto DBE;otherinternationalguides(IAEA)mentionratiosrangingfrom1.5to1.66; • aseismicspectrumrepresentativeofthesiteconditions; • the new probabilistic seismic hazard study conducted bythe Royal Observatory of Belgium. Thisstudyconsidersthemostrecentseismicdata. Tihange NPP The analysisledtothe definitionofthe RLEspectrum given in the diagram below. The maximum responseis0.6gforfrequenciesbelow12Hz.Forhigherfrequenciesthepeakgroundaccelerationis 0.3g.Thiscorrespondstoanearthquakeofamagnitudeofmorethan6.5ontheRichterscale.

Chapter2Earthquake 42 Figure 8 - Comparison of the RLE spectrum and the Tihange DBE spectrum. ThisRLEvalue(PGA0,3g)isfrequentlyusedtoconductmarginassessmenttestsonsiteswithsimilar seismological characteristics. In parallel a new study of the seismicity of the Tihange site was conducted by the ROB. The results of this study confirmed the choice of the RLE and, therefore, allowedperformingthestudiesonthisbasis.Infact,thestudiesbytheROBgiveanappreciablylower accelerationontheTihangesite(PGA0,21gatbedrocklevel). Doel NPP TheanalysisledtothedefinitionoftheRLEspectrumgiveninthediagrambelow. Themaximumresponseis0.42gforfrequencieslower than 5 Hz. For the higher frequencies, the peak ground acceleration is 0.17g, a value that refers to the first, conservative results of the ROB study(fortheearthquakewithareturnperiodof10000years).Thiscorrespondstoanearthquakeof amagnitudeofmorethan6.5ontheRichterscale.

Figure 9 - Comparison of the RLE spectrum and the Doel DBE spectra

Chapter2Earthquake 43 2.2.1.4. Results of SMR - Weak points AgeneraloverviewoftheSMRclassificationoftheSSCnecessaryincaseofanearthquaketoprovide stableandcontrolledshutdownbasedcanbefoundinthetable:

Table 7 SMR Results for different reactor units: Percentage of SSC classified as having a ‘High’, ‘Medium’ or ‘Low’ probability of preserving their integrity and performing their function in an earthquake exceeding the RLE SMA Margin Tihange 1 Tihange2 Tihange3 Doel 1&2 Doel 3&4 Rating High 43% 78% 75% 88% 76% MediumHigh 3 34% 2% 2% Medium 16% 14% 20% 6% 23% Low 5% 4% <1% <1% Other(Medium) 4 2% 3% 3% 5% Moredetailedresultsfromthedifferentreactorunitsareprovidedbelow:

Tihange NPP Tihangesite According to the international experts who performed the seismic margin review for a RLE characterisedbyaPGAof0.3gthefollowingconclusionscanbedrawn:"Thewalkdownsofolderunits (Tihange1)confirmedtheseismicruggednessofSSCsbeyondthedesignbasis;onlyafewseismic vulnerabilitieswereidentified.Somefurtherevaluationsareneededtodemonstratetheseismicmargin toRLE.Thewalkdownsofnewerunits(Tihange2&3)didnotrevealanymajorseismicissues.These unitscouldeasilybeshowntosurviveanRLE." Soil studies in Tihange, were conducted by French experts. These showed that, for earthquakes reachingRLElevel,thesoildidnotpresentanyriskofliquefaction.Thesestudiesalsodemonstrated thatthereisnoriskofterraininstabilityontheTihangesite,inotherwords,noriskoflandslide.

Tihange1 InTihange1,21SSCwereclassifiedLowandarethereforeconsideredashavingalowprobabilityof resisting an earthquake exceeding the RLE. These components could very well be raised to the classification High after carrying out more precise calculations or simple modifications. Additional studiesareongoingtoconfirmthefeasibilityofsuchmodifications.

Table 8 List of SSC classified “Low” in Tihange 1 Equipment Type of Equipment PCT1CCVV002PF Pneumaticvalve PCT1CCVV005PV Pneumaticvalve PCT1CAEP01Ba1 Pump PCT1CRIQ01DR1 Exchanger PCT1CTPQ01BD1 Exchanger PCT1CTPQ01BD1BIS Exchanger PCT1CEBP01EB3 Pump TAM1/S1 Mainswitchboard TAM8/S1 Mainswitchboard TR2/S1 Transformer6kV380V TR3/S1 Transformer6kV380V PDT/UR1 TransferPanel PDT/UR2 TransferPanel TAM1/S2 Mainswitchboard TAM8/S2 Mainswitchboard TR2/S2 Transformer6kV380V 3Theseconsistmainlyofelecticalcabinetsthatcouldnotbeinspectedduringpoweroperationandthatwerejudgedby transpositionofotherelectriccabinetsofthesamedesign.StudiescurrentlyinprogressshowthatthemajorityoftheseSSCwill finallybeclassifiedHigh(H) 4Theseitemscouldnotbeinspectedandwerejudgedcasebycaseonthebasisofavailabledatasuchasconstructor’sfiles, designnotice,calculationsheets,internationalexperience,etc.ThesecomponentsareconservativelyassessedasMedium(M).

Chapter2Earthquake 44 TR3/S2 Transformer6kV380V PCT1SCS Filter PCT1SCS Filter PCT1VLEF13AV Filter PCT1VLEQ02AC1 Exchanger PCT1VLEQ04AC1 Exchanger TheElectricalAuxiliaryBuilding(BAE),initiallyclassifiedincategoryLow(L)duringwalkdownsisnow reclassifiedincategoryMedium(M)byindependentexpertsafterdetailedassessment.Theadvisability ofreinforcingthisbuildingisthesubjectofafeasibilityreport.Itshouldhoweverbepointedoutthat theseismicintensityidentifiedforTihangewouldnotresultinanyseriousdamagetothebuilding. The results of this SMR study are completed by the reassessment of the seismic behaviour of componentsandsupportsoftheprimarycircuit.ThiswasdoneviaapreliminarySMAaspartofthe last Periodic Safety Review. It was concluded that these components have a large margin with referencetoaDBElevelearthquake.AccordingtothepreliminarySMAstudy,basedontheRLE(PGA 0.3g), the components of the primary circuit and their supports are sufficiently rugged and do not requireanyparticularreassessment. Tihange2andTihange3 Regardingtheseismicmargins,thesituationinTihange2and3isevenmorefavourablethanthatin Tihange1.ThegreatmajorityofSSCnecessaryforstableandcontrolledshutdownoftheseunitshave averyhighprobabilityofpreservingtheirintegrityandperformingtheirfunctionsafteranearthquake exceeding the RLE level. Regarding the mechanical and electrical components, no significant vulnerabilitywasidentified.Itmustbepointedouthoweverthatcertainothercomponentshavelower margins:3piecesofequipmentwereassessedLowinTihange2(twoofthembecauseofinteraction withother,nonseismic,equipment).

Table 9 List of SSC classified “Low” in Tihange 2 Equipment Type of Equipment PCT2CEGZ01 Coolingunit PCT2CSCA02B Ventilator PCT2CTPB02R Tank The results of this SMR study are completed by the reassessment of the seismic behaviour of componentsandsupportsoftheprimarycircuit.ThiswasdoneviaapreliminarySMAaspartofthe last Periodic Safety Review. It was concluded that these components have a large margin with referencetoaDBElevelearthquake.AccordingtothepreliminarySMAstudy,basedontheRLE(PGA 0.3g), the components of the primary circuit and their supports are sufficiently rugged and do not requireanyparticularreassessment.

Doel NPP Doelsite AccordingtotheinternationalexpertswhichperformedtheseismicmarginreviewfortheDoelNPPthe followingconclusionscanbedrawn:“Thewalkdownsofolderunits(Doel1&2)confirmedtheseismic ruggednessofSSCsbeyondthedesignbasis;onlyafewseismicvulnerabilitieswereidentified.Some furtherevaluationsareneededtodemonstratetheseismicmargintoRLE.Thewalkdownsofnewer units(Doel3&4)didnotrevealanymajorseismicissues.Theseunitscouldeasilybeshowntosurvive anRLE.” SoilstudiesinDoelwereconductedtoshowthat,forearthquakesreachingRLElevel,thesoildidnot present any risk of liquefaction. These studies also demonstrated that there is no risk of terrain instabilityontheDoelsite,inotherwords,noriskoflandslide. Doel1&2 Onlyonecomponentisgiventheclassification‘Low’(L).Thisconcernsavalveintheinjectionlineon the seals of a primary pump. This shortcoming is being remedied during the outage of Doel 1 in November2011.

Chapter2Earthquake 45 ThefootbridgetotheGNSisaweakpointthatcan beimproved.Thefootbridgeisoneofthetwo possibilitiestogetfromthemaincontrolroomtotheemergencycontrolroomintheGNS.Thebridge runsviatheroofoftheGNH,partofwhichhasbeengiventheclassification‘Low’(L). Anumberofadditionalstudiesresultinthefollowingconclusions: • ThefoundationsofthereactorbuildingsandtheGNScanberegardedasrepresentativeofthe foundationtypeofthedifferentbuildingsatDoel1&2.Adetailedexaminationshowsthatthe foundationpilescanwithstandanearthquakeoftheRLElevel. • The primary components and supports were also reassessed during the last periodic safety review (preceding the SMA). An additional evaluationwasconductedaccording to the SMA methodandconfirmedthatthesecomponentscanwithstandtheRLE. • The drive mechanism for the control rods of the reactor (Control Rods Drive Mechanisms, CRDM)wereevaluatedinanadhocmanner.AmarginhigherthantheRLElevelwasfound.

Doel3&4 Only one component is given the classification ‘Low’ (L). This concerns a ventilation shaft with inadequatesupport.Thisdefectcanberemediedintheshortterm. The primary components and supports were also reassessed during the last Periodic Safety Review (preceding the SMA). An additional evaluation was conducted according to the SMA method and confirmedthatthesecomponentscanwithstandtheRLE.

2.2.1.5. Measures to increase robustness

Tihange NPP InTihange1,21SSCwereclassifiedLowandarethereforeconsideredashavingalowprobabilityof resisting an earthquake exceeding the RLE. These components could very well be raised to the classificationHighsubjecttomoreprecisecalculationsorsimplemodifications.Additionalstudiesare ongoingtoconfirmthefeasibilityofthesemodifications. In Tihange 2 three pieces of equipment were classified Low. As with Tihange 1, possible improvementsareevaluatedoncasebycasebasis.Detailedanalysisofeachcasewillallowtoassess whichimprovementisbesttoimplementifnecessary.

Generally,theseresultsdonotshowanysignificantriskofequipmentfailure.Infact,thepointsfor improvementdetectedinthethreeunitsdonotrepresentanyparticulardifficulty.Inmostcasesthese improvementsseemeasyandarenotnecessarilyindispensablefromasafetypointofview,butwillbe carriedoutinordertobringtheinstallationintoconformitywithregardtotheseresults. Inconclusion,theSeismicMarginReviewconducteddidnotrevealanygapthreateningthesafetyof theinstallations.Themarginsobservedwithintheframeworkofthisstudydemonstratethecapacityof thenuclearpowerplantofTihangetoresistahighintensityearthquake.

Doel NPP In Doel 1& 2 there is only one component with a ‘Low’ classification (L). This component will be adaptedduringtheoutagefortherevisioninNovember2011. ThefootbridgetotheGNSofDoel1&2ispresentlystillaweakpoint.Aninstructionfortheoperators istobeaddedtotheexistingprocedures.Iftheshiftcrewteamwantstogetfromthemaincontrol roomtotheemergencycontrolroomintheGNS,thegroupwillhavetosplitupandfollowthetwo parallelaccessroutes.Thisallowsaminimumnumberofpersonneltogetinplacequicklyinorderto resumeoperationoftheDoel1&2fromtheemergencycontrolroom. For the RWST reservoirs and their piping of Doel 1&2 a check will also be conducted to establish whethertheycomplywiththeRLElevel.Asthisequipmentcanfacilitateretentionofasafeshutdown,

Chapter2Earthquake 46 theywill,ifnecessary,beadaptedbywayof‘defenceindepth’toensurethattheycanwithstandthe RLE. In Doel 3&4, there is only one component with a ‘Low’ classification (L). This component will be adaptedintheshortterm. Inconclusion,theSeismicMarginReviewconducteddidnotrevealanygapthreateningthesafetyof theinstallations.AlltheunitscanwithstandtheRLE,anearthtremorintentionallyratedhigherthan thedesignbasisearthquake.

2.2.2. Range of earthquake leading to loss of containment integrity

2.2.2.1. Introduction Ananalysiswasconductedoftheseismicbehaviourofthecontainmentandpenetrationsoftheunits inDoelandTihangefortheRLE.Itisbasedonan"expertjudgment"approach,basedontheEPRI NP6041.

Tihange NPP Primary(inner)containmentsofTihange1,2and3 Theprimarycontainmentconsistsofaprestressedreinforcedconcretestructureprovidingprotection againstinternalaccidents.Ithastheshapeofacylindertoppedwithahemisphericaldomeandisclad (on the interior) with a steel liner providing leaktightness. The primary containments contain thick reinforced sheets to resist pressure resulting from accident hypotheses taken into account in their design bases, giving them an inherent resistance to earthquake. Structurally these containments correspondtothedescriptionsofthoseanalyzedinAppendixAoftheNP6041,whichgivesthema HighConfidenceofLowProbabilityofFailure(HCLPF)wellbeyond0.3gintermsofPGA. Secondary(outer)containmentofTihange1,2and3 The secondary containment is a reinforced concrete structure surrounding the primary containment andprovidingprotectionforthelatteragainstexternalaccidents.Liketheprimarycontainmentithasa highpotentialforresistancetoearthquakesinexcessof0.3gintermsofPGA. Foundations Thetwocontainmentsarefoundedonageneralcommonbaseanchoreddeepintheverysolidground (altered schist). This foundation does not present any particular seismic vulnerability; it is largely capableoftransferringseismicactiontothe underlyinggroundduringearthquakesofupto 0.3gin termsofPGA. Behaviourofmechanicalpenetrations Thebehaviourofpenetrationsdependsoninertialactionanddifferentialshift. Sincethecontainmentsandtheadjacentnuclearbuildingsarerigid,theirrelativedisplacementsare slightandlargelycompatiblewiththecapacityofthesepenetrations,mostlyduetothepresenceof expansioncompensators.Forinertialactions,thefactthatthestructuresareofrobustdesignallowing them to resist, for instance, accidental pressurization change,gives them aninherent resistanceto earthquakesinexcessof0.3gintermsofPGAinaccordancewithNP6041.

Doel NPP Doel1&2 Primary(inner)containmentandfoundation The primary containment consists of a steel sphere resting on the concrete base of the internal structures.Thesphereabsorbstheprimarypressureandtheseismicload.Thesteelsphere,whichis

Chapter2Earthquake 47 itselfnotsubjectedtomuchloading,ischaracterisedbyafavourableratioofrigiditytomass,which makesitresistanttoamorepowerfulearthquakethantheDBE. Themostheavilyloadedareaofthesphereislocated near the welds on the personnel hatch. The weldshavebeengreatlystrengthened. The concretefloorslabsupportingthe steelsphererestson foundationpiles,theresistanceofwhichhasbeencalculatedforanearthquakewithPGAof0.17g. Allthismeansthereisnoriskofinstabilitywhatsoeverfortheprimarycontainmentinthecaseofan earthquakeof0.17g.

Secondary(outer)containment Thesecondarycontainmentconsistsofareinforcedconcretecylinderformsupportingahemispherical dome, also made of reinforced concrete. This entire structure surrounds the primary containment, whichisthereforeprotectedagainstexternalaccidents. The secondary containment does not display any specific vulnerability, not even in the case of earthquakesexceeding0.17g. Behaviourofmechanicalpenetrations Thebehaviourofpenetrationsdependsoninertialactionanddifferentialshift. Astheprimaryandsecondarycontainmentsareseparateentities,itcannotbetheintentionforthe penetrationsbetweenthetwotoformafixed,rigidconnection.Althoughthepenetrationsaresecured tothesteelsphere(primarycontainment),theirsecondsupportisaflexiblesuspension. The integrity of the penetrations is preserved at all times. It is calculated to withstand an RLE of 0.17g. Doel3&4 Primary(inner)containment The primary containment of Doel 3&4 comprises a reinforced prestressed concrete structure which absorbstheprimarypressureandtheseismicload.Thiscylindricalcontainmentwiththehemispherical domeiscoveredwithasteellinertoensureleaktightness. StructurallythesecontainmentscorrespondtothedescriptionsofthoseanalyzedinAppendixAofthe NP6041,whichgivesthemaHighConfidenceofLowProbabilityofFailure(HCLPF)wellbeyond0.3g intermsofPGA.

Secondary(outer)containment The secondary containment of Doel 3&4 likewise comprises a reinforced prestressed concrete structure running around the primary containment, thus protecting the latter against external accidents: plane crash, tornado, external explosion etc. Just like the primary containment, the secondarycontainmentisalsoparticularlywellresistanttoearthquakes,ineachcaseabovetheRLEof 0.17gselectedforDoel.

Foundation The primary and secondarycontainmentsreston a common floor slab supported by a network of foundationpiles.ThefoundationpilesofthecontainmentsatDoel3&4donotpresentanyproblemin thecaseofanearthquakeof0.17g. Behaviourofmechanicalpenetrations Thebehaviourofpenetrationsdependsoninertialactionanddifferentialshift. Sincethecontainmentsandtheadjacentnuclearbuildingsarerigid,theirrelativedisplacementsare slightandlargelycompatiblewiththecapacityofthesepenetrations,mostlyduetothepresenceof expansioncompensators.Forinertialactions,thefactthatthestructuresareofrobustdesignallowing them to resist, for instance, accidental pressurization change,gives them aninherent resistanceto earthquakesinexcessof0.3gintermsofPGAinaccordancewithNP6041.

Chapter2Earthquake 48 2.2.2.2. Conclusion

Tihange NPP From a structural viewpoint, the situation of the containments of the three units in Tihange correspondswelltothoseinNP6041,forwhichanHCLPFabove0.3gisguaranteed.

Doel NPP Fromastructuralstandpoint,thedesignofthecontainmentsofDoel3&4correspondswelltothatin documentNP6041,forwhichaHCLPFvalueofmorethan0.3gisguaranteed,albeitwithalimitation uptoRLE0.17gforthefoundationpilesinDoel3&4. ThedesignofDoel1&2ismorespecific.Theassessmentisbasedontheavailabledocumentationand givesafavourableconclusionwithregardtostabilityinthecaseofanRLEof0.17g.

2.2.3. Earthquake exceeding the design basis earthquake for the plants and consequent flooding exceeding design basis flood Tihange NPP FloodingoftheMeuse TheearthquakeexceedingtheDBEconsideredfortheTihangesitecorrespondstotheRLEearthquake characterizedbyaPGAof0.3g. SuchaneventcorrespondstoanepicentricintensityofVIIIontheMSKscale.Forthepurposesofthis studythisearthquakeistakenasoccurringatthelimitoftheseismotectoniccontinuumnearestthe site,thatis,11kmsouthoftheTihangenuclearpowerstation,followingtheperpendiculartotheaxis oftheMeusebetweenNamurandLiège(ROBstudyhypothesis). Startingfromtheepicentre,adistinctionismadebetween: • afirstzonewitharadiusof15kminwhichtheseismicintensityisVIIIontheMSKscale(the Tihangesite,11kmfromtheepicentre,isthereforesituatedwithinthiszone); • asecondzone,15to50kmfromtheepicentre,inwhichtheseismicintensityisVIIonthe MSKscale; • athirdzone,50to220kmfromtheepicentre,inwhichtheseismicintensityisVIontheMSK scale. Giventheradiiofthedifferentintensities,thefollowingcanbeconcluded: • inthefirstzoneofinfluence(intensityVIII),apartfromthesite,theonlyexteriorconstruction thatcouldinfluencetheleveloftheMeuseneartheTihangeNPPistheAmpsinNeuvilledam, situateddownstream.Ifitbreaks,theleveloftheMeuseriverwillfallto64.45m.Basedon existing knowledge and additional studies of the resistance of this structure and the consequencesofanintensityVIIIearthquake,itisbelievedthattheAmpsinNeuvilledamwill beabletowithstandanearthquakeofthatintensity. • inthesecondzoneofinfluence,theconstructions outsidethe site that might influence the level of the Meuse are the dams situated upstream and downstream. Based on existing knowledgeoftheresistanceoftheseconstructionsandtheconsequencesofanintensityVII earthquake,itisbelievedthatthedamswillnotsustainanydamagelikelytocausethemto break. In fact, intensity level VII corresponds to slight damage, including to relatively vulnerableconstructions,whichisfarfromthecaseforthestructureofthistypeofdam. • inthethirdzoneofinfluence(intensityVI)thestructuresarenotinfluencedbyanearthquake ofthisintensity.Noimpactisthereforeconsidered. Sourcesoffloodingsituatedonthesite The conclusions of paragraph §2.1.2.3 (Indirect effects of earthquakes taken into account during design:internalorexternalflooding)arealsoapplicabletoanearthquakeexceedingdesignlevel.In

Chapter2Earthquake 49 this case the affected components are the same as those identified as sensitive to the DBE. Paradoxicallyhowevertheconsequenceswillmostprobablybelesssevere:theoffsitepowersupply supposedlost, the CEC pumps willhave stopped running. The remaining equipment will provide an effectivecooling,unlimitedintime,andthusshutdownthereactorinastableandcontrolledmanner. Inconclusion,anearthquakebeyondtheDBEontheTihangesiteshouldnottriggerafloodexceeding the installation design limits. No modification of material, procedures or organization is therefore required. Doel NPP Atsunamiof0.5misatheoreticalpossibilityontheScheldtestuary.However,evenifanearthquake weretocausesuchamaximumtsunamianddestroytheScheldtembankmentatthesametime,the (raised)platformoftheDoelNPPsitewouldstillnotbeflooded. ThesiteinDoelislocatedattheScheldtestuary.Atsunami(tidalwave)andseiche(waveoccurring through resonance in semiclosed water basins) are phenomena that might be initiated by an earthquake. Tsunamiandseiche Earthquakes and submarine landslides are cited as possible causes of a tsunami in Europe. The geologicalconditionsforthisareactuallyonlypresentinalimitednumberofplaces.Basedonmodel runs, it has been examined, for example, what the possible effects of a tsunami might be on the Britishcoasts.TheworstconsequenceswouldappeartooccuroffthecoastofCornwall–tidalwave 0.5to2mhigh.Thechancesofaneffectivetsunamiareregardedasbeingsmall:intheorderof10 2 to 10 4 per year. Given the distance between Cornwall and the Scheldt estuary and the shelter providedbytheWestNormandycoastline,themodelsshowthatthetidalwavewouldbesubstantially subduedtowardstheScheldtestuary:theamplitudewouldnotbegreaterthan0.5m. Asaconsequenceofthecomplexgeometry,itistheoreticallyunlikelythatseicheswouldoccuronthe riverScheldt.Ifthephenomenondoesoccur,however,theamplitudewouldremainlimitedtoabout tencentimetres,andaseichesubduesveryquickly. AnearthquakecouldjeopardisetheintegrityoftheScheldtenbankment.AtDoel,thewaterlevelof the Scheldt is, however, considerably below the height of the platform for the site. Even if an earthquake were to cause the maximum tsunami (tidal wave) of 0.5 m and destroy the Scheldt enbankmentatthesametime,thesiteplatformwouldstillnotbeflooded.Inaddition,itisnotedthat suchatsunamicouldonlyoccuralongwayfromDoel, which means that the Scheldtenbankment collapsingasaresultoftheearthquakewouldhardlybelikely. Sourcesoffloodingsituatedonthesite Intheperiodicsafetyreviewalistwasdrawnupofsignificantpotentialfloodingsourcesonthesite. The listwasfurther expanded byaselection based on the design basis earthquake. The following potentialfloodingsourceswereidentified: • coolingtowerbasinsDoel3&4, • bulkheadlocations–bulkheadsonthecoolingwaterpipes(CW)incontactwiththeoutsideair (openingat+11.08mTAW), • coolingwaterpipes(CW)withsectionsbelowandaboveground, • storagetanks,anumberofwhicharenotseismicallydesigned. Incaseofasevereearthquakeallthesefloodingsourcescouldcontributetothefloodingonthesite. Initially,therewouldbetheimmediateruptureofthedifferentstoragetanks.Thefourmostimportant tankclusterscaneachdischargeseveralthousandcubicmetersofwater,oratotalofalmost13,000 m³. Secondly,alargewaterflowwouldoccurfromthecoolingtowerbasinsand,toalesserextent,also fromthecoolingwaterpipesandthebulkheadlocations.Aleakageflowrateof11m³/sispresumed foreachofcoolingtower basinsofDoel 3&4.Thedifferent leakages from the cooling water pipes

Chapter2Earthquake 50 wouldresultinajointleakageflowrateofaround10m³/sspreadoverthesite.Addedtothiswouldbe aleakageflowrateof0.7m³/sforeachofthetwobulkheadlocations. Ananalysisofthesimultaneousfailureofseveralreservoirsandpipesproducedtheconclusionthat thesafeshutdownwouldnotbecompromisedinthisregard: • At Doel 1&2, the equipment required forasafe shutdown after anearthquakeis located in buildings RGB, BAR, GNS and GNH. In the area of BAR, GNS and GNH,the intrusionofa limitedquantityofwaterwouldbepossibleinthebuildings.BARdoesnothaveabasement andalltheimportantequipmentissituatedonabase,whichmeansthatitsfunctioningwould notbecompromised.TheaccessestotheGNSarethemselveslocatedataround0.8mabove the ground, which means that water intrusion is ruled out or, in the worst case scenario, wouldbeverylimited.GNHandGNSbothhavesafetyrelatedsubmersiblepumpsconnected tothepowersuppliedfromGNS.Thismakesitpossibletopumpoutthelimitedquantityof waterthatcanenter. • At Doel 3&4, GVD and MAZ can flood but, except for the AF pumps located behind the watertight doors, there is no safetyequipment there. Water cannot intrude into thereactor buildings. All other buildings that contain safety equipment can experience very limited flooding.Thebunkersarealsoequippedwithsafetyrelatedsubmersiblepumps,whichmeans thatasafeshutdownisalwayspossiblewiththeequipmentfromthebunker.

Chapter2Earthquake 51 2.3. Synthesis of the main results presented by the licensee Basedontheinformationinthelicensee’sstresstestreportsandtheadditionalinformationprovided by the licensee during technical meetings and onsite inspections, the main results for the topic “earthquake”areasfollows. At first, in the 1970s, no earthquake was considered in the design of the first two units, namely Doel1/2. For the other units, various peak ground accelerations (PGA) for the safe shutdown earthquake (SSE) were used: 0.10 g for Tihange 1, Doel 3 and Doel 4; 0.17g for Tihange 2 and Tihange 3. The PGA are the main data for characterization of the seismic level for which the seismically qualifiedstructures,systemsandcomponents (SSC)aredesignedinordertokeeptheir integrityandremainfunctional. Afterthefirstperiodicsafetyreview,aPGAlevelof0.058gwasdefinedforDoel1/2andtheinitial PGAlevelof0.1gwasincreasedto0.17gforTihange1. ThemethodologyusedtodeterminethePGAisbasedonastudyoftheseismichazard.Deterministic approacheswereused,basedonhistoricaldataandknownseismicfaults. InApril2011,thelicenseecommissionedtheRoyalObservatoryofBelgium(“ROB”)toconductanew studyin order to reassess the validity and adequacyofthereferenceearthquakelevelatDoeland Tihange,takingintoconsiderationtherecentdevelopmentsinseismichazardassessmentsuchasthe useofprobabilisticapproach.TheROBperformedaprobabilisticseismichazardAssessment(PSHA) forbothsites,usingdifferentassumptionsinrelationwiththesourcemodelzoneortheattenuation law.Giventhattherearevariousuncertainties,alogictreecombiningthedifferenthypothesesand lawswasperformed.ThenastatisticaltreatmentgavethecorrespondingPGArelatedtoagivenreturn periodandthemeanorpercentilesoftheexceedancerate.Inaddition,asensitivityanalysisofthe differentchoicesmadewasperformed.ThisresultedinnewvaluesforthePGAoneachsite,i.e.0.081 gforDoeland0.23gforTihange. Withtheresultsofthisstudy,assessmentsoftheseismicrobustnessofthesevenunitscouldstart.A seismic margin review (“SMR”) was chosen by the licensee to accomplish this task. The SMR methodology is based on the seismic margin assessment (“SMA”) described in the EPRI publication NP6041.DifferencesarethattheSMRdoesnotlookfortheseismicrobustnessoftheSSCbutrather looksattheprobabilityoftheSSCtowithstandacertainreviewlevelearthquake(“RLE”)spectrumfor whichthePGAlevelis0.17ginDoeland0.3ginTihange.Thisisaconservativeapproachbecausethis RLEspectrumenvelopsthespectradeterminedbytheROBstudy. Inotherwords,thelicenseeevaluatedtheseismicvulnerabilityoftheSSCona“high”,“medium”or “low” scale corresponding to the probability that theSSCwillkeepfulfillingitssafetyfunction.The licensee commissioned the American expert organization Simpson, Gumpertz & Heger (“SGH”) to undertakeonsiteinspections(“walkdowns”)accordingtothisSMRmethodology.Severalteamswere formed for different units; an additional team was included for an independent review. Walkdowns focusedontheseismicrobustnessoftheSSC,theiradequateanchorages,themountingofinternal devicesandthepotentialspatialinteractions.ThesecriteriaaredifferentdependingontheSSCtobe assessed. ApreliminaryworkwasdonebythelicenseetolistallSSCtobechecked.SGHteamsreviewedthese listswhichcontaintheidentificationnumber,descriptionandlocationinthebuildings. Walkdownsperformedsofarconcludedthat: • forthethreeoldestunits,fewSSCareidentifiedasbelonginginthe“low”category, • forthefourmostrecentunits,SSCoutsidethereactorbuildingcaneasilysurvivetheRLE, • nocliffedgeeffectrelatedtoaseismiceventcanoccur. Correctiveactionsareplannedbythelicenseetosolve the identified weaknessesof the SSC in the “low”category.WalkdownsconcerningtheSSCinthereactorbuildingofthefourmostrecentunits willbeperformednextyearduringoutageperiod.

Chapter2Earthquake 52 2.4. Assessment and conclusions of the regulatory body Theapproachusedtoupdatetheseismichazardandtoassesstheseismicrobustnessoftheseven unitsisinconformancewiththemethodologydefinedbythelicenseeandapprovedbytheregulatory body. Theregulatorybodyperformedadedicatedfollowupthroughoutallstepscarriedoutbythelicensee withrespecttotheseismicreassessment.Afterexaminationofthelicensee’sreports,thePSHAstudy fromtheORBandtheseismicwalkdownreportsfromSGH,technicalmeetingsandonsiteinspections wereorganized. Based on the assessment of the licensee’s reports and the supporting documents, the subsequent technicalmeetingsandtheonsiteinspections,theregulatorybodyconsidersthattheresultingaction planofthisseismicreassessmentisadequate. However,theregulatorybodyidentifiedadditionaldemandsandrecommendationstofurtherimprove therobustnessofthefacilitiesagainsttheseismichazard: 1. For all weaknesses identified during the walkdowns (SSC assessed as having a “low” probability of preserving their integrity and performing their function in an earthquake exceedingtheRLE),thelicenseereportedthateithercomplementarystudiesareunderwayor simple modifications can be undertaken. The licensee shall provide a detailed action plan containing actions taken and actions planned. This also applies to the feasibility study on reinforcementoftheelectricalauxiliarybuilding(“BAE”)atTihange1. 2. DuetothestringenttimeframeoftheEuropeanstresstests,thePSHAstudyoftheROBhad tobeconductedinquiteashorttime.AssuggestedbytheROB,thelicenseeshouldcarryout amoreelaboratedstudywithdueconsiderationof(1)otherelementssuchastheuseofa more recent groundmotion prediction equation or such as a cumulative absolute velocity (“CAV”) filtering, (2) external reviews by international experts and (3) results arising from otherstudiessuchastheECprojectSHARE(seismichazardharmonizationinEurope). 3. The licensee must continue its efforts towards fostering awareness of potential seismic interaction inside the facilities. In particular, thorough attention must be paid to the strict applicationoftherelevantprocedurestoavoidtheinteractionsofscaffoldingswithSSCthat areseismicallyqualified.

Chapter2Earthquake 53 3. Flooding Inordertoprovideaselfstandingnationalreportforthesubsequentpeerreviewprocess,firstthe relevantinformationsuppliedbythelicenseeinitsstresstestsreportsisrecalled. Attheendofthischapter,afinalsectionprovidestheconclusionsandtheassessmentoftheBelgian regulatorybody(FANCandBelV). 3.1. Design Basis

3.1.1. Flooding against which the plants are designed

3.1.1.1. Characteristics of the design basis flood (DBF)

Tihange NPP ThethreeunitsoftheTihangeNPP,situatedonthesameplatform71.5metresabovesealevel,share the same basic design protection against flooding. The potential sources of flooding of the site, identifiedduringdesign,are • HighwaterlevelphenomenainthebasinoftheMeuseriver; • DamfailureatAndenneSeilleupstreamoftheTihangesite; • MalfunctionofthedownstreamdamatAmpsinNeuville. The design analysis took into account conservative but still plausible hypotheses. For example, the combinationofimportanthighwaterandadambreachatAndenneSeillewasnotwithheldsince,in caseofhighwater,thesluicegatesofthedamsarewideopeninordertoevacuateamaximumof water(thehydrodynamicloadisthusreducedanddoesnotendangerthedam). The “Reference Flood” against which the Tihange site is protected, corresponds to the highest historicallyrecordedfloodleveloftheMeuse(in1995),increasedby20%.Theflowrateoftheriver forthisReferenceFloodreaches2,615m³/s,comparedtoanormalaverageflowrateof300m³/sin winter and 50m³/s in summer. In this situation the Meuse water level near the site reaches 71.30 metres(includinguncertaintyof0.1m)abovesealevel.Innormalsituationsanaveragelevelof69.25 metresismeasured(regulatedleveloftheMeusetoallownavigation). Doel NPP TheDesignBasisFlood(DBF),thereferencefloodheighttakenintoaccountintheoriginaldesignof Doel1&2andDoel3&4,isdescribedintheSafetyAnalysisReport.ImportantreferencesfortheDBF arethehistoricaldataconcerningthehighestwaterlevelsduetotidesorstormsurges. • The highest water level ever recorded (1 February 1953) was +8.10 m TAW (“tweede algemenewaterpassing”or“secondgeneralwaterlevelmeasurement”.TAWisthereference heightusedformeasuringtopologicalheightsinBelgium.ATAWheightof0metreisequalto theaveragesealevelatlowtideinOstende). • Themeanhightideis+5.08mTAW. • ThereportbytheDELTAcommitteestatesaprobabilityofoccurrenceofonceevery10,000 yearsfortideswithaheightof+9.13mTAWforthestraitofBath(tothenorthofDoel).This 10,000yearlyfloodwasusedastheDesignBasisFlood(DBF).

3.1.1.2. Methodology used to evaluate the design basis flood.

Tihange NPP TheoriginaldesignbasisfloodfortheTihangeNPPwasfixedwithreferencetothepracticeusedin civil engineering at the time for the design of constructions on the Meuse. It stipulates that: "The damsandembankmentsontheMeuseinthestretchoftheriverfromAndennetoLiègehavebeen arrangedtobeabletotakeaflowrateof2,200m³/s,whichistheflowrateofthehighwaterof1926

Chapter3Flooding 54 (1,862m³/s)increasedby20%".Thedesignbasisfloodwouldthuscorrespondtoaflowrateofthe Meuseof2,200m³/s,causingariseofwaterlevelofupto69.80m. Followingtheimportantfloodsin1993and1995intheMeusevalley(maximumflowrate2,179m³/s), thefloodstatisticshavebeenreviewedaspartoftheperiodicsafetyreview.The“ReferenceFlood”for the site in Tihange was reassessed using the original methodology. It currently corresponds to the highesthistoricallyrecordedfloodleveloftheMeuse(in1995),increasedby20%.Theflowrateofthe riverforthisReferenceFloodreaches2,615m³/sandthethewaterlevelreaches71.30metres. TheTihangenuclearpowerplantisprotectedagainstthisReferenceFloodbythealtitudeofthe platformonwhichitisbuiltandbytheheightofitsperipheralprotections.Theunitsstaydryand functionnormally.Thesiteishoweverplacedunderastateofincreasedvigilanceasaprecaution.

Doel NPP Anevaluationofthedesignbasisflood(DBF)wascarriedoutduringtheperiodicsafetyreviews.The DBF was reassessed on the basis of the most recent data (e.g. meteorological data, calculation models, nuclear regulations). TheDoelnuclear power station is situated on the estuaryof the river Scheldt.Thedifferentpossiblecausesforfloodingofasitelocatedonanestuarywereevaluated.The basicloadingstakenintoaccountandcombinedintheperiodicsafetyrevieware: • StormsurgefromtheNorthSeaandtheastronomicaltide; • AdditionalwindsurgeinthecaseofastormtidebetweenVlissingenandDoel; • Windwaves,waverunupandovertopping. Thehighestwaterleveleverrecordedisstillthatof1953.Astudyconcludedthatthemeanhightide showsaslightlyrisingtendency.Thefloodlevelwitha10,000yearlyrecurrencewasreassessedat(an averageof)+9.35mTAWnearthesite.

3.1.1.3. Adequacy of design basis flood

Tihange NPP ThesitedesignstudiestookintoaccountapossiblebreachoftheupstreamdamatAndenneSeille. TheresultantwavewascomparedtotheReferenceFloodoftheMeuse.Afailureofthedamupstream ofthesitewillhavenoconsequenceonthefunctioningofthereactorsonthesiteinTihange,the waterwavebeingsufficientlyreducedasnottoexceedtheleveloftheembankments. Furthermore,withintheframeworkofthemostrecentperiodicsafetyreview(2005),theUniversityof LiègerecentlyreassessedtheimpactofabreachofthedamatAndenneSeille.Inthehypothesisofa breachoccurringoutsidetheperiodofhighwater,whiletheMeuseisatitsmeanlevelandsupposing theobstructionofthedownstreamdam,thisnewstudyestimatesthatthewavewillhitTihange36 minutesafterthebreachandthatthecrestofthewavewillreachthelevelof70.64m.Thislevel remainslowerthanthelevelreachedbytheReferenceFlood. ThedesignstudiesalsodismissedanyriskoffloodingofthesiteofTihangeduetoamalfunctionof the dam at AmpsinNeuville, situated downstream. Flooding of the site cannot result from a malfunction of the dam situated downstream of the site, since the dam has an emergencyelectric powersupplyandeachoftheflowregulatorscanbemanoeuvredintheabsenceofelectricpower.

Notoplevelofthefloodprotectionconstructionsalongthesite,whetheritisthesiteplatformborder orthewallsofthewaterintakechannelissituatedatalevelbelow71.35m.Thesiteistherefore currentlyprotected: • againsttheReferenceFloodcharacterisedbyawaterlevelof71.30m(includingrisesbythe drainagenetworkandthemarginofuncertainty); • againstbreachoftheupstreamdamatAndenneSeillecombinedwiththeobstructionofthe downstreamdam,wherebythesubmersionwavewouldinduceawaterlevellowerthanthat oftheReferenceFlood.

Chapter3Flooding 55 Ontheotherhand,theevolutionofnuclearregulationhasledtotheuse,inthelatestperiodicsafety review,ofaprobabilisticmethodologytodeterminethefloodleveloftheMeuseasafunctionofreturn period.OneofitsconclusionsisthattheTihangesiteiscurrentlyprotectedbyitsdesignagainsta Reference Flood witha statistical return period that canbe counted in centuries(between100 and 1,000years).TheleveloftheMeuseatthesiteinTihangewasdetermineduptoafloodwithareturn periodof10,000years(decamillennialflood).Thisdecamillennialfloodwasdefinedasthemillennial flood(withaconfidenceintervalof70%)plus15%.Thecorrespondingflowrateis3,488m3/s.No knownhistoricalsourcementionsahighflowrateofthatmagnitude.Itshouldbenotedthatsucha flowratecouldresultonlyunderexceptionalcircumstances combining rapid melting of snow anda longperiodofheavyrain.Thisextremephenomenoncanalsobeforecast. Nevertheless,itwasdecidedtoadoptthisdecamillennialfloodasthenewdesignbasisfortheTihange NPPsoastocomplywiththeinternationalstandards.Thestrengtheningofthelinesofdefencewas thereforestudiedandcertainplannedmodificationshavealreadybeeneffected.

Doel NPP TheperiodicsafetyreviewconcludedthattheprotectionagainstexternalfloodingoftheDoelsiteis stilladequate:thefloodlevelcorrespondingwitha10,000yearreturnperiod(+9.35mTAW)remains substantiallybelowtheminimumheightoftheembankmentatDoel(+11.08mTAW).

3.1.2. Provisions to protect the plants against the design basis flood

3.1.2.1. Protection of the site

Tihange NPP The Tihange NPP is located on the right bank of the Meuse, on a horizontal platform 71.5 metres abovesealevel,ortwometresabovetheregulatedleveloftheriver. ThesiteinTihangeisprotectedbytheheightofthebordersofthesiteplatformandthewaterintake channel.Thewaterintakechannelisprotectedbybankstoppedatitsupstreamsidewithabreastwall of seismically anchored concrete blocks. The banks of the water intake channel have been raised particularly in order to be able to accommodate the Reference Flood. No mobile device has to be installedtoguaranteethisprotection.Thisprotectionispermanentlyoperationalanddoesnotrequire humanintervention. ThisstretchoftheMeuseisboundedupstreambytheAndenneSeilledamanddownstreambythe AmpsinNeuvilledam.AccessisviathemainroadLiègeHuy,whichmarksthesouthernlimitofthe site(theMeusebeingthe northernlimit),orbythesecundaryroadsHuyHamoirandLiègeDinant. ThewholenetworkissituatedatanaltitudeequaltoorhigherthanthatoftheTihangesiteandhasa sufficientnumberofroadsabovethefloodplain(includingforeseeablemaximumhighwaters)toallow accesstothesite(seeFigure1).

Theredzoneinfigure1doesnotcludeanysafetyrelatedequipmentorbuilding.Theorangezone includesalmostallthesafetyrelatedbuildings.Inthiszonetheentrygatestothebuildingsareat71.5 m,oronaverage20cmabovetheground.Thegreenzoneissituatedmuchhigherthantherestof thesite,by2monaverage.

Chapter3Flooding 56 Figure 10 -The different altimetric zones of the Tihange site

Doel NPP Tominimisetheriskofflooding,twoimportantmeasureshavebeenprovidedforinthedesignofthe site:firstly,theentiresite,includingallthenuclearinstallations,issituatedonaraisedplatformand, secondly,theScheldtembankment,whichservesasabarrierforthesite,hasalsobeenraised.The protectionagainsttheDBFisformedbythechoiceoftheheightoftheplatformonwhichtheentire siteislocated,combinedwiththeheightoftheembankmentsnearthesite. • Theplatformwasraisedto+8.86mTAWwhichmeans thattheNPPsiteissurroundedby lowerlyingpolders. • Theembankmentsalongthesitewereraisedto+12.08mTAW,comparedto+11.08mTAW for the Scheldt embankments in the surrounding area. The possibility of settlement of the embankmentsoverthecourseoftimewastakenintoaccount.Thetechnicalspecificationof theDoelNPPrequirethattheembankmentcrownhastohaveaminimumheightof+11.08m TAW.

Figure 11 - Design provisions at the Doel NPP against DBF (Cross section of the embankment)

Chapter3Flooding 57 3.1.2.2. Systems, structures and components

Tihange NPP TheobjectiveoftheprotectionagainsttheReferenceFloodistokeepthesitedry.Thus,incaseof highwaterlessthanorequaltotheReferenceFlood,noequipmentonthefacilitywillbeaffected.All thesystems,structuresandcomponentsnecessarytoensurestableandcontrolledshutdownofthe unitsremainavailable.

Theequipmentofthepumpingstationsprovidingtheuntreatedwaterintakefromanddischargesinto theMeusearelocatedatsuchheightsthattheydonotriskfloodingincaseofReferenceFlood.

Doel NPP TheplatformoftheDoel1&2waterintakelocatedintheScheldtissituatedatapproximatelythesame levelasthesite.Theeventuallossoftheprimaryultimateheatsink(theScheldt)inthecaseofaDBF istakencareofbyanalternateultimateheatsink(untreatedwatercircuit(RW))locatedonthesite within the protection of the embankment. The pumping station for the Doel 3&4 water intake is protectedbytheembankment. InthecaseoftheDBF,onlythecirculationwatercircuit(CW)ofDoel1&2maybeunavailable, nothingelseisdestroyed.

3.1.2.3. Additional design provisions to prevent infiltration of groundwater

Tihange NPP Duringconstructionoftheinstallationsprotectivemeasuresweretakenagainsttheriskofinfiltration bygroundwater. Thelevelofthegroundwatertableisonaverage67.5m,orabouttwometresbelowtheregulated leveloftheMeuse(69.25m).AlongtheMeusethelowpermeabilityofthealluvialdepositsprevents theimmediatetransmissiontothewatertableoffluctuationsintheleveloftheriver.Giventhisdelay effectarapidsubstantialriseofthegroundwatertablecanbeexcluded,evenafteraperiodofhigh water.Thesiteitselfisalsoprotectedfromfastinfiltrationsbyasurfacelayerofsiltandthecovering ofmuchofitsgroundwithasphalt. In Tihange 1, for the parts of buildings situated in the ground, and for the basemat, the concrete externalwallswereintegrallycoveredwithabituminouscoatinginordertostrengthenthetightness. InTihange2and3,aflexible"butyl"typewatertightmembranewasplacedonthesurfacesincontact with the ground in all seismic category 1 buildings and constructions with the exception of the pumpingstation.Thiswatertightmembranewrapsthewallsinthesubsoil.Thegroundwatertightness ofthebuildingsisthereforeguaranteed. Thelevelofthewatertableisalsomeasuredatregularintervals,allowingits(slow)evolutiontobe monitored.Alltheimmersedsafetyrelatedbuildingsareequippedwithsumpswithdrainagepumps, inspectedondailyrounds.

Doel NPP The following criteria/provisions apply for the protection of the underground structures of the Doel 1&2andDoel3&4buildings: • Inthecalculations,agroundwaterlevelof+7.00minDoelwastakenintoaccount. • Theundergroundwallsareconstructedbyusingreinforcedwaterrepellentconcrete. • Thesurfacesofthewallscomingintocontactwiththeeartharecoveredwithawaterproof layer comprising three coats of tar. The masonry wascoatedbeforehandwithawaterproof cementation. • Thejointsbetweenthebuildingsortheconnectingjointsoftheundergroundchannelsconsist ofawaterproofthermoplasticmaterial.

Chapter3Flooding 58 3.1.2.4. Main operating provisions to prevent flood impact to the plants.

Tihange NPP Takingintoaccountoftheactualdesignofthesite,whichpassivelyensuresitsstayingdryincaseof ReferenceFlood,nospecificactionisrequiredtoprotecttheinstallationsfromflooding.However,asa precaution,preventivemeasuresexist,describedbelow. First, when the regional department responsible for flooding protection (Service d’études hydrologiques SETHY) forecasts a flowrate of the Meuse greater than 1,500m³/s, which happens approximatelyonceeverytwoyears,thisdepartmentgoesinastateofalertandwarnstheTihange site (shift crew of Tihange 2). The shift crew team of Tihange 2 then has to maintain regular communicationwithSETHYtostayinformedofthedevelopmentofthesituation.Inparallelitinforms theothertwounitsandsignalsthepassagetoanalertstateonaccountoftheriskofflooding.Ineach unittheshiftcrewtakesspecificactionstomonitorthestateoftheirunittoensureswiftdetectionof anyflooding. Doel NPP Aproactivefloodalarmraisesthealertnessoftheshiftcrewteams. The following alarm phases are initiated on the basis of the information provided by the regional departmentresponsibleforfloodingprotection(‘WaterwegenenZeekanaal’departement): • ‘StormtideSeaScheldtbasin’:leveloftheSeaScheldt>6.60mTAW • ‘DangerousstormtideintheSeaScheldtbasin’:leveloftheSeaScheldt>7.00mTAW In accordance with procedure, a number of measures are then taken. This concerns, among other things,actionssuchasclosingtheentrancesoftheDoel1&2waterintake,checkingtheleaktightness oftherollonrolloffinstallationattheembankment,andpreventiveplacingofsandbagsatthecritical entrancestothebuildings. Sufficienttimeisallocatedfortheactionsfollowingonthewarning”dangerousstormtideintheSea Scheldtbasin”.Assoonasthewaterlevelreaches7.58mTAW,therearetwohoursleftbeforethe water reaches the height of the site platform, the water is then still well below the embankment crown.

3.1.2.5. Other possible consequences of the DBF

Tihange NPP Lossofexternalpowersupply EachunitinTihangehasinternalredundantdieselgenerators , situatedontheplatformofthesiteand thereforeprotectedfromtheReferenceFlood.Theseinternalsourcesaresufficienttopowerallthe systemsnecessaryforthestableandcontrolledshutdownoftheunits.Althoughtheexternalelectric powersupplycanresistthistypeofhighwaterwithoutdamage,thescenarioofaReferenceFlood combinedwithalossofexternalelectricpowerhasbeentakenintoaccount.Suchasituationwould nothaveanyimpactonthesite,whichwouldthenuseitsinternalelectricpowersupply. Circumstancesoutsidethesitewiththeriskofflooding IncaseofReferenceFloodtheroadnetworkaroundthesiteremainsoperationalandthelinkstothe maintownsorexternalresources(emergencyorfireservices)remainfree.Moreparticularlyafour laneroadremainsavailableallowingthepassageoflargevehicles. Doel NPP Lossofexternalpowersupply Theprotectionofthesystems(includingdieselgenerators)intendedtocompensateforfailureofthe externalpowersupplyisincludedinthedesignprovisionsofthesite–e.g.theplatformheightandthe embankment.

Chapter3Flooding 59 Circumstancesoutsidethesitewiththeriskofflooding The Scheldt embankment protects the area around the site against possible flooding. Should the polder embankments fail, it is possible that the access roads to the power station will become unusable.

Embankmentfailure Incaseofatheoreticalextremestormandtheaccompanyingembankmentstressing,theriskofan embankment failure near the site cannot be excluded. This does not necessarily mean that the embankmentwillimmediatelycollapseasanembankmentalwayshasaresidualstrength.Thisdoes meanthattheembankmentcouldcollapseintheeventofasubsequentstormifnorepairsaremade. Aninspectionandmaintenanceprogrammeisthereforeprovided. A recent study – based on the structural layers of the embankment (determined by means of soil drillingtests)combinedwiththeappliedstrengtheningmechanisms(forexamplerockdebrispoured overwithbitumen,etc.)–showedthattheinitiationofanembankmentfailurecanoccurforasevere storm with a return period of 1,700 years (this is the value at the most critical point of the embankment,determinedonthebasisofthelayerstructure ofthe soil) combinedwith wind/storm fromtheNWtoNdirection. 3.1.3. Plants compliance with its current licensing basis

3.1.3.1. General organization of the licensee to guarantee conformity with design basis

Tihange NPP Inordertoidentifypossiblenonconformities,theequipmentprotectingthesiteisinspectedregularly: thebreastwallalongthesouthbankofthewaterintakechannel,builtwithconcreteblocks,is thesubjectofamaintenanceplantoensurethatitcanperformitsfunctionproperlyincaseof highwater; the river embankment walls are theproperty of the Walloon Region, which attends to their maintenance.

Doel NPP TheScheldtembankmentcrownheightalongthegroundofthepowerstationmustbeatleast+11.08 mTAW(requirementoftheTechnicalSpecifications).Iftheembankmentcrownheightfallsbelowthis level, it must be restored before the water level of the Schelde exceeds +7.58 m TAW. This embankmentcrownheighthastobecheckedevery10years. Inpractice,theembankmentcrownismeasuredeveryfiveyears–whichisstricterthanspecifiedin the safety analysis report. The most recent height measurements (2011) were positive: the requirementsofthetechnicalspecificationsareperfectlymet.

The rollonrolloff bulkheads must be closed at all times. This is also checked on a weekly basis. Tightnessoftherollonrolloffischeckedviaanannualinspectionplan. TheperiodicinspectionsandmaintenanceoftheScheldtembankmentandtheembankmentaround theLUpondsareconductedaccordingtoamaintenanceplanandprocedure;thisiscarriedoutonan annualbasis.Inthisway,thestructuralintegritycontinuestobeguaranteed.Theentireexteriorof theScheldtembankmentisalsoinspectedannuallyandmaintainedbythePublicService‘Waterwegen enZeeschelde’.

Chapter3Flooding 60 3.1.3.2. Use of mobile or specific equipment

Tihange NPP Incaseofwaterinfiltrationdespitethedesignprotectionofthesiteandifthefixeddrainagepumps arenotsufficienttoevacuatethewaterlocally,thesitewilluseadditionalequipmentofwhichthe availabilityisguaranteedatalltimes.Theseare: • fortyimmersiblepumpsofdifferentcapacities; • arapidsandbagfillinginstallation; • astockofsandforabout500bags,150ofwhicharealreadyfilledandreadyforuse. NooffsiteequipmentisthereforenecessarytorespondtoaReferenceFlood. Certainactiveequipment,suchastheimmersiblepumps,isusedduringunitoutagesforoperational purposes.Attheendofunitoutagetenpumpsaresystematicallyreturnedformaintenanceontothe manufacturer.Alltheseoperationsguaranteetheregoodperformance.

Doel NPP Theoperatinglicencedoesnotmentionthatmobileequipmenthastobepermanentlyavailableinthe caseofaDBF.

3.1.3.3. Potential deviations from licensing basis and actions to address those deviations. Tihange NPP AsaresultofthedisasterinFukushima,acompleteinspectionoftheinstallationsprotectingthesite fromaReferenceFloodwasconductedonthebasisofWANOSOER201102.Nononconformitywas detectedonthatoccasion.Nospecificcorrectiveactionwasnecessary. Doel NPP Doelisprotectedagainstfloodingbytheheightofthesiteplatformandbytheembankments.Thisis includedinthedesignbasis.Forthis,thereexistnodeviations. AsaresultofthedisasterinFukushima,DoelhasdrawnuparesponseinrelationtoWANO SOER 20112. A number of specific actions have been initiated in relation to the flooding risk; a few examples: • Thestockofsandbagshasbeenincreased. • In order to raise the selfsufficiency of the site, additional autonomous diesel pumps have beenpurchased. • Inspections and checks of flooding protections (embankments) are conducted more frequently, with time intervals that are mostly more stringent than those specified in the SafetyAnalysisReport.

Chapter3Flooding 61 3.2. Evaluation of safety margins

3.2.1. Estimation of safety margin against flooding

3.2.1.1. Measures taken during the alert phase and during flooding

Tihange NPP FloodingofthesitecanonlyoccurforfloodsoftheMeuseriverexceedingtheReferenceFlood(2,615 m³/s).ConcerningtheresponsestrategyforfloodsexceedingtheReferenceFlood,thelicenseehas opted for a unique strategy without making a distinction between floods slightly exceeding the ReferenceFloodandthedecamillennialfloodforwhichthesitewouldbecoveredby1.70mofwater atcertainlocations. Theresponsestrategystartswithatransitiontooneofthetwosafeshutdownstatesthatcanbe stabilisedbeforefloodingwaterbeginstoinvadethesite.Thesafeshutdownstatesare: • coldshutdown,characterisedasfollows: o thereactorvesselisopen; o theBANDandreactorbuildingpoolsarefilledandincommunicationviathetransfer tube,whichconsiderablyincreasestheirthermalinertia. • twophaseintermediateshutdown,characterisedasfollows: o apressureof10barsandatemperaturebetween120°Cand140°Cintheprimary circuit.Thepressurizerispartiallyfilled(approximately75%); o allthecompartmentsoftheBANDpoolsarefilled, but the reactor building pool is empty(thetransfertubeisclosed); o the steam generators are depressurised by opening the atmospheric steam release valves.Theyarefilledtothemaximuminordertomaximizethermalinertia. A flooding alert process starts with SETHY which can provide Meuse flow rate forecasts for up to several days in advance. When SETHY records a Meuse flow rate greater than 1,500 m³/s, this departmentgoesinastateofalertandcontactsthesiteofTihange.TheshiftcrewteamofTihange2 thenhastomaintainregularcommunicationwithSETHYtostayinformedofthedevelopmentofthe situation.Inparallelitinformstheothertwounitsandsignalsthepassagetoanalertstateonaccount oftheriskofflooding.Ineachunittheshiftcrewtakesspecificactionstomonitorthestateoftheir unittoensureswiftdetectionofanyflooding. IndirectcommunicationwithSETHYtheshiftcrewisinformedoftheexpectedevolutionoftheflow rateoftheriver.Assoonasaflowratepredictionof2,500m³/sisreported,theshiftcrewofTihange 2activatestheInternalEmergencyPlan,callingouttheemergencyteam.Thetaskoftheemergency team, on the basis of the forecasts from SETHY and the predicted flood level, is to initiate the shutdown of the units and the deployment of the CMUequipment (Circuit des Moyens Ultimes or Ultimate Means System). Made up of fixed or mobile pumps, pipes and valves, the CMU has an independent electrical power supply and protects the power station against a beyonddesign basis flood.Bringingtheunitsinthemostappropriatesafeshutdownstatetakestenhours. When conventional equipment is rendered unavailable through flooding, the CMUequipment preinstalledduringthealertphaseofeachunitisused.Proceduresintendedfortheshiftcrewand themaintenancecrewdescribetheoperationstobeexecuted.Thetechnicalshiftcrewissufficientto installtheCMUequipmentwithinthesettimelimits. Theshutdownofthereactorunits,organisedatleasttenhoursbeforeprogressivefloodingofthesite begins,greatlyreducestheresidualenergytobeevacuated.Whenthewaterreachesthesitethereis amaximumof20MWofthermalpowertobeevacuatedfromeachreactor,orlessthan1%ofthe ratedpower.TheCMUcanthenensurethecontinuouscoolingofthethreereactorsandthespentfuel pools.

Chapter3Flooding 62 The(mostlymobile)CMUequipment,preinstalledduringthefloodingalertphase,isnotbroughtinto serviceuntilthetimeofactualfailureofclassifiedequipmentsothatthelatterisnotlostwhilestill operational. The components of the CMU are placed at sufficient levels to be protected from a decamillennialflooding,withamarginofmorethantwometres.Accesstothenecessarybuildingsand equipmentremainspossibleduringflooding.Movementbetweentheunitsisbymeansofboats.Inside theunitsmostmovementisonfoot,whetherinthebuildings,onexternalfootbridgesinstalledforthe purposeorviarooftops. Once the site is flooded, no external assistance is necessary inthe short term. In fact,the CMU equipmentcankeeptheunitsinastableandcontrolledstateformorethan15dayswithoutexternal supply(ofpower,fuel,water,oiletc.).Thisissufficientfortheperiodofflooding(estimatedat5days by the University of Liège), and for a protracted postflood period. This leaves the maintenance servicesampletimetoprovideandinstallthenecessarymaterialtorestoretheessentialequipmenton apermanentbasis.

Doel NPP Flooding on the site or in the polders can only occur in the case of very severe storms. Proactive warningsshouldbeavailableasdiscussedpreviously.TheNPPstaffwillbeinaheightenedstateof alertness.Emergencyplanprocedureswillbekeptonhandandanumberofpreventiveactionsare taken. Thisincludes, among other things, inspection tours to ensure swift detection of anyflooding andthepreventiveplacingofsandbagsatthecriticalentrancestothebuildings.Thesameemergency plancanalsobeannouncedinareactivemanner. Theplatformonwhichtheentiresiteisbuiltissurroundedbypolderslocatedfivemetreslower.Inthe caseof a (beyonddesign)embankmentbreach,there is a very real chance that these polders will flood.Insuchasituation,theDoelNPPsitewillbecomeeffectivelyanisland.Thefollowingelements are important in the case of such a flooding: evacuation and access for people, food supply, fuel supplyforsafetysystemsandemergencydieselunits.Theappropriatemeasuresaredescribedinthe emergencyplanprocedures.

Should flooding on the site occur, both emergency plan procedures and mobile equipment will be used.The emergency planprocedures describe all the actions to be taken in the case of flooding. There are a number of actions to start with: closing the entrances at the Doel 1&2 water intake, checking the tightness of rollonrolloff, etc. Thenacascadeofnotificationsoccurs–aflowchart indicateswhohastobecalledonwhatmomentandwhatthetaskassignmentsareof: • membersoftheguardduty, • securitypersonnel, • onsitefireservice, • shiftcrewteams. Mobileequipmentcanbeusedbythreedifferentorganisations: • The Doel NPPhasits ownresources present on site: five mobile electric pumps and eight dieselpumps(e.g.dieseldrivenhighflowratepumpof10,000l/min),approx.450sandbags, etc.Anumberofmobiledieselpumps(capacityperpump:10m³/h)arealsoavailablefor eachreactorunittoremovefloodingwaterinbuildings. • Thefiredepartmentofistheclosestexternalfireserviceandwillbecalledonfirst. Thefiredepartmenthasfourhighflowratepumpsatitsdisposal(upto10,000l/min). • ThecivildefencedepartmentofLiedekerkehasautomaticpumpsatitsdisposal(upto10,000 l/min),electricpumps,motorpumps,sandbags(150,000items),motorboats,etc.

Chapter3Flooding 63 3.2.1.2. Analysis of the circumstances under which flooding of the site could occur

Tihange NPP Allsafetyrelatedequipmentinvolvedinensuringastableandcontrolledstateinthethreeunitsare situated at more or less the same altitude of 71.50m. However, the level of the Meuse is not a sufficientcriterionforpredictingtheextentoftheaffectedzone.Thiswilldependontheflowrateof theriversince,duringhighwater,theleveloftheriverupstreamofthesiteis0.5mhigherthanthe downstreamlevel.Muchofthewaterpenetratingtheplatformfromtheupstreamsidewilltherefore run back to the Meuse across the lower zones of the site without reaching a high water level elsewhereontheplatform.Theextentofthezoneunderwaterwillthereforedependontheflowrate oftheriverMeuse.Thehighertheflowratethegreaterthesurfaceofthesiteunderwater.Tihange1, whichislocatedmostupstream,willbethefirstunittobehit,followedbyTihange2,thenTihange3. Attherequestofthelicensee,theUniversityofLiègeconductedastudycombiningtheflowrateof theMeuse,thecorrespondingwaterlevelandthetopographyofthesiteinordertomodelthewater flowsontheplatform.

Doel NPP

WavesovertoppingtheScheldtembankment Inaseverestorm,ahighwaterlevelcombinedwithanunfavourablewinddirectioncancausewaves overtoppingtheembankment. Thisriskwasanalysedduringtheperiodicsafetyreview.Thisanalysisshowsthatwaveovertopping can occur for severe storms with a return period exceeding 200 to 300 years. The water volume runningovertheembankmentbecomesrelevantforseverestormswithareturnperiodof1,000to 10,000years. Basedonasimplifiedmodelinwhichthewaveovertoppingactsasthesourceofwateronthesiteand wherethiswaterflowstothelowerlyingpoldersattheedgeofthesite,floodingonthesitecanbe estimatedtobeanaverageof10cmforaseverestormwithareturnperiodof10,000years. BeyondDBFEmbankmentfailurenearthesite Inthecaseofaseverestormcombinedwithanunfavourablewinddirection,theembankmentcanbe subjectedtosuchastressthatembankmentfailurebecomesarealrisk.Insuchacase,abreachcan occurandwatercanflowontothesite.Thisriskwasanalysedduringtheperiodicsafetyreview.The initiationofanembankmentfailurecanoccurforaseverestormwithareturnperiodof1,700years. Aninitiationmeansthattheembankmentcouldfailincaseofasubsequentstormeventifnorepairs wereperformedinthetimeafterinitiation. In the analysis of the consequences of a Scheldt embankment breach near the site, the most unfavourable(mostsevere)stormthatcanleadtoembankmentfailure,isassumed,cumulatedwitha highleveloftheScheldt.ThemaximumScheldtlevelforthisstormispostulatedtobeat10.2mTAW, which is 85 cm higher than the average 10,000year flood. The analysis showsthatthe water will reachthefirstbuildingsafterabout60minutes;thiswaterwillflowfurthertowardsthepoldersviathe edgeofthesite. Anaveragefloodinglevelof20cmisestimatedonthesite.Takingintoaccountthesitetopography, greater flooding is expected locally. In general, local water depths between 60 and 30 cm are estimatedforplacesclosetothebreachlocationandforlowerlyingpartsofthesite.

3.2.1.3. Consequences of flooding for the safety functions

Tihange NPP Theconsequencesanalysisisbasedontheheightofwaterreachedinthevariousplacesonthesite and,foreachlocation,ontheequipmentpresentthereandlikelytobeaffected.Allequipmentthat canassistthecoolingofthefuelinthecoreorinthepoolisexamined. Thisanalysisdoesnotdependontheinitialstateoftheunits(poweroperationorshutdown).

Chapter3Flooding 64 Once the flow of the Meuse exceeds 2,615 m³/s, the water penetrates the site without direct consequencesincenosafetyrelatedbuildingisaffected:thewaterstayscontainedintheareanorth of the water intake channel. An increase of approximately 200 m³/s is required, or a flow rate approaching2,800m³/s,beforethereisanythreattothesafetyelectricpowersupplyforTihange1 and before loss in Tihange 2 of the CEU Meuse or groundwater pumps. The cooling by the steam generators (or the residual heat removal system RRA in unit shutdown) is still available since it is providedbythestilldryGDSandCEBCRIEAAEASequipment. At2,800m³/sTihange1iscompletelysurroundedbywater.Allthebuildingsoftheunit,exceptthe reactorbuilding,willbeflooded.Thesystemsproviding thecoolingof the pools are out of service, likewisetheRRA(theCMUequipmenttakesover).Theturbopompoftheauxiliaryfeedwatersystem (TPAofEASsystem)remainsfunctionalbecauseitismountedonasupportsocle. Thereturnperiodofsuchaflowrateisapproximately400years. InparallelthewaterbeginstoinfiltratethroughtheentrydooroftheBANDofTihange2.Theflow canbedammedusingsandbagsandrunsofftotheexteriorbypumping.Tihange3stillremainsdry. At2,900m³/s,aflowratethatoccursnearlyevery600years,theTPAofEASofTihange1islost.Only theCMUfeedsthesteamgenerators. The lower parts of the BUS of Tihange 2 are flooded and the associated secondlevel emergency safetysystemsarelost.TheundergroundlevelsoftheBANandEAareflooded,andthespentfuel pool can no longer be cooled by the CTP circuit (the pumps are submerged). Even if the TPA EAA staysabovewater,someofthesteamand/orwaterisolationvalvesmightbeclosedoninadvertent automaticsignals.Itisstillpossibletoopenthevalves"manually"(fromtheBUS)andmaintainthe steamgeneratorcoolingfunction. In Tihange 3 water begins to penetrate the BANN from the rearsideof theunit.Itcauseswater infiltrationtowardsoneofthethreeBUSairintakes.Thisairintakeisfittedwithashutoffvalvethat willbeclosedduringinstallationoftheCMUinordertoavoidfloodingoftheBUSofUnit3. At 3,000m³/s the last safety related equipments of Tihange 2 are lost. Only the CMU equipment remaininservicetoprovidecoolingofthecore.Thereturnperiodofaflowrateofthismagnitudeis approximately900years. InTihange3the BANisflooded.Only theGDS and the CEB pumps remain operational, providing power to the instrumentation and part of the equipment at 380V. If the unit is in intermediate shutdown,cooledbysteamgenerators,thiswillbesufficienttomaintainthefunctioningoftheTPA EAAanditswatersupplybytheCEBand,thus,tocoolthecore.Iftheunitisincoldshutdownthe RRAnolongercoolsthecoreandtheCMUtakesoverthesupplyofwatertothepools. Above 3,300m³/s no safety related systems are operational in the three units even if the external powersuppliesofTihange3remainavailableapriori(thesensitivepointsareonemetreaboveground level). Finallyforadecamillennialflooding(3,488m³/s),alltheelectricpowerpanelsarelostduetotheflood or because of the activation of protective devices by short circuits due to the water. The diesel generatorsinthethreeunitsarenowallunderwater(GDS,GDR,GDUandDUR).Onlythebatteriesof thefirstsafetylevel(andthoseofthesecondemergencylevelsystemsinTihange1)arestillavailable forthethreeunits. Doel NPP The buildings which are flooded first or quickest in the case of wave overtopping or embankment failurewereidentified.ForthemostimportantSSCandtheirphysicallocation,itischeckedwhether thereareanythresholds,plinths,etc.presenttoprotectagainsttheconsequencesoffloodingincase ofwaveovertoppingorembankmentfailure.Onlytheavailabilityofdevicessetupinbasementsorat groundlevelisassessedasthereisnodangertotheothers. Three factors play an important role: firstly, the height of the respective entrance; secondly, the distancefromtheScheldt;and,thirdly,theaccessthreshold. • Thelowerlyingbuildingswillhavetocopewithgreaterflooding.

Chapter3Flooding 65 • Inthelowerlyingpartsofthebuildings,thereareimmersiblepumpspresenttoremovethe inflowingwater. • Therearetwoseparateddrainsystems:thesewersystemonthesiteisnotconnectedtothat inthebuildingsthemselves. ConsequencesofwavesovertoppingtheScheldtembankment Thefloodinginthecaseofwaveovertoppingremainslimitedtoabout10cmonthesite.TheSSC requiredforachievingthesafeshutdownstateremainavailableinthiscase.Furthermore,sandbags arepreventivelylaidatthecriticalentrancesincaseofastormwarning. ConsequencesofBeyondDBFEmbankmentfailurenearthesite ThefloodinginthecaseofbeyondDBFembankmentfailureisestimatedtoaboutanaveragevalueof 20cmonthesite.Takingintoaccountthesitetopography,greaterfloodingisexpectedlocally. Theemergencysystems(2 nd safetylevel)remainavailableforDoel1&2andDoel3.ForDoel4,the safetysystems(1 st safetylevel)willcontinuetobesafeguardedfromtheintrusionofwater;theGVD canfloodbuttheAFpumpsremainavailable.LimitedfloodingcanoccurintheBKR. Duringstormwarnings,sandbagsarepreventivelylaidatthecriticalentrances.Thesehavetoprotect theimportantbuildingsagainstflooding.

3.2.1.4. Weak points and cliff edge effects

Tihange NPP Toallintentsandpurposes,theTihangesiteisflatindesign.Thedifferencebetweentheregulated leveloftheMeuseandthebanksofthesite(orthe protective breast wall along the waterintake channel)isintheorderoftwometres.Althoughthosetwometresareenoughtoavoidfloodingbythe riveruptoahighwaterflowrateintheorderof2,615m³/stheabsenceofhigherwallscreatesa weak point. The same applies for the Meuse river water intake channel and the various outlets (coolingdischargefromthethreeunitsandsewersystem). Fewbuildingsaredesignedtobesealedagainstexternalfloodingwater(whenthatisthecasethis protectionisintheorderof0.2m).Thevulnerabilitiesofthesebuildingsaretheentrancesthatdonot stoptheinfiltrationofwater.Thereisnotsufficientinternalcapacitytostorethefloodingwater,and thepumpsofthevarioussumpsareinsufficienttoevacuatetheflowenteringinsuchasituation. Inthepumpingstationstherawwater(CEB)andgroundwaterpumpsarelostoncethewaterlevel reaches71.5matTihange1,whileinTihange2and3theyarefloodedwhenthewaterreachesa levelofabout71.75m.Finally,thevitalbuildingssuchastheBAEbuilding(exceptinTihange1where itisonhighground),theBANandtheBUSarenotequippedwithdoorsteps,andthewaterentering willfloodtheundergroundfloorscontaining75%ofthesafetysystems(CISCAECUS).Oncetheyare floodedtheannularspaceswillbenext. However,ifvariousconventionalpumpsaredamagedbyflooding,theirrepair(orthereplacementof electric power supply) will require only a few days once the waters recede. It will then again be possibletopumpfromthealluvialwatertable. Asdescribedearlier,thedecamillennialhighwaterisnotasuddenevent;thisallowsSETHYtoalert Tihangewellbeforepotentialcommencementoffloodingofthesite. This period of time allows Tihange to organize, not later than ten hours before flooding of the platform,thefollowingactions: • safeshutdownandcontrolofthethreeunits; • confinementofthecontainmentandrenderingthecoresubcritical; • passagetoalongtermstabilisedsafeshutdownstate; • deployingandaligningtheCMUequipmenttoguaranteemaintenanceofthesesafeshutdown statesandtocopewithfailureofsafetyrelatedequipment.

Chapter3Flooding 66 This mobile equipment, and the diesel generators usedfortheirpowersupply,areallplacedmore thantwometresabovethemaximumwaterlevelthatwouldbereachedbydecamillennialhighwater. Theyarethereforecompletelyprotectedfromsuchhighwater. WhenthehighwaterexceedstheReferenceFloodthecliffedgeeffectsarethefollowing: • thefirstcliffedgeeffectisaflowrateintheorder of 2,800 m³/s, with water entering the essentialbuildingsofTihange1. • the second cliffedge effect is reaching a flow rate of 2,900 m³/s, corresponding to the floodingofequipmentonsoclesinTihange1andtheentryofwaterinTihange2. • thethirdcliffedgeeffectoccursat3,000m³/sontheMeuse.Tihange2isthenwithoutitsTPA EAA,theCMUisusedforcoolingthefuel. • thefinalcliffedgeeffectoccursforaflowratebetween3,000and3,300m³/s,aflowratethat resultsinthelossoftheTPAEAAinTihange3.TheCMUcontinuestocoolthefuelinthepool andthecore. Inconclusion,theprogressivefloodingofthesitewillleadtotheprogressivelossofalotofclassified equipment.Whenequipmentprovidingthecoolingofthefuelisaffected,theCMUcircuitofeachunit willbeusedtoassurethecoolingofthefuelinthecoreandinthepool.TheCMUcantakeoverthis functionformorethantwoweeks. Noneofthesecliffedgeswillinterferewiththecoolingofthecore. Doel NPP ThedesignprotectionoftheDoelsiteagainstfloodingissolid.Floodingofthesitecanonlyoccurin case of a combination of a very high Scheldt level with considerable wind waves or with an embankmentbreach.Insuchcases,waterfromtheScheldtcanrunontothesite. Thiswaterwillthenflowtowardstheedgesofthesiteandintothepolders.Theextentoftheflooding caused by this is a few tens of centimeters of water, depending on the site topography and the distancefromtheembankmentorbreach. Cliff edge effects therefore occur either from the moment substantial quantities of water intrude throughwaveovertoppingtheembankmentorfromthemomentanembankmentbreachoccurs.The probabilityofsignificantcliffedgeeffectstakingplace,ishoweververylow. Aweakpointisthatanumberofbuildingswerenotdesignedtoguaranteewatertightnessinthecase oftensofcmofwateronthesite.

3.2.1.5. Combination of flooding with unfavourable meteorological conditions The combination of extreme weather conditions and flooding has been considered for the events where a plausible link between the phenomena exists. The purpose is to assess the impact of situationsevenworsethansimpleflooding.

Tihange NPP ReferenceFlood+heavyrainfall GiventhepresenceofthesiltysurfacelayerandthefactthattheTihangesiteislargelycoveredwith asphalt,mostoftherainwaterfallingonthesiteiscollectedinthesewers.Thenetworkofsewersis sufficienttoevacuatethewaterincaseofheavyrain.Sincetheleveloftheseweroutletsishigher thanthatwhichcanbereachedbytheMeuseduringaReferenceFlood,thesewernetworkwillremain operationalandstillallowdischargeofrainwater.Allsafetyfunctionswillthereforeremainoperational. ReferenceFlood+strongwind+LOOP Wind, even strong wind, should not damage the massive structures of the masonry river embankmentsortheraisedbanksofthewaterintakechannel. However,thewindmaysetupawaveactionontheriver,andsmallquantitiesofwatermaythen pourinovertheseprotections.OnceitreachesthesitethiswaterreturnstotheMeuse,eitherbythe

Chapter3Flooding 67 sewers(theleveloftheseweroutletsishigherthanthatoftheriverduringReferenceFlood)orby runoff. Thesewersystemwhichworksbygravityremainsoperational.Onlyapartofthesewersystemwillbe unavailableinTihange1incaseoflossofexternalelectricpowersupply.Giventhetopographyofthe site,thesurpluswaterinthesewerditchwillflowtothenearestgulliesand,inthemostpenalizing cases,towardstheprotectivewallofthewaterintakechannel.Whenthelevelofthiswaterreaches 71.35mitwillflowofftowardsthewaterintakechannel.Nosafetyequipmentwillbeaffectedbysuch awaterlevelinthezoneconcerned. Furthermorethebuildingsaccommodatingtheequipmentassuringthesafetyfunctionsaredesigned tobecapableofwithstandingstrongwinds.Allsafetyfunctionswillthereforeremainoperational. BeyondReferenceFlood+heavyrainfall+LOOP This situation combines high water exceeding the Reference Flood with heavyrain andthe lossof external electric power supply (LOOP). The site platform being partially or totally flooded by the Meuse,heavyrainwillnotcauseanyadditionalproblem.Infact,theCMUequipmentstandinginfor theconventionalequipment(renderedunusablebythehighwater)issituatedinplacesprotectedfrom floodandrain.Sincethisequipmenthasitsowndedicatedsourceofelectricpower,thelossofoffsite powerhasnoimpact. BeyondReferenceFlood+strongwind+LOOP This situation combines high water exceeding the Reference Flood with strong wind and loss of external electric power supply resultingfrom strongwind.Incaseofhighwaterbeyonddesign,no classifiedequipmentcanbeused,buttheCMUisinstalledduringthephaseprecedingthefloodsoas toguaranteethecoolingofthecoreandthepools.However,someCMUequipmentwillrequireaccess fromtheoutside. Duringtheactualfloodcertainbuildingswillnotbeaccessibleexceptbytherooftops.Themovement ofpersonnelwillbehinderedbytheweather,whichwillslowdownoperations.However,thethermal inertiaofthewaterinthesteamgeneratorswillgiveampletime(atleast11hours)forexecutionof thenecessaryoperations. Some CMU equipment situated outside (on the rooftops) is not designed to withstand storms. Consequentlytheyriskbeingdamaged. However,the site has three identicalmobilemotordriven pumps, each individually able to provide cooling of the core via the steam generators and of the fuel in the pool with makeup water. The thermalinertiaofthewaterinthesteamgenerators(11to14hours,dependingontheunit)willgive ampletimetoconnectthispumptotheappropriatecircuit. BeyondReferenceFlood+heavyrainfall+strongwind+LOOP Thissituationaddsheavyraintothepreviousscenario(highwaterexceedingReferenceFlood,strong windandlossofexternalelectricpowersupply).Noadditionalconstraintisnotedcomparedwiththe previoussituation.

Doel NPP DBF+heavyrainfall InthecaseofDBF,theScheldtlevelremainswellbelowtheembankmentlevel.Intenserainfallwillbe drainedviathesewersorinfiltrateintotheabsorbingsandgroundofthesiteplatform(Seechapter4 onextrememeteorologicalconditions).ThesewersremainoperationalinthecaseofaDBF. DBF+strongwind+LOOP InthecaseofDBF,theScheldtlevelremainswellbelowtheembankmentlevel.Combinedwithstrong windfromanunfavourabledirection,thiscangiverisetowaveovertoppingoftheembankment,as mentionedpreviously. StrongwindcanalsoleadtoLOOP(seechapter4onextrememeteorologicalconditions).Inthecase of LOOP, the pumps of the sewer system that evacuate the water to the Scheldt river will fail to operate.Thesewerswillthenlosetheirdrainingcapacity,thoughthewaterretainingcapacityofthe sewerswillbepreserved.Theanalysisoftheconsequencesinsection3.2.1.2remainsvalidasitdoes nottakeintoaccountthedrainingorretainingcapacityofthesewersystem.

Chapter3Flooding 68

BeyondDBF+heavyrainfall+LOOP Asstatedpreviously,theScheldtlevelremainsbelowtheembankmentlevel.Theintenserainfallwill nolongerbedrainedviathesewerssincethepumpsinthesewersystemwillfailtooperateincaseof LOOP.Thesewerswilllosetheirdrainingcapacity,thoughtheretainingcapacitywillbepreservedand therainwaterwillflowtotheedgeofthesiteandfurtherintothepolders.

BeyondDBF+strongwind+LOOP Asstatedpreviously,theScheldtlevelremainsbelowtheembankmentlevel. Combinedwithstrong windfromanunfavourabledirection,thiscangiverisetowaveovertoppingoftheembankment.Such acombinationofaseverestormandunfavourablewinddirectionalsoleadstoaconsiderablestress ontheembankmentwiththeriskofembankmentfailure. StrongwindcanalsoleadtoLOOP(seechapter4onextrememeteorologicalconditions).Inthecase of LOOP, the pumps for the sewer system that evacuate thewater to the Scheldt river will failto operate.Thesewerswillthenlosetheirdrainingcapacity,thoughtheretainingcapacityofthesewers willbepreserved.Theanalysisoftheconsequencesinsection3.2.1.2remainsvalidasitdoesnottake intoaccountthedrainingorretainingcapacityofthesewersystemandsincetheanalysisassumesa maximumScheldtlevelhigherthantheDBF. BeyondDBF+heavyrainfall+strongwind+LOOP Thisisacombinationofthetwoprecedingscenarios.Theheightofthewateronthesiteinsucha case will increase by a few cm compared with the height of water at wave overtopping or an embankmentbreachasdiscussedinsection3.2.1.2.Themobiledieselpumpsonthesitecanbeused asareplacementforthepumpsinthesewersystem. 3.2.2. Measures which can be envisaged to increase robustness of the plants against flooding.

3.2.2.1. Improvements to infrastructure

Tihange NPP Possible improvements of the protection against a beyonddesign flood (i.e., a flood exceeding the Reference Flood) have already beenidentified withinthe framework ofthe PeriodicSafety Review. Feasibilitystudiesarenowinprogress.Somemodifications,relatedtofinishedfeasibilitystudies,are inprogress.

Theseimprovementsconsistoftheintroductionofthreesuccessiveindependentlinesofdefence.All operationsintendedtomakethesethreelinesfunctionalwillbeinitiatedinthehoursbeforethearrival ofthewateronthesitethankstothewarningfromSETHY.TheNPPwillthereforebereadytoface thedecamillennialfloodoncetheMeusereachestheReferenceFloodlevel.Thethreelinesofdefence aredescribedindetailbelow. • Peripheral protection of the site(firstlineofdefence) TheUniversityofLiègehascalculatedthetheoreticalonsitewaterlevelproducedbyadecamillennial flood(flowrate3,488m³/s).Aprojectforaperipheralprotectionofthesiteadaptedtothatlevelis beingstudied.Theobjectiveofsuchaperipheralprotectionistokeepthesitedry.Itconsistsofawall ofaheightgreaterthanthatoftheleveloftheMeuseincaseofdecamillennialflood.Thiswallwould includecofferdamswhich,incaseofthreatoffloodingofthesite, couldbe usedtocloseoffthe openingsnecessaryforthenormaloperationofthe NPP(inparticular,onthewaterintakechannel andonthedischargeoutletsofeachunit).Additionaltechnicalandorganisationalsolutionswillallow todischargecoolingwater(rawwaterorgroundwater)totheMeuseriverandtoevacuatewaterfrom onsiteheavyrainfall.

Chapter3Flooding 69 Noequipmentwill therefore beaffected bythisflood. All the systems, structures and components necessarytobringtheunitstostableandcontrolledshutdownwillremainavailable. Despite this peripheral protection of the perimeter the units in Tihange cannot remain in power operation since the capacity of the water from the water intake channel will be reduced to the minimumnecessarytoensurethevitalsupplyofcoolingwater.Also,bywayofdefenceindepth,and inordertocopewithalocalfailureofthisfirstlineofdefencetriggeringasuddeninrushofwateron thesite,theexistingstrategyofgoingtoasafeshutdownstateforthethreereactorunitsincaseof threat of flooding is kept, and, in addition, the implementation of a second line ofdefence against floodingofthebuildingsisstudied.

Figure 12 - Example of decamillenial flood and proposal for peripheral protection of the site • Local volumetric protection (secondlineofdefence) Thepurposeofthissecondlineofdefenceistopreserveineachunit,independently,acertainnumber ofbuildingsaccommodatingtheequipmentassuringatleastthecoolingofthecoreandthespentfuel pools. To that end coffer dams and other sealing deviceswillbeinstalledduringthefloodingalert period. This second line of defence will not be installed integrally in a permanent manner. Some equipmentsuchasthecofferdamsmaybeplacedduringthefloodingalertperiod. • Mobilization of non-conventional means on site (thirdlineofdefence) Aswiththelocalvolumetricprotection,thedeploymentofnonconventionalmobilemeanswillbedone during the flooding alert period. This essentially concerns the improvement of the robustness and reliabilityoftheCMUequipmentalreadyavailableonthesite. Thesenonconventionalmeansconsistof,amongotherthings: increasingthepoweroftheCMUdieselgeneratorsinordertoincreasethefunctionsaddedto theCMUand/orincreasethenumberofpumpsthatcanbepowered; facilitatingaccessandcommunication; replacing a maximum of flexible elements with fixed pipes inordertoreducethe handling necessaryforaligningthecircuit; addingaprimarymakeuppump; increasing the number of instrumentation means powered by CMU equipment to facilitate controlincaseofaccident. Theactiveequipmentofthisthirdlineofdefencewillhavetobestoredorfixedatheightsthatare physicallyunreachablebythefloodwaters.Thefloodwatersshouldrecedefromthesiteafterabout fivedays.ThenonconventionaldevicesaddedtotheCMUwillalsohavegreaterautonomyduringthis period.

Chapter3Flooding 70

Doel NPP TheDoelsiteisalreadywellprotectedagainstflooding;onlyincertainextremecircumstanceswater canintrudeontothesite.Asapreventivemeasure,sandbagsarelaidatthecriticalentrances.These sandbagswilleventuallybereplacedbypermanentbarrierstoensurethatthewaterstaysoutsidethe buildings. Topreventanypossibleweakeningoftheembankment,thetopmetreofthe embankmentwillbe reinforcedwithconcretetiles.

3.2.2.2. Procedural improvements

Tihange NPP Asetofproceduresshouldreinforcethosealreadyinplacetodescribethemaintenanceandbringing intoserviceofthethreelinesofdefencementionedabove. • Foralllinesofdefence:acoordinatingfloodingproceduredraftedforeachreactorunittobe useduponnoticeofthehighwater.Itwillmentionaseriesofindividualproceduresdescribing shutdown operations, the placing of mobile devices and the setting up of thethree lines of defence; • Forthefirstlineofdefence(Peripheralprotection) o procedurescoveringtheoperationsforplacingcofferdams; o procedures must be written for the periodic inspection and maintenance of this protectionandstorageofmobileelements. • Forthesecondlineofdefence(Localvolumetricprotection) o procedurescoveringoperationsforplacingthisprotection; o proceduresmustbewrittenfortheperiodicinspectionandmaintenanceofvolumetric protectionsystemsandtheirstorage. • Forthethirdlineofdefence(Mobilizationofnonconventionalmeansonsite): o procedurescoveringthedeploymentofthesenonconventionalmeans; o proceduresmustbewrittenforthemaintenanceandinspectionofmobileand/orfixed devices.

Doel NPP Additionaladjustmentswillbemadetoprotectthereactorunitsbetter.Assoonaspermanentbarriers have been placed at the critical entrances, these will be incorporated into the emergency plan procedures.

3.2.2.3. Organisational improvements

Tihange NPP Thevariousorganizationallayerswillbeadaptedtotheongoingimprovementofprotectionsagainst flooding(physicalprotectionoftheperimeter,localvolumetricprotectionanduseofmobiledevices). Theinternalemergencyplanwillalsohavetobeadaptedsoastodescribespecificallytheorganization chosentohandleasimultaneousfloodinginallthreeunits.Itwillalsobenecessarytoensurethatthe necessaryresourcescanbemobilisedwithinsuitabletimelimitstosetupthethreelinesofdefence beforethesiteisflooded. Thetimelimitsfortheimplementationandcorrectunderstandingoftheoperationstobeexecutedin thecontextofthesethreenewlinesofdefencewillbevalidatedbyperiodicexercises.

Doel NPP Theemergencyplanproceduresalsoprovidealltheinformationconcerningtheinternalorganisational measures in the case of a risk of flooding. Fixed protocols are drawn up in consultation with the regionaldepartmentresponsibleforfloodingprotection(‘WaterwegenenZeekanaal’)andotherpublic bodies.

Chapter3Flooding 71 3.3. Synthesis of the main results presented by the licensee Basedontheinformationinthelicensee’sstresstestreportsandtheadditionalinformationprovided by the licensee during technical meetings and onsite inspections, the main results for the topic “flooding”areasfollows. 3.3.1. Tihange NPP Designbasisandverification Themaximumheightofthefloodpostulatedinthedesign of the Tihange site and the three units correspondswiththeMeuseriverflowrateofthelargestknownhistoricalfloodincreasedby20%(this originaldesignbasisfloodiscalled“referenceflood”inthelicenseereport).Atthedesignstage,this “referenceflood”wasestimatedat2200m³/s,andthecorrespondingwaterleveloftheMeuseriverat the upstream border of the Tihange site was estimated at 69.80 m. Hence, the platform of the TihangeNPPsitehasbeenconstructedatalevelof 71.30m (i.e.,with a safety margin of 1.5m), ensuring a dry site without a need of additional protections of the site and the three units (e.g., peripheralembankmentorbarriers). AsaresultofsomerecentfloodsintheMeusevalley,withamaximummeasuredriverflowrateof 2179m³/sandacorrespondingwaterlevelof70.47minthewaterintakechannel(in1995),are assessment of the flood risk has been conducted, using a statistical analysis (POTanalysis) of measured high flow rate data (over a period of 47 years, 19582004) to derive river flow rates for different return periods, and using a 2Dhydrodynamic model and detailed bathymetric and topographicdataoftheMeuserivervalleytodetermine the corresponding waterheightsand flood areas. Thisanalysisshowsthatthe“referenceflood”,whichhasmeanwhilebeenreassessedbythelicensee at2615m³/s(flowrateof1995+20%),correspondswithawaterheightof71.30m,beingthesame as the site platform elevation, and being characterized by a return period between 100 years (95 th percentile)and400years(median).Tostrengthenthe siteprotection against this “reference flood” andavoidanynonconformity,asmall,seismicallyanchoredwallhasbeeninstalledalongthewater intakechannel.Moreover,waterenteringthesitebywindwavesthatarepropagatingintothewater intakechannel(returnperiodupto100years),shouldalsobeimpededbythiswall. AhydrodynamicanalysisofatotalruptureofthedamlocatedontheMeuseriveratAndenneSeille, i.e.upstreamofTihange,wasalsocarriedout.Ithasbeendemonstratedthatsuchaneventwould leadtoawaterheightof70.54minthewaterintakechannel,whichiscomparabletothe1995flood andconsiderablylowerthanthewaterlevelofthe“referenceflood”whichremainsbounding. Evaluationofsafetymarginsandadditionalmeasures Duringthereassessmentofthefloodrisk,theregulatorybodyrequestedthattheunitsbeprotected against a 10,000year flood, being a design basis flood (DBF) often adopted in national nuclear regulations(Germany,,…).IncoherencewithFrenchregulation(RFSI.2.e),a1,000yearflood (70thpercentile)increasedby15%waschosenasbeingrepresentativeforsuchadesignbasisflood. FortheMeuseriverinfrontofTihange,thisDBF,asderivedfromtheabovementionedPOTanalysis, wouldcorrespondtoariverflowrateof3488m³/s.Correspondingwaterheightswouldlargelyexceed the site platform elevation, causing flooding of the three units and loss of a lot of safetyrelated equipment,includingallonsiteACpowersourcesandbothprimaryandalternateultimateheatsink. Theaccessibilityofthesite,however,wouldbeassuredasthemainroadandsiteentrancewouldnot beflooded. Consequently,asetofadditionalprotectionmeasuresfollowingadefenceindepthlogic,togetherwith adedicatedemergencystrategy(withappropriateprocedures)hasbeenrequestedbytheregulatory body.

Chapter3Flooding 72 In response to this request, thelicensee has proposed to implement three levels of defense, which have,inprincipal,beenacceptedbytheregulatorybody: - aperipheralprotectionofthesite; - local protections of the buildings containing equipment required to bring and maintain the unitsinasafestate,ensuringa“watertightarea”foreachunit; - asetofnonconventionalmeans(NCM),whichcanassurecoolingofthethreereactorsandall spentfuelpoolsincaseoffloodingoftheconventionalmeans(duetofailureofthefirstand secondlevelofdefense),andwhichcanbeusedevenforfloodsexceedingthe10,000year flood. Thefirsttwolevelsofdefensearenotyetimplemented (both designand implementationof these protectionsarebeingstudied).ThefirstlevelofdefenseisintendedtoprotecttheTihangesiteagainst thenewdesignbasis10,000yearflood,byensuringadrysite.Thesecondandthirdlevelsofdefense then become useful to provide protection against floods beyond the new designbasis 10,000year flood(BDBF)andalsotoimprovedefenseindepth. AttheendofJune2011,thethirdlevelofdefensewaspartiallyimplemented,byinstallingateach unitasetofnonconventionalmeans(thesocalledUltimateMeansCircuit,CMU)tokeeptheunitsin asafeshutdownstate,awaitingrepairorreplacementofdamagedSSC.Anemergencypreparedness strategyandorganization,withcorrespondingprocedures,hasalsobeendeveloped . Concerningthefurtherdevelopmentofthethirdlevelofdefense,foreachunit,andprimarilyforthe upstreamunitTihange1,thelicenseeannouncedthatredundantand/ordiverseultimatemeans(main andalternatemeans)willbeforeseenforpumpingeitheronsitecleanwater(e.g.,fromdemineralised watertanks)orfloodwaterintotheexistingsystems(EDN,CEI,...)thatareusedforwatersupplyto thesteamgeneratorsandthespentfuelpools(currently,suchdiversityisforeseenatTihange2).In addition,thenewgroundwaterwellswillbeputintoserviceasmainwatersourceafterfloodingofthe site. Additional(external)meansorreplacement/repairofdamagedsafetyrelatedequipment,whichmay beneededforthelongtermstrategyinordertomaintaintheunitsinasafeshutdownstate,willalso befurtheridentifiedbythelicensee.Correspondingmidandlongtermprocedureswillbeestablished. In the action plan proposed by the licensee, it is foreseen to give a high priority to the further implementationofalllevelsofdefense.Theproposedplanningis2014fortheperipheralprotectionof the site(1 st levelofdefense),20122013forthelocalprotectionsofthebuildingsofeachunit(2 nd level of defense), and 2012 for the further improvement of nonconventional means (3 rd level of defense). In addition, the further improvement of the emergency preparedness strategy and organization,includingcorrespondingprocedures,isforeseenin20122013.Thehighestpriorityisput onthe1 st levelofdefenseasitdefinesthenewdesignbasisrelatedtotheriskofsiteflooding.Asthe 2nd and3 rd levelsofdefenseincreasethesafetyofthesiteinthemeantimeforfloodsexceedingthe present‘referenceflood’,theyalsoreceiveahighpriority.

3.3.2. Doel NPP

Designbasisandverification ThemaximumwaterheightofthefloodpostulatedinthedesignoftheDoelsiteandthefourunits (+9,13mTAW)correspondswithacombinationofhightideandstormsurgeintheScheldtestuary estimatedforareturnperiodof10,000years.Thesiteplatform(at+8,86mTAW)isprotectedagainst such a flood by the embankment along the Scheldt river (initial height at +11,08m TAW, later increasedto+12,08mTAW). BecauseofrecentfloodsinBelgium(e.g.,intheMeusevalley)andinneighboringcountries(e.g.,at the Blayais NPP in December 1999), a reassessment of the flood risk of the Doel site has been conductedin20062007.Thisanalysisshowsthatthesiteisstillprotectedagainstahighwaterlevel

Chapter3Flooding 73 oftheScheldtrivercorrespondingwitha“designbasisflood”(hightide+stormsurge,95 th percentile, forareturnperiodof10,000year). Moreover, the effects of wind waves such as embankment runup and overtopping have been examined.DuetothefavorablelocationoftheDoelsitewithrespecttodominantwinddirectionsin caseofstormsurge,embankmentovertopping,whichmayoccurforreturn periodslargerthan300 years,wouldlead,uptoa10,000yearsstormsurge,tomanageableflowratesbecausetheycanbe evacuated (e.g. by the local sewer system or, if needed, by a large mobile pump) while water penetrationintosafetyrelatedbuildingscanbeimpeded,ifneeded,bymeansofsandbags(already available)ormobilebarriers(whichareplannedtobeinstalledandwillbeintegratedintheonsite emergencyplan).Somesmallermobilepumps,thatcanbeusedtoevacuatewaterhavingpenetrated inbuildings,arealsoavailableonsite. Hence,duringadesignbasisflood,theSSCoffirstlevelandsecondlevelprotectionremainavailable. Inaddition,theaccessibilityofthesiteisnotendangered. Evaluationofsafetymarginsandadditionalmeasures Besidestheeffectsofwindwavesandembankmentovertopping,anembankmentfailure,whichcould occur after significant erosion which has not been timely repaired, has also been studied. For the worstcasescenario,i.e.foraScheldtriverwaterlevel(10,2mTAW)correspondingtoa10,000years storm surge (95 th percentile), the water would reach the first buildings after about one hour and significantwaterdepthscouldbefoundaroundseveralbuildings(varyingbetween20and50cmand mostlydependingonthelocalsitetopography). Therefore,theperiodicinspectionsoftheembankmentswillbeimprovedinordertotimelydetectany potentialembankmentdegradation(embankmenterosion,inparticular).Amorefrequentfollowupof decreasing embankment heights due to embankment settings is also foreseen. Finally, the afore mentionedmobilebarriersthatareplannedtobeinstalledatsensitivebuildingentrancesshouldalso provide appropriate protection against such a embankment failure, as well as against seismically inducedonsitefloodingriskscausedbycoolingtowerbasinsoverflowandrupturesorlargeleaksof severalnonseismicwatertanksandlargepiping(forwhichpotentialconsequenceshavebeenroughly estimatedinthelicenseereport,chapter2,sectionrelatedtoseismicallyinducedfloodingrisks).

Chapter3Flooding 74 3.4. Assessment and conclusions of the regulatory body

3.4.1. Tihange NPP The approach adopted by the licensee to reevaluate the flooding risk of the three units on the Tihangesiteisinconformancewiththemethodologyprovidedbythelicenseeandapprovedbythe regulatorybody. Thedetailedanalysisofthelicenseereportandthesubsequenttechnicalmeetingsandinspectionsby theregulatorybodyleadtotheconclusionthatthepresentedapproachandresultingactionplanfor improvementsisadequate. However,theregulatorybodyidentifiedadditionaldemandsandrecommendationstofurtherimprove therobustnessoftheunitsandthesiteagainsttheriskofflooding: 1. Thelicenseeshallincludeasafetymarginforthe firstlevel ofdefensetoadequatelycover uncertaintiesassociatedwitha10,000yearflood(thewalloftheperipheralprotectionshould thusbedesignedhigherthanthefloodlevelassociatedwitha10,000yearflood). 2. For the flooding risk, further improvement of the emergency preparedness strategy and organization,includingcorrespondingprocedures,shouldbeimplementedbymid2012. 3. The robustness of the currently installed nonconventional means (NCM), i.e. the socalled UltimateMeansCircuit(CMU)shouldbefurtherimproved: • SincetheCMUiscurrentlyneededforfloodsexceedingthe“referenceflood”of2615m³/s (i.e., floods with return periods exceeding 100 to 400 years), the licensee should determine specific provisions as applicable toequipment important for safety (tests, maintenance,inspections,…). • The currently implemented alternate power sources for I&C systems and emergency lighting should be further improved, where needed, and the sufficiency of available or recoveredI&Cequipmenttosafelycontrolthethreeunitsshouldbechecked. • Thetechnicalcharacteristicsofthesenonconventionalmeans (NCM)shouldaccountfor the adverse (weather) conditions they may be subject to during the whole period of operation. If this is not covered by design, an appropriate protection or compensatory strategyshouldbedeveloped. 4. The robustness of the currently implemented emergency preparedness strategy and organizationshouldbefurtherimprovedforthefollowingaspects: • Thefloodingalertsystem,whichisbasedonadirectcommunicationbetweentheregional servicecompetentforforecastingriverflowratesintheMeusebasin(SETHY,makinguse ofadedicatedforecastingsystem)andtheNPP(withTihange2beingthesinglepointof contact and responsible for warning Tihange 1 and Tihange 3), is a crucial factor. Therefore,itsrobustnessandefficiencyshouldbefurtherimproved. Inparticular, - theprotocol betweenthe NPP Tihange and SETHY shouldbeformalizedassoonas possible. - Thelicenseeshouldpursueregulartestsofthesecuredcommunicationchannelsand transmitteddata(i.e.,onlinemeasurementsandpredictionsofriverflowrates). - The licensee should organize emergency preparedness exercises involving both the NPPandSETHYpersonnel. - Criteriausedtolaunchtheinternalemergencyplanandtostartthe“alertphase”and associated actions should be unambiguously defined in the applicable emergency procedures. • Means for onsite transport of personnel and equipment towards the units, inside the units,orfromoneunittoanother,whilethesiteisflooded,shouldbefurtherimplemented andconsideredintheemergencypreparednessstrategy.

Chapter3Flooding 75 5. Internalhazardspotentiallyinducedbytheflooding(fire,explosion)shouldbeexaminedand additional measures should be taken where needed (e.g., because the automatic fire extinction system is lost during a flood exceeding the “reference flood”). The potential deficiencyoftheUltimateMeansCircuit(CMU)incaseofinducedfire,inparticularbecauseof dependencies when the CMU is connected to the fire extinction system (CEI), should be examinedandpotentialweaknessesshouldberesolved.

3.4.2. Doel NPP TheapproachadoptedbythelicenseetoreevaluatethefloodingriskofthefourunitsontheDoelsite is in conformance with the methodology provided by the licensee and approved by the regulatory body. Thedetailedanalysisofthelicenseereportandthesubsequenttechnicalmeetingsandinspectionsby theregulatorybodyleadtotheconclusionthatthepresentedapproachandresultingactionplanfor improvementsisadequate. However,theregulatorybodyidentifiedadditionaldemandsandrecommendationstofurtherimprove therobustnessoftheunitsandthesiteagainsttheriskofflooding: 1. Thetechnicalcharacteristicsofthenonconventionalmeans(NCM)thatcanbeusedincaseof flooding of safetyrelatedbuildings (for all potential causes) should account forthe adverse (weather)conditionsthey maybesubjecttoduringthewholeperiodofoperation.Ifthisis not covered by design, an appropriate protection or compensatory strategy should be developed. 2. Improvementoftheproceduresafterearthquake(IQM01):afteranearthquake,itmustbe rapidly and visually verified if flooding due to cooling tower basin overflow (e.g. due to obstructionofitsoutletchannel)isongoingorimminent.Inthatcase,theCWpumpsmustbe rapidlystopped. 3. Asrecentinspectionsevidencedlocationswithembankmentheightsapproachingtheminimal requiredheight(TechnicalSpecificationscriterion),embankmentheightinspectionsshouldbe donemoreregularly(e.g.,twoyearly,andatleast5yearly,insteadoftenyearly)inorderto avoidariskofexcessiveembankmentovertoppingbywindwavesforfloodswithinthedesign basis(embankmentovertoppingmayoccurforreturnperiodslargerthan300years).

Chapter3Flooding 76 4. Extreme weather conditions Inordertoprovideaselfstandingnationalreportforthesubsequentpeerreviewprocess,firstthe relevantinformationsuppliedbythelicenseeinitsstresstestsreportsisrecalled. Attheendofthischapter,afinalsectionprovidestheconclusionsandtheassessmentoftheBelgian regulatorybody(FANCandBelV). Someextremeweatherconditionssuchasheavyrainfalls,highwinds,tornadoes,lightning,snowfalls orhailcanaffectthesitesofDoelandTihange.Forobviousgeographicalreasons,tropicalcyclones, typhoonsandhurricanes,aswellassandstorms,duststormsandwaterspouts,arenotrelevantand havenotbeenconsidered. Noneoftheassessedhazardscanaffectthesafetyfunctionsonbothsites. 4.1. Heavy rainfalls

4.1.1. Reassessment of heavy rainfalls used as design basis Tihange NPP The rainfall data considered when the Tihange units were designed were based on the weather observationsmadebytheRoyalMeteorologicalInstitute(RMI)atthestationofHuyStatteoverthe period19011930.TheseweatherobservationsareapplicabletothesiteofTihangewhichislocatedat asimilaraltitude.Theheaviestrainfallrecordedoverthisthirtyyearperiodreached59mmofrainina singleday. Fromthenon,theWalloonRegionhaspublishedIDFgraphiccurves (Intensity/Duration/Frequency) and QDF tables (Quantity/Duration/Frequency) for every municipality. The QDF table for the municipalityofHuyisillustratedbelow.

Table 10: QDF table for the municipality of Huy (extreme quantities of rain fallen over a specific duration D for the considered return period T; values expressed in mm fallen over duration D (1 mm = 1 litre/m²)) 2 3 6 1 2 5 10 20 30 50 100 200 D/T months months months year years years years years years years years years

10 min 4.2 5.1 6.7 8.5 10.4 13.1 15.4 17.8 19.3 21.3 24.2 27.2 20 min 5.7 6.9 9.1 11.4 13.9 17.4 20.4 23.5 25.5 28.1 31.8 35.8 30 min 6.7 8.1 10.5 13.2 16.0 20.0 23.4 27.0 29.2 32.1 36.4 40.9 1 hour 8.6 10.2 13.1 16.2 19.6 24.5 28.4 32.7 35.4 38.9 44.0 49.4 2 hours 10.5 12.3 15.7 19.2 23.1 28.6 33.2 38.1 41.1 45.1 50.9 57.2 6 hours 13.7 15.9 19.8 24.0 28.5 35.0 40.4 46.1 49.7 54.4 61.2 68.5 12 hours 16.2 18.6 22.9 27.5 32.5 39.6 45.5 51.8 55.7 60.9 68.3 76.4 1 day 19.6 22.2 27.0 32.2 37.7 45.7 52.2 59.3 63.7 69.4 77.8 86.8 2 days 24.4 27.4 33.0 38.9 45.3 54.6 62.1 70.3 75.3 82.0 91.6 102.0 3 days 28.3 31.7 37.8 44.5 51.6 61.8 70.2 79.2 84.8 92.2 102.9 114.4 4 days 31.8 35.5 42.2 49.4 57.1 68.5 77.4 87.2 93.3 101.4 113.0 125.5 5 days 35.0 39.0 46.1 53.9 62.2 74.1 84.0 94.5 101.1 109.7 122.2 135.7 7 days 40.9 45.3 53.4 62.1 71.5 84.9 96.0 107.9 115.3 125.0 139.1 154.2 10 days 48.9 54.0 63.3 73.3 84.1 99.5 112.3 125.9 134.4 145.6 161.8 179.2 15 days 60.9 67.0 78.1 90.1 102.9 121.3 136.5 152.9 163.0 176.3 195.6 216.4 20 days 72.0 79.0 91.7 105.4 120.1 141.3 158.7 177.4 189.0 204.3 226.4 250.2 25 days 82.5 90.3 104.5 119.8 136.3 159.9 179.4 200.3 213.3 230.4 255.2 281.8

Chapter4–Extremeweatherconditions 77 30 days 92.5 101.1 116.8 133.6 151.7 177.7 199.1 222.1 236.4 255.2 282.5 311.7 ThedigitalisationofhistoricalrainfalldatarecordedatthestationofUcclewascompletedin1999. Asaresult,asetofdatacoveringahundredyearperiod,from1898to1993,isavailable.TheLouvain Catholic University (UCLKUL) made a research to derive trends from those data. This research concluded that no clear and significant trend could be discerned. It revealed however that heavy rainfalloverarelativelyshortperiodoftimemainlytakesplaceduringthesummer. Lastly,theRoyalMeteorologicalInstituteresearchonclimatechangeinBelgium,basedondataprior to 2007, confirmed that there is no significant change in the quantities of rain falling over short periods of time (from one to several hours). Extreme rainfalls occurred twice in August 2011. The rainfallvaluescollectedbytheRoyalMeteorologicalInstitutewere: • on18.08.2011inBertem:36.6mmin1hourand70.1mmin24hours, • on2223.08.2011inUccle:32.4mmin20minutes,38mmin1hourand44.3mmin24 hours; compared with the region of Huy, this is close to the 100yearly rainfall over 20minutes. The available data show that the rainfall intensity has not significantly increased since the commissioningofTihange1.Thevaluesconsideredinthedesignphasearestillsuitable. Doel NPP The Royal Meteorological Institute data about highestrainfallsovershortperiodsoftimethatwere availableatthedesignarelistedinthesafetyanalysisreportoftheDoelunits.Theyarebasedon measurementsintheregionofAntwerpDoelovertheperiod19011930.Thehighestrainfallrecorded inasingledaywas60mm.

Table 11: QDF table for the municipality of Antwerp (extreme quantities of rain fallen over a specific duration D for the considered return period T; values expressed in mm fallen over duration D (1 mm = 1 litre/m²)) 2 5 6 10 25 30 50 100 D/T years years years years Years years years years

1 min 2.0 2.8 3.0 3.3 4.0 4.1 4.5 5.0 5 min 7.8 10.2 10.6 11.8 13.9 14.3 15.5 16.9 10 min 9.2 12.1 12.5 14.1 16.4 16.9 18.2 20.1 20 min 10.9 14.4 15.0 16.6 19.5 20.1 21.7 23.8 30 min 12.0 15.9 16.5 18.4 21.6 22.2 23.9 26.3 40 min 12.8 17.2 18.1 20.7 26.0 27.1 30.6 35.9 1 hour 14.2 19.2 20.2 23.4 30.2 31.8 36.5 44.0 2 hours 16.7 22.7 23.9 27.8 35.8 37.6 43.2 52.2 4 hours 19.8 26.9 28.4 32.9 42.4 44.6 51.2 61.8 6 hours 21.9 29.7 31.3 36.3 46.9 49.2 56.6 68.2 9 hours 24.2 32.8 34.7 40.1 51.7 54.3 62.4 75.3 12 hours 26.0 35.2 37.1 43.0 55.5 58.3 67.1 80.8 18 hours 28.7 38.8 41.0 47.5 61.2 64.4 74.0 89.3 24 hours 30.7 41.6 44.0 51.0 65.8 69.1 79.4 95.8 NewIDFgraphiccurvesbasedonrainfallsmeasuredinDeurnefrom1967to1997areavailableina morerecenteditionbytheFlemishMinistry.Acomparisonwiththesemorerecentdatawasperformed duringthetenyearlyperiodicsafetyreviewandrevealedthatthedataavailablewhendesigningthe NPPwereenveloping. Asaresult,therainfallintensitythatwasconsideredasdesignbasisisstillrelevant.

Chapter4–Extremeweatherconditions 78

4.1.2. Evaluation of safety margins against heavy rainfalls Tihange NPP Torrentialrainfallsaredirectedbythesitedrainagetothesewersystem. ThesewersysteminTihangeisindependentfromthepublicnetwork.Eachunitisequippedwiththeir owndrainingsystemanddischargepipingintotheMeuseriver. Specifictothenetworkofunit1isthatitisdividedintotwoparts.Thedischargesystemofthe“East Centre”parthasthesameconfigurationasthenetworkofunits2and3:adischargepipeleadingto theMeuseriveratadepthofafewmeters.Ontheotherhand,the“West”partoftheunit1network consists in collecting the discharged water in a draining area near the pumping station of the unit, fromwhereitispumpedtotherawwateroutlet. Thissewersystemwasdesignedtakingintoaccountthehydrographsusedforpublicsewersystems. ThecalculationbasisinBelgiumisarainfallof120litrespersecondandperhectareover20minutes. These graphs also indicate that heavy rains exceeding 150 litres per second and per hectare (corresponding to 54 mm/h) are uncommon over a period of time long enough to create the conditionsforfullyfilledsewerpipes.Infact,onlyapartoftherainwateriscollectedbythesewer, theotherpartisretainedbydifferentsurfaces,evaporatedorinfiltratedintotheground. WhenthesiteofTihangewasdesigned,thesewersystemwascalculatedusingavalueof150litres persecondandperhectareforroadsurfaces,parkingareasandotherpavedsurfaces. WhencomparingthedrainingcapacityofthesewersystemonthesitewiththeIDFdata,thiscapacity can only be exceeded during short periods of time, ranging from a few minutes to a few tens of minutes.Inthiscase,thereisasmallvolumeofstagnantwaterthatisevacuatedinafewminutes oncetheraineasesoff. IftorrentialrainfallscoincidewithaheavyfloodedMeuseriver,thesewersystemonthesitecontinues toplayitsrole,providedthatthefloodislowerthanorequaltothedesignbasisflood(flowrateof2 615m³/s,correspondingwithariverlevelof71.30m). Doel NPP Incaseofheavyrainfalls,standingwaterisrapidlyevacuatedfromthesite.Twoconstructionsplayan importantrole: • thesewersystem,whichwasdesignedtofacethundershowersinaccordancewiththeRoyal MeteorologicalInstitute’sstandardvalues, • thehydraulicembankmentconsistinginadrainingsandlayerthatis6to7mthick. ThesewersystemonthesiteofDoelisdividedintofivesectors.Rainwaterisdirectedtofivewells spreadoverthesite(Hwells).Eachwellisequippedwithtwosubmergedpumps(andonebackup pump)forevacuatingthewater. The flow rate of the sewer system has been reassessed considering the sewer maps and the characteristics ofthe evacuation wellsand their pumps. This consisted in a hydraulic simulation of “compositerainfalls”forvariousreturnperiods.Thesetheoreticalcompositerainfallsweresetupon basis of Royal Meteorological Institute’s historical data. The following cases were assessed: rain periodsof6hourswithareturnperiodof5,10and20yearsandrainperiodsof48hourswitha returnperiodof100years. Only for composite rainfalls with a return period of100years,thesewersystemcapacitycouldbe locallyexceededforafewtensofminutesnearbysomebuildingsatDoel3andDoel4units.Inthis case,thereisasmallvolumeofstandingwaterthatisevacuatedbythesewersoncetheraineases off.

Chapter4–Extremeweatherconditions 79 4.1.3. Measures that can be envisaged to increase robustness against heavy rainfalls Tihange NPP Calculation is in progress to confirm the draining capacity at every point of the sewer systems. Dependingontheresultsandontheirpotentialconsequences,improvementswillbeimplemented. Doel NPP Basedontheevaluationoftheheaviestrainfallswithassociatedreturnperiod,andonthepotential limitedconsequencesonsite,noimprovementmeasureiscurrentlyconsidered.

Chapter4–Extremeweatherconditions 80 4.2. High winds

4.2.1. Reassessment of high winds used as design basis AnemometricrecordsinBelgiumbetween1840and1949haverevealedthatthewindspeedexceeded onlytwiceorthreetimesthelevelof40m/soverthatperiod,inparticularwithapeakat45m/sin 1929inHaren. Morerecentdataonwindspeed,whetherongustywindconditionsoronaveragewindspeed,have beencollectedsince1949. ThehighestwindspeedrecordeduptonowinBelgiumis46.7m/sinBeauvechainin1990. The wind speed considered for the design basis of both Tihange site and Doel site is defined as “exceptionalhighestwindspeed”underthetermsoftheNBN460standarddealingwiththeeffectof thewindonbuildings.Thisdesignbasiswindspeedhasbeensetat49m/sat25maboveground level.Awindspeedcorrelationcurveisthenappliedforotherheights. As a result, the wind speed that was considered as design basis for Tihange and Doel NPP is still relevant.

4.2.2. Evaluation of safety margins against high winds Resistance of the buildings Thedesignbasiswindspeedforbothsites,setat49m/sinaccordancewiththeNBN460standard,is tobecomparedwiththelocalwindspeedsrecordedoverthepastyears. ThemeasuresrecordedinBierset,closetothesiteofTihange,revealthat: • accordingtothemostrecentdata(from1993to2010),therehavebeennovalueabovethe windspeedrecordsetinBeauvechainin1990(46.7m/s); • themaximumwindspeedwithareturnperiodof100yearsis44m/s(gustywind),andthe maximumwindspeedlowersto34m/s(gustywind)inmoreshelteredplaces. Furthermore,inthefloodingriskstudiesoftheTihangesite,thehighestaveragewindspeed(average measurementovertenminutes)wasdeterminedat25m/s(Bierset,19852003). ClosetothesiteofDoel,themeasuresrecordedrevealthat: • accordingtothemostrecentdata(inDeurne,from1993to2010),therehasbeennovalue abovethewindspeedrecordsetinBeauvechainin1990(46.7m/s); • the maximum wind speed (gusty wind) with a return period of 100 years is 41.5 m/s in Oorderen/PortofAntwerpand41m/sinDeurne. Furthermore, in the tenyearly periodic safety reviewofDoel NPP,the highestaveragewindspeed (averagemeasurementovertenminutes)wasdeterminedat20m/s(Deurne,20032009). Thesewindspeedsaresignificantlyinferiortothedesignbasiswindspeed. Furthermore,theNBN460standardappliestotheconstructionofeverybuildingingeneral.Butsafety relatedbuildingsweredesignedtowithstandevenhighermechanicalloadsthanthosegeneratedby highwinds(e.g.extremeloadsinducedbytornadoes). Loss of power supplies Anothersideeffectofhighwindsisthattheycanaffecthighvoltagepowergridoutsidethesites,or evenhighvoltagestationsonsite.Thiscanresultinatotalorpartiallossofexternalpowersupplies (LOOP),butthefacilitiesweredesignedtofacethissituation.

Chapter4–Extremeweatherconditions 81 Wind waves Finally,highwindsarelikelytocreatewavesontheriver,whichmayovertopthebanks,dikesand otherprotectivestructuresalongthesitesandleadtolocalflooding. The University of Liege maderesearchonwaveheights induced by exceptional high winds on the stretchoftheMeuseriveralongthesiteofTihange. AlongthesiteofTihange,thehighestcalculatedwaveheightisabout0.5mforadailyaveragewind speedof25m/s,correspondingtothehighestvalueevermeasuredinBierset.Forthehighestdesign basiswind,namelywindgustsof49m/s,whichissupposedtobeequaltoanaveragewindof34m/s (thatistosay2/3ofthewindgustspeed,thisconservativevalueappliesforcoastalareasandnotfor inlandregions),thetheoreticalwaveheightisabout0.7m.Thewaveheightdescribesthedistance frompeaktothetroughofthewave.Thewavepeakisabovetheaveragewaterlevelonlybyhalfof thisvalue(andthetroughisatthesamedistancebelowtheaveragewaterlevel).Therefore,forwind conditionscorrespondingtothehighestdesignbasiswindspeed,thetheoreticalwavepeakis0.35m abovetheaveragewaterleveloftheMeuseriveralongthesiteofTihange. Innormalconditions,theMeuseriverwaterlevelismaintainedat69.25malongthesiteofTihange. Sincethestoneembankmentsandthewaterintakechannel’sraisedembankmentsareatleast71.35 mhigh,wavesofafewtensofcmwouldnotposeanyproblem.Shouldthe‘referenceflood’levelbe reached with high winds blowing down the Meuse river, the waves created could overtop the embankments.ThewaterreachingthesitewouldthenreturntotheMeuseriverthroughthesewer systemandthewaterlevelattheedgeofthesitewouldnotexceedafewcentimeters. Safetyrelatedequipmentisnotlocatedclosetotheriverembankmentsandthereisnoriskthatit couldgetflooded. The propagationofwavesin thewater intake channel and the risk of waves overtopping the wall along the channel have also been considered. The numerous pillars and the fact that waves are propagatingdowntheriverperpendicularlytothedirectionofthewaterintakechannelsignificantly attenuatethewaves.Consequently,itisconsidered that only a‘referenceflood’ situation combined withstrongwindsblowingontheMeuserivercancreatewavesofabout10cminthewaterintake channel. These waves could overtop the wall, though on a limited scale. These small quantities of wateronthesitewouldthenbecollectedbythesewersystemorinfiltrateintothesoil.Ifnecessary, mobilepumpsavailableonsitewouldbeused. AtDoel,thetenyearlysafetyreviewhasconfirmedthatunfavourablewinddirectioncombinedwitha highwaterlevelduetoaheavystormcouldresultinwaterwavesovertoppingtheembankment.This eventualitywasalreadydiscussedinChapter3(Flooding).

4.2.3. Measures that can be envisaged to increase robustness against high winds Considering the adequacy of the design basis and the available safety margins with respect to the differentscenarios,nofurthermeasureisneededinordertoimprovetherobustnessoftheunitsat bothsites.

Chapter4–Extremeweatherconditions 82 4.3. Tornadoes In Belgium, the strength of tornadoes is not likely to exceed level F2 on the original Fujita scale (1971).Thislevelcorrespondstowindspeedsrangingfrom50m/sto70m/s(180to250km/h). AmongthetornadoesthatoccurredinBelgiumovertheperiod18801940,theeventthatledtothe highest wind speed was due to a set of tornadoes moving from Holland during the storm of 10 th August1925.Onthisoccasion,thewindspeedwasestimatedupto250km/hlocally. Anotherhighintensitytornadooccurredon20 th September1982inthevillageofLéglise.Thehighest windspeedwasestimatedat250km/handthetornadowasabout50mwide.Therewasserious damage,includingblownoffroofsanddestroyedbuildings. AsimilareventhappenedinOostmalleon25 th June1967.Ingeneral,lowerintensitytornadoesare reportedeachyearinBelgium. ThereisnosystematicdatacollectionontornadoesinBelgium(especiallyregardingtheirintensity). However,itshouldbenotedthat: • thereare4to7timeslesstornadoesinEuropethanintheUnitedStates; • thereareeachyear4to6tornadoesinBelgium; • most of the tornadoes occurring in Belgium are rated EF0 to EF2 (enhanced Fujita scale, 2007);EF3ratedtornadoesareprobablyuncommonfromaprobabilisticpointofview,though the tornado that hit Haumont, in the north of France at the Belgian border, reached an intensityofEF4insomeplaces; • thereisnomarkedtendencyintheevolutionofthestatistics; • thereisnoareainBelgiumwheretornadoesarereportedmorefrequently; • half of the tornadoes in Belgium are reported during summer, but they can also occur in winter; • thedurationofatornadoinBelgiumisinmostcaseslimitedtoafewminutes;thediameterof whirlwindsvariesfromafewmetrestosometensof metres, and the tornado paths range fromafewtensofmetrestosomehundredsofmetres.

4.3.1. Reassessment of tornadoes used as design basis Thedesignbasisforthestructuresisbasedonthehighestwindspeedoftheconsideredtornado. Tihange NPP The design basis tornado considered for Tihange 1 produces winds with a velocity of 70 m/s (250km/h).Theresistanceofallthebuildingstosuchwindswasassessedduringthefirsttenyearly periodic safety review (1985). Some corrective actions were then taken, except for the ventilation stackthatwouldnotresist,howeverwithouthavinganyimpactonthesafetyequipmentshoulditfall. Thetornadomissileriskwasnottakenintoaccountinthedesignoftheelectricalauxiliariesbuilding (upperfloor)andthesafetydieselgeneratorsbuilding(GDS).Forthelatterbuilding,thereinforced concretewallsresistingtheDBEearthquakeensure thatmissilesgenerated by the tornadowill not resultinthelossofsafetydieselgenerators. ForTihange2andTihange3,aswellasforDEbuilding,thedesignbasistornadoconsideredhasa windvelocityreaching107.3m/s(385km/h).Howeverthisdesignbasistornadowasconsideredonly for“bunkered”buildings.Theventilationstacksofbothunitswerenotdesignedtowithstandsucha strongwind,buttheimpactoftheirfallwasassessedanditshowedthatthe“bunkered”buildingsare preserved. Theprobabilitythatatornadowithawindspeedhigherthan70m/sreachesTihange1isestimatedat lessthan5.810 7/year,i.e.areturnperiodofabout2millionyears.

Chapter4–Extremeweatherconditions 83 Yet,Tihange2andTihange3andDEbuildingweredesignedconsideringanevenhigherdesignbasis tornadowithawindspeedof107.3m/s(385km/h).Thisdesignbasistornadoisrecommendedbythe USNRCRegulatoryGuide1.76forhighestriskregionsintheUSA. Doel NPP For Doel 1/2, the protection against tornadoes was based on a wind speed of 70 m/s (250 km/h). During the first tenyearly periodic safety review (1985), it was verified whether the category 1 structures(orsafetyrelatedstructures)wouldwithstandadesignbasiswindspeed.Thisverification alsoincludedsecondarycontainment,GNS,BAR,GNH,RMrooms,GEH,GMHandthestacks. Every considered concrete building provided sufficient protection against missiles generated by a designbasistornado. ForDoel3andDoel4,theprotectionagainsttornadoeswasbasedonawindspeedof107.3m/s(385 km/h).Thebunkeredstructurescanresisttornadoesandpotentialtornadogeneratedmissiles. Thisweatherphenomenonwasalsoconsideredforsome“nonbunkered”category1buildingssuchas parts of the GNH (penetration areas and radioactive gas storage tanks) and parts of the OVG2 (connectingtheKVRemergencycoolingpondwiththeBKRbunker). TheSCGbuildingitselfwasnotdesignedtowithstandatornado.However,thecontainersinsidethe SCGbuildingcanresisttheimpactofamissile,theimpactofthecollapsingbuildingortheimpactof debrisfromthebuilding. The safety related buildings of Doel 1/2 units are protected against a design basis tornado with a maximumwindspeedof70m/s.Itisveryunlikelythatatornadowithawindspeedexceeding70m/s willoccuratDoelsite.Theassociatedprobabilityisestimatedatabout6.10 7/year. Theprobabilitythatatornadowithawindspeedexceeding107m/swilloccuratDoelsiteiseven lower,atabout3.10 8/year.Yet,adesignbasiswindspeedof107m/swasconsideredforDoel3and Doel4units.

4.3.2. Evaluation of safety margins against tornadoes TheglobalconsequencesofatornadoonthefacilitiesdependonitsintensityontheFujitascale: • tornadowithawindspeedupto50m/s(180km/h):lightdamage(somedamagetoroofs, chimneys,doorsandwindows,uprootedtrees); • tornadowithawindspeedfrom50to70m/s(180to250km/h):significantdamage(roofs torn off, cars and trucks displaced, severe damage to houses, structures with weak foundationsblownaway); • tornado with a wind speed from 70 to 107 m/s (250 to 385 km/h): catastrophic damage (destroyedhouses,carsandtreesthrownthroughtheairlikemissiles). Ingeneral,thetornadophenomenonisnotadecisivefactorwhendesigningbuildings,comparedto other external events like blast waves or airplane crashes. This means that the impact of missiles generatedbyatornadoisgenerallycoveredbythelatterevents.Thisalsomeansthatmostofthe buildings are designed so that they can bear tornados stronger than the design basis tornado. Obviously, all the buildings are not likely to collapse simultaneously once a specific wind speed is exceeded.Furthermore,thewidthoftheheavilydevastatedzoneislimited. Tihange NPP Theglobalconsequencesofatornadoonthe siteof Tihange, considering its worstcase path, are describedinthefollowingtableforvarioustornadointensities.

Chapter4–Extremeweatherconditions 84 Table 12: Potential consequences depending on the tornado intensity

Tornado intensity Tihange 1 Tihange 2 and Tihange 3

• Lossofoffsitepower(LOOP) • Lossofoffsitepower(LOOP) Windspeedupto50m/s includedindesignbasis includedindesignbasis

• Lossofoffsitepower(LOOP) • Lossofoffsitepower(LOOP) • Lossofprimaryultimateheatsink • Lossofprimaryultimateheatsink Windspeedfrom50to70m/s • Stationblackout(SBO)(1 st level) switchovertoGDSorSUR switchovertoBUS

• Lossofoffsitepower(LOOP) • Lossofoffsitepower(LOOP) • Lossofprimaryultimateheatsink • Lossofprimaryultimateheatsink Windspeedfrom70to107m/s • Stationblackout(SBO)(1 st level) switchovertoGDSorSUR switchovertoBUS

The following equipment – located outside the buildings – is possibly vulnerable to highintensity tornadoes(windspeedabove50m/s): • atornadoacrossornearthesitecancausethelossofexternalpowersupplies(LOOP)asit candamageeitherthehighvoltageGrammestation,thelinesconnectingthisstationwiththe powerplant,orthehighvoltagestationinoneorseveralunits;thissituationisincludedinthe originaldesignbasisofeachunit; • foreachunit,themotorsoftheCEBpumps(supplyingMeuseriverrawwater)areexposedto missilesandthuscanbelost;thishasnoseriousconsequence: o InTihange1,theGDScanbecooledeitherbytheCEBsystem,orbygroundwater (suppliedbytwowellsthataredistantfromeachother and located more than 100 metres away from the CEB pumps and that are both equipped with two separate pumps). It is very unlikely that a tornado will reach simultaneously all these equipment. Besides, although both wells are protected only by a corrugated iron structurethatofferslittleresistance,itisevenmoreunlikelythatamissilewillfallin thewelloncethecorrugatedironstructureisblownoff. Theavailablepumps(CEBorgroundwater)takeoverthewatersupplyoftheGDS, though these need to be restarted manually once connected to the ground water supplyingsystem. Moreover, the emergency diesel generator (aircooled DUR) and the emergency system(SUR)remainfullyoperational. o InTihange2andTihange3,thelossoftheCEBpumpsleadstothelossoftheGDS. Nonetheless, all CEUpumps (Meuse river and ground water) remain operational as they are “bunkered”. As a result, the emergency building (BUS) will automatically maintaintheunitsinasafeandstablestate.Incasetheexternalpowersupplyislost, thedieselgeneratorshousedintheBUStakeoverthepowersupplyoftheequipment. • Thebackupsafetydieselgenerator(GDR),physicallylocatedonTihange2unit,iscooledby anoutsideaircoolingsystemthatisvulnerabletomissiles.IfaunitissuppliedbythisGDR, only one diesel generator will be lost. This single failure is included in the design basis. Furthermore,theemergencydieselgenerators(DURforTihange1andGDUforTihange2and Tihange3)remainoperationalandmaintaintheirrespectiveunitinastablestate.

Chapter4–Extremeweatherconditions 85 Doel NPP ThefollowingtablesummarizesthepotentialconsequencesonDoelsiteunits. Table 13: Potential consequences depending on the tornado intensity

Tornado intensity Doel 1/2 Doel 3 and Doel 4

• Possibilityofpartialortotallossof • Possibilityofpartialortotallossof offsitepower(LOOP) offsitepower(LOOP) Windspeedupto50m/s includedindesignbasis includedindesignbasis

• Lossofoffsitepower(LOOP) • Lossofoffsitepower(LOOP) • Lossofultimateheatsink(RW) • Lossofultimateheatsink(RN) Windspeedfrom50to70m/s • Stationblackout(SBO)(1 st level) • Stationblackout(SBO)(1 st level) switchovertoGNS switchovertoBKR

• Outsideofdesignbasis • Lossofoffsitepower(LOOP) • Lossofultimateheatsink(RN) ingeneral,atornadoisnotadecisive Windspeedfrom70to107m/s • Stationblackout(SBO)(1 st level) factorwhendesigningbuildings;Doel1/2 buildingsareconsideredtoprobablyresist switchovertoBKR suchatornado The following equipment – located outside the buildings – is possibly vulnerable to highintensity tornadoes(windspeedabove50m/s): • an offsite tornado could damage the external power supplies, leading to a partial or total LOOP; • atornadohittingthesitecoulddamagetheplant’shighvoltagesubstations,alsoresultingina partialortotalLOOP; • theaircoolersoftheDoel1/2safetydieselgeneratorsarelocatedoutsideontheroofofthe GMHbuilding,andthoseoftheDoel3andDoel4safetydieselgeneratorsarelocatedoutside on the roof of the GEH building; the cooling circuits were designed to remain operational underthehigheststormwindspossibleatDoelsite; • the Doel 1/2 raw water system (RW) cooling towers, which are part of the first alternate ultimateheatsink,arenotprotectedagainsttornadoes; • the Doel 3 and Doel 4 raw water system (RN) cooling towers, which are part of the first alternate ultimate heat sink,are not protected againsttornadoes; however, theyhave been designedtobearexceptionalgustywinds; • thecoolingponds(KVR),whicharepartoftheDoel3andDoel4secondalternateultimate heatsink,areinopenair;atornadocouldaffectthewaterinventoryofonepond,butitisnot possiblethattheinventoryofallpondscouldbelostsimultaneously.

4.3.3. Measures that can be envisaged to increase robustness against tornadoes Tihange2andTihange3ontheonehand,andDoel3andDoel4ontheotherhand,weredesigned towithstandadesignbasistornadowithanintensitythathasneverbeenexperiencedintheseareas. Tihange1andDoel1/2wereassignedadesignbasistornadooflowerintensity.Yetsuchatornadois veryuncommoninEurope. In most cases, tornado resistance is not the decisive criterion whendesigning buildingsasmost of themcanbearmechanicalloadsmuchhigherthantheforcesexertedbyadesignbasistornado.

Chapter4–Extremeweatherconditions 86 In extreme conditions, a severe tornado could cause a partial or total loss of the external power supply,possiblycombinedornotwithastationblackout(SBO)(1 st level)oralossofoneoftheheat sinks.Thesescenariosaretreatedinchapter5. Nomeasurededicatedtoincreasetherobustnessofthefacilitiesagainsttornadoesisrequiredonboth sites.

Chapter4–Extremeweatherconditions 87 4.4. Lightning

4.4.1. Reassessment of lightning used as design basis Overtheperiod19011930,theaveragenumberoflightningdayswas19.6intheregionofTihange (datacollectedinHuyStatte).LightningstrikesthesurroundingsofTihangesite1.76timesperkm² andperyear.ThisvalueishigherthantheaverageforBelgium(annually1.19strikeperkm²). ClosetoDoelsite,theweatherobservationsovertheperiod19011930showed8lightningdaysper yearonaverage(datacollectedatAntwerpDoelstation).

4.4.2. Evaluation of safety margins against lightning Every building on both sites is protected against lightning in compliance with the NBN C18100 standard(edition1985),anditsaddendum.

4.4.3. Measures that can be envisaged to increase robustness against lightning From2009,thenewNBNEN(CEI)62305standardisapplicabletoeverynewbuilding. On this occasion, a lightning risk assessment has been performed for Tihange power plant in compliance with the methodology described in this new standard. The efficiency of the grounding systemandthejustificationoftheprotectionrequirementsorrecommendationshavebeenassessed. This resulted in proposals for technical modifications initiated in 2010, culminating in a grounding systemprojectcurrentlyinprogress(spreadover201120122013). Periodictestingofgroundingdevicesisalsoscheduledinanannualprogram. A similar assessment is currently in progress for Doel power plant in order to enhance lightning protectionincompliancewiththisstandard.

Chapter4–Extremeweatherconditions 88 4.5. Snowfalls Onaverage,thereare15snowdaysperyearinlowerandcentralBelgium,30snowdaysinupper Belgiumandupto40snowdaysinthehighlands. Periodsofsnowcoveredgroundcanvarysignificantlydependingonthewinterconditions.Mostofthe time,theseperiodsdonotexceed3to5days.ThesnowcoverperiodisslightlylongerintheArdens, especiallyinthehighlands. On10 th February1902,arecordsnowdepthof0.35mwasmeasuredinUccle(centralBelgium).In theHighFensregion,apeaksnowdepthof1.15mwasrecordedon9 th February1953(highestvalue everrecordedinBelgiumbytheRoyalMeteorologicalInstitutesinceearly20thcentury). SnowfallsarerelativelyscarceinlowerandcentralBelgium,representingTihangeandDoelsites. Thesafetyanalysisreportindicatesanannualaverageof12snowdaysnearbyDoel.

4.5.1. Reassessment of snowfalls used as design basis Anaverageof30snowdaysperyearwastakenintoaccountwhenthesiteofTihangewasdesigned. Tihange1andDoel1/2unitsweredesignedinaccordancewiththeprovisionsofNBN151963rule, whileTihange2,Tihange3,Doel3andDoel4unitsweredesignedaccordingtoNBNB15103(1977) entitled“Concrete,reinforcedconcreteandprestressedconcrete–Calculation”. ThesetwostandardsrecommendfortheregionofTihangeandDoel(altitude0to100m)thatthe overloadduetosnowdoesnotexceed0.35kN/m²and0.40kN/m²respectively.Inadditiontothis load,apointloadof2kNover1m²or1kNover0.2x0.2m²atanypointontheroofmustbetaken intoaccount(choosingtheworstofbothvalues). Thecurrentrulesfornewbuildings(NBNEN199113ANB:2007)areinforcesince1995andwere transposedfromtheEuropeanconstructionstandards(Eurocode1)intoBelgianregulation. FortheregionofTihangeandDoel(altitude0to100m),thisregulationrecommendsconsideringan excesssnowloadof0.50kN/m 2.Thesestandardsclearlyindicatethattheeffectsduetosnowfallsand windmustnotbecumulated.Itshouldbenotedthatwindcancreatedepressiononroofsthatistaken intoaccountinthedesignofbuildings(framing/cladding)andcanencompasstheeffectsduetothe snow. Acodeofpracticeissuedin1995recommendsthattheroofsshouldbedesigned–whenconsidered asnecessary–sothattheywithstandaloadof1.20kN/m².

4.5.2. Evaluation of safety margins against snowfalls Snow is only a part of the roof loads that are considered in structure calculations. Besides, best practicesrecommendminimumvaluesthatmaybeincreaseddependingonthenatureoftheproject. That’swhytheexcesssnowloadisnotnecessarilyadesigncriterion.Thatisthecaseforinstancewith bunkeredbuildingsthatweredesignedtowithstandmuchhigherloads. So,evenincaseofexceptionalsnowfalls,noproblemisexpectedforthefollowingbuildings: • Tihangesite: o thereactorbuildingsofallthreeunits; o theBUSbuilding(W),theBANstoragepools(DandDE),andthegroundwaterwells andairintakesofTihange2and3units; • Doelsite: o thereactorbuildingofallfourunits; o theBAR,GNSandDGGbuildingsatDoel1/2units; o theBKR,GNH,SPG,GVDandOVG2buildingsatDoel3andDoel4units.

Chapter4–Extremeweatherconditions 89 ThesameappliestotheSCGbuildingatDoel(spentfueldrystorage).ThecontainersinsidetheSCG buildingcanresisttheimpactofamissile,theimpactofacollapsingbuildingandtheimpactofdebris fromthebuilding.Asaresult,snowfallsposenothreattothesafetyfunctionofthecontainers. For “non bunkered” buildings,the design margins shouldbedecreasedwiththeextraloadsonthe roofthathavebeenaddedovertime.Sincecodesofpracticearenowappliedattimesandsincethe consideredloadsarewiderthansnowloads,somebuildings onthesitecanwithstandsnowdepth valuesthataresignificantlyhigherthantheminimumvaluerecommendedbythesestandards. If we consider a snow density of 100 kg/m³ (= 1 kN/m²), and an allowable overload of 0.35 to 0.40kN/m²,theroofsof“nonbunkered”buildingscanbearasnowlayerofatleast30cm. Regardingtheresistanceofoffsitepowerlines,a heavy snowfall could overload(mechanically) the highvoltagelinesorevenbringthemintooscillationincombinationwiththewind.Thiscouldinducea partiallossofoffsitepowersupply,butthissituationisincludedinthedesignbasis.

4.5.3. Measures that can be envisaged to increase robustness against snowfalls All buildings on both sites were designed to bear snow loads as set out in the relevant standards. Furthermore,whenconsideringdesignmargins,somebuildingscanactuallybearloadsthataremuch higherthantheloadsduetosnowfalls. For “non bunkered” buildings, the allowable overload due to snowfalls should be limited to 0.35kN/m²,namelyasnowlayerof35cm(nottakingintoaccounttheoverloadduetothepresence ofpersonnel). Tothisend,monitoringandinterventionprocedureswillbesetuponbothsitestoremovesnowfrom theroofsofthe“nonbunkered”buildingsoncethesnowlayeris30cmthick.

Chapter4–Extremeweatherconditions 90 4.6. Hail Hailisdescribedasaweatherphenomenonlocalizedintimeandspace.Itwasnotincludedinthe designbasisasitseffectsareencompassedinotherissues. Duringahailstorm,pelletsareconsideredasmissilesthatcanfalldownonbuildingsorequipment. Themissileriskfornuclearpowerplantsisincludedinthedesignbasis. Nospecificmeasureisrequiredtoincreasetherobustnessofthefacilitiesagainsthailonbothsites.

Chapter4–Extremeweatherconditions 91 4.7. Other extreme weather conditions ThefollowingweatherconditionscannotoccurinBelgiumforgeographicalreasons,ortheirkineticsis soslowthatappropriateactionscanbetakenbeforereachingcriticalstages. Extreme temperatures When designing nuclear power plants, extreme temperatures are considered in the design of the equipment.Thesevaluesaredeterminedusingstatisticsanddependingonthegeographicallocation ofthefacilities. The change in extreme temperatures is reassessed during periodic safety reviews. If these temperaturesaremodified,thedesignandthesafeoperationoftherelevantsystemsandequipment arereassessed.Correctiveactionsareimplementedifneeded. Asperiodsofdroughtorextremetemperaturesarenotsuddenlyoccurring,theycanbeanticipated. Nuclearpowerplantshavespecificprocedurestoguaranteesafeoperationincaseofaheatorcold wave. Tropical cyclone, typhoon, hurricane Due to the geographical location of Tihange and Doel, these weather phenomena were not listed amongextremeweatherconditions. Sand storm and dust storm Due to the geographical location of Tihange and Doel, these weather phenomena were not listed amongextremeweatherconditions. Waterspout Due to the geographical location of Tihange and Doel, these weather phenomena were not listed amongextremeweatherconditions.

Chapter4–Extremeweatherconditions 92 4.8. Synthesis of the main results presented by the licensee Basedontheinformationinthelicensee’sstresstestreportsandtheadditionalinformationprovided by the licensee during technical meetings and onsite inspections, the main results for the topic “extremeweatherconditions”areasfollows. Thefollowingextremeweatherconditionshavebeenreassessedbythelicensee:heavyrainfalls,high winds,tornadoes,lightning,snowfalls,andhail.Otherextremeweatherconditionsarenotapplicable toBelgianNPPs(e.g.hurricanes,waterspouts,sandstorms…). For heavy rainfalls at the Doel site, detailed measurements, inspections and repairs of the onsite sewersystem(fiveseparatenetworks)wereperformedin20072009.Subsequently,ahydrodynamic modelofthesewersystemwasestablishedandusedtoverifyitscapacityforvariousrainintensities and durations corresponding to return periods up to 100 years (derived from observations of rain intensitiesintheperiod19671993).Thesewersystemcapacitywasfoundtobesufficient,exceptfor somepointsoftwonetworks(H4andH5)wherefloodinginthevicinityofDoel3andDoel4buildings couldnotbeexcluded.Hence,potentialimprovementsofthesewersystemaregoingtobestudied andanactionplanwillbedefinedifneeded. ForheavyrainfallsattheTihangesite,detailedmeasurements,inspectionsandrepairsoftheonsite sewer system (separate networks per unit) are being performed and are near completion. Subsequently,ahydrodynamicmodelofthesewersystemwillbeestablishedandusedtoverifyits capacity for rain intensities up to 175 l/s/ha (i.e. exceeding the intensity of 150 l/s/ha considered duringdesign).Basedontheseresults,potentialimprovementsofthesewersystemwillbestudied. For high winds andextreme temperatures, a reassessment ofmeteorological conditions used in the design basis is performed during every periodic (10yearly) safety review. If these meteorological conditionsareexceeded,areassessmentofoperatingconditionsofpotentiallyaffectedSSCiscarried out and modifications are implemented where needed. For extreme cold or heat waves, dedicated operatingprocedureshavebeenestablished,inparticulartoavoidunavailabilityordegradedoperating conditionsofsafetyrelatedSSC. For tornadoes, at least the secondlevel protection (i.e. the emergency systems) is expected to withstandtornadoeswithwindspeedsupto70m/s(250km/h)forDoel1/2andTihange1andupto 107m/s(385km/h)forDoel3andDoel4,aswellasTihange2andTihange3. Forlightning,anevaluationoftheprotectionofallunitsaccordingtothenewstandardNBNEN62305 isongoing.Theactionplanshouldbeimplementedbytheendof2013. Forsnowfalls,thethicknessofthesnowlayersontheroofsofthe“nonbunkered”buildingswillbe monitoredandthesnowwillberemovedoncethesnowlayeris30cmthick.Interventionprocedures willbesetuponbothsitestoachievethesetasks. Forhail,thehazardiscoveredbyothertypesofeventsandnospecificmeasureisrequiredtoincrease therobustnessofthefacilities. Anevaluationof safety marginsfor extremeweatherconditionsis notrequiredbythestresstests specifications.However,anevaluationofweakpointsandfailuremodesorcliffedgeeffectsleadingto unsafeplantconditionsisrequested.Hence,theplantrobustnessagainstextremeweatherconditions within the design basis limits has been assessed. For tornadoes, some weak points are identified, leadingeithertoalossofoffsitepower(LOOP)ortoaLOOPcombinedwiththelossofthefirstlevel protection,whilethesecondlevelprotection(“bunkered”systems)wouldremainavailable.

Chapter4–Extremeweatherconditions 93 4.9. Assessment and conclusions of the regulatory body The approach adopted by the licensee to reevaluate the risks associated to extreme weather conditions complies with the methodology provided bythe licensee and approved by theregulatory body. Mostoftheconsideredhazardsweretakenintoaccountinthedesignbasisofthefacilities,andare hencenotlikelytoaffectthesafetyfunctionsoftheunits. Overall,thepotentialconsequencesofextremeweatherconditionsarecoveredbyothermajorevents (flooding,aircraftcrash…)thatarealsoreassessedaspartofthestresstestsprogramandcanleadto lossofpowerorlossofultimateheatsink.Thus,theactionsplannedtocopewiththeseotherrisks willbringahigherprotectionlevelagainstextremeweatherconditions. However,basedontheassessmentofthelicensee’sreportsandthesubsequenttechnicalmeetings and onsite inspections, the regulatory body identified additional demands and recommendations in ordertofurtherimprovetherobustnessofthefacilitieswhenfacedwith extremeweatherconditions: 1. The reassessment of the capacity of the sewer system (five separate networks at Doel, separatenetworksperunitatTihange),usingadetailedhydrodynamicmodelmustcoverboth shortdurationheavyrainsandlonglastingrains(95 th percentile)forreturnperiodsupto100 years. Moreover, to define such 100yearly rains, observations of rain intensities over a sufficiently long period of time must be used, including the latest observations (e.g. the exceptional rain of 23 rd August 2011). Depending on the results, potential improvements of the sewer system shall be envisaged and the licensee’s action plan shall be updated accordinglywhereappropriate. 2. Given the fact that tornadoes of high intensities were observed in the past years in the neighbouring countries (class EF4 on the enhanced Fujita scale), the robustness of the secondlevel systems of Doel 1/2 and Tihange 1 shouldbeconfirmedincaseofabeyond designtornadowithwindspeedexceeding70m/s(250km/h).

Chapter4–Extremeweatherconditions 94 5. Loss of electrical power and loss of ultimate heat sink Inordertoprovideaselfstandingnationalreportforthesubsequentpeerreviewprocess,firstthe relevantinformationsuppliedbythelicenseeinitsstresstestsreportsisrecalled. Attheendofthischapter,afinalsectionprovidestheconclusionsandtheassessmentoftheBelgian regulatorybody(FANCandBelV). The scenarios considered in the following paragraphs describe the effects of the successive loss of electric power supplies or the various heat sinks and thus consider more and more limiting and increasinglylesslikelysituations.Theyalsoconsiderthecombinationoflossofheatsinksandelectric powersupply. Itisassumedthattheseeventsmightariseatanytime,whateverthestateofoperationoftheunits. However, the situations in which the reactor coolant system is open or operating with reduced inventoryarelimitedintime.Theprobabilityofanincidentwhileaunithappenstobeinoneofthese statesisthereforelow,andthisregardlessofthenatureoftheincidentorcombinationofincidents underconsideration.However,thissituationisconsideredintheanalysisofthevariousscenarios. Thefollowingeventsareconsideredsuccessively: lossofoffsitepowersupply(LOOP); lossofoffsitepowersupplyandfirstlevelinternalpowersupply(stationblackout); loss of offsite power supply and firstlevel and secondlevel internal power supplies (total stationblackout); lossofprimaryultimateheatsink; lossofprimaryultimateheatsinkandalternateultimateheatsinks; loss of primary ultimate heat sink together with loss of offsite power supply and firstlevel internalpowersupply; lossofprimaryultimateheatsinktogetherwithlossofoffsitepowersupply,firstleveland secondlevelinternalpowersupplies; lossofprimaryultimateheatsinktogetherwithloss of offsite power supplyand combined withDBEearthquake.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 95 5.1. Loss of electrical power

Theelectricpowersupplyonthesitesensuresatthesametimethesupplytowardsthepowergridof theelectricityproducedbythenuclearreactorsaswellastheelectricpowersupplyoftheauxiliary systemswhetherinthenormalsituationorincaseofanincidentoraccident.Inordertomeetsafety requirements, theinstallations ofthe NPP may bepowered from several different and independent sources, each of which has the capacity to bring and keep the units in a stable and controlled shutdownstate. Tihange NPP Between each unit of Tihange and the high voltage station in Gramme, the main external power supplyandsupplyoftheproducedenergyisprovidedby: twoveryhighvoltageoverheadlines(380kV)forTihange1; oneveryhighvoltageoverheadline(380kV)forTihange2; oneveryhighvoltageoverheadline(380kV)forTihange3. Thesecondexternalpowersupplyforthethreeunitsisprovidedbyahighvoltagestationinstalledon thesitewiththreepowersuppliesviatwodifferent(andindependent)routes:adoubleroutefromthe highvoltagestation(150kV)inGrammeandaroute(150kV)fromthestationinLesAwirs.Eachof thesethreelinkscanindividuallysupplypowertoalltheauxiliarymeansnecessaryforthestableand controlledshutdownofthethreeunitssimultaneously.EachofthethreelinesconnectingTihangewith GrammeandLesAwirsisequippedwithitsownindependentcontrolandprotectionsystems.Thelinks betweenthehighvoltagestation150kV(installedonsite)andtheunitsareensuredbyunderground lines. Themostpenalizingcasewouldbethecollapsebytwistingofa380kVpylon,fallingonthedouble power supply of the 150 kV station. In this case the 380 kV and the double 150 kV power supply wouldbelost. Thisisthe rationalefortheindependentpowersupplyfromLesAwirs,guaranteeing powersupplyfortheauxiliarysystemsofthepowerstationeveninthiscase. ItshouldbenotedthatTihange2alsohasanother150kVconnection(whichisnotanexternalsafety electricpowersupply)withthestationinAvernas. Ontheotherhand,themostprobableincidentofinternaloriginthatcouldaffectthetwoindependent power supplies, that is 1) the alternator output transformer (24 kV/380 kV) and the transformers poweredbythe380kVorthealternatorand2)thetransformerspoweredviathe150kV,isfire.To avoidthelossofthesecondpowersupplyincaseoffireinthefirst,thetwoarephysicallyseparated bysufficientdistanceandbyfirebreakwalls. Whentheunitisin normaloperation (fullpower),thealternatorsuppliestheelectricenergytothe auxiliarysystemsoftheplant. In the event of some failure of the main electrical power supply, the reactor unit (during power operation)automaticallyswitchestohouseloadoperation.Thereactorunitthendisconnectsfromthe externalgridandthealternatorwillthenonlyprovidepowertoitsauxiliarysystems. Ifhouseloadoperationfails,anautomatictransferfromthemainelectricpowersupplytothebackup transformers(150kV)isforeseenandthepowersupplytotheauxiliarysystemsisuninterrupted.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 96 Figure 13 - Plan of the electricity power supplies in Tihange 2 and 3. Eachunitalsohasbackupdieselelectricitygeneratorsorganizedintwolevelsofprotection(firstlevel safety diesel generators and second level emergency diesel generators). Each of these levels of protectionalonecanmaintainthereactorinastableandcontrolledstate.Moreover,abackupdiesel generatorcommontothethreeunitscanalsobeusedinsteadofanyfirstlevelgeneratorforanyunit. ThefirstlevelsafetysystemsarepoweredbytheexternalgridbutinthecaseofLOOPthefirstlevel safetydieselgeneratorsensurethepowerresupplytothesefirstlevelsystems(2dieselgeneratorsfor Tihange1,3forTihange2,3forTihange3). ThesecondlevelemergencysystemsarepoweredbytheexternalgridbutinthecaseofLOOPand lossofthefirstlevelsafetydieselgeneratorsthesecondlevelemergencydieselgeneratorsensurethe powerresupplytothesesecondlevelsystems(1dieselgeneratorand1turboalternatorforTihange, 3dieselgeneratorsforTihange2,3dieselgeneratorsforTihange3).

Doel NPP ThemainexternalsupplyofthesiteofDoelisassuredbyfive380kVhighvoltagelines(3fromthe Mercatorstation,1fromtheAvelgemstationand1fromtheZandvlietstation)whichareconnectedto the380kVstationatDoelwithwhichthe4unitsareconnectedviadifferentbusbars. The alternative external supply of the four units isformedbya150kVhighvoltagestationwitha doublebusbarinstalledonthesiteofDoelandfeditselfby2highvoltagelines,onefromtheKallo stationandonefromtheZandvlietstation. TheauxiliarysystemsofDoel1and2taketheirpower,atunitsinshutdownconditions,onlyfromthe 150kVgrid.TheauxiliarysystemsofDoel3and4canalsobepoweredfromthe380kVgrid.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 97 Figure 14 - Plan of the electricity power supplies in Doel 3 and 4.

Whentheunitisin normaloperation (fullpower),thealternatorsuppliestheelectricenergytothe auxiliarysystemsoftheplant. In the event of some failure of the main electrical power supply, the reactor unit (during power operation)automaticallyswitchestohouseloadoperation.Thereactorunitthendisconnectsfromthe externalgridandthealternatorwillthenonlyprovidepowertoitsauxiliarysystems.

Eachunitalsohasbackupdieselelectricitygeneratorsorganizedintwolevelsofprotection(firstlevel safetydieselgeneratorsandsecondlevelemergencydieselgenerators).Ifhouseloadoperationfails, anemergencyshutdownstopsthereactorandthefirstandsecondleveldieselswillstart. ThefirstlevelsafetysystemsarepoweredbytheexternalgridbutinthecaseofLOOPthefirstlevel dieselgeneratorsensurethepowerresupplytothesefirstlevelsystems(4forDoel1&2,3forDoel3, 3forDoel4). ThesecondlevelemergencysystemsarepoweredbytheexternalgridbutinthecaseofLOOPthe secondleveldieselgeneratorsensurethepowerresupplytothesesecondlevelsystems(2forDoel 1&2,3forDoel3,3forDoel4).

High voltage network As manager of the Belgian high voltage network, ELIA is responsible for the operation and managementoftheexternalhighvoltagenetwork. The"AccessContract"concludedbetweenthelicenseeandELIAstipulatesthat,incaseofanintact network, sufficient power mustbe available onthe 380kVand 150 kVlines ofthe nuclear power stations of Tihange and Doel to ensure power supply to thevital auxiliarysystemsof thedifferent units. The "Connection Contract" concluded per site between thelicenseeand ELIA describes, byway of information, the specific agreements that must be respected by ELIA for the operation and maintenance of the high voltage network. It also mentions the permanent availability of two independentelectricsuppliesforpoweringthevitalauxiliarysystemsinTihangeandDoelasrequired bytheTechnicalSpecifications.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 98 Moreover,the"ConnectionContract"mentionsthebackupandreconstructionCodesfortheBelgian highvoltagenetwork.ThebackupcodesetsoutthenecessaryactionsmanagedbyELIAinorderto avoidamoreseriousdeteriorationofthenetworkincaseofaproblemaffectingit.Thereconstruction codesetsoutthenecessaryactionsmanagedbyELIAinordertoreconstructthenetworkincaseof blackout.

5.1.1. Loss of offsite power (LOOP) Thetotallossofexternalpowerscenarioconsidersthetotallossofthe380kVelectricnetwork,the failureofhouseloadoperationandlossofthe150kVelectricnetwork.

TheLOOPiscoveredbythedesignoftheunits.Thedifferentautomaticactionsensuretheprotection of the reactor and the evacuation of the residual heat: shutdown of the reactor, startup of the auxiliaryfeedwaterandcooling. Incaseoffailureofislandingoftheunitand until anexternalpowersourceis reestablished, the auxiliarieshavinganuclearsafetyfunctionandensuringasafeandcontrolledshutdownoftheunit arepoweredbyinternalsources.

Tosummarize,restoringthepowerusinginternalelectricpowersupplywillallowthemaintenanceof thefollowingprincipalfunctions: feedwaterfor the steam generators by thetwo motordriven pumps and a turbo pump (no electricpowernecessary); injection of borated water to the primary system to compensate the contraction of water duringthecoolingphase,andcontrollingthereactivityofthecoreinordertokeepitinasub criticalstate; maintainingoftheprimarypumpsealscooling; maintainingofthecoolingofthecorebytheshutdowncoolingsystem. Thespentfuelpoolcoolingpumpsprovidethecoolingofthespentfuelpoolsviaheatexchangers.

Physical description of the scenario Aftertheemergencyshutdown,thepumpsoftheprimarysystem,toopowerfultobebackedupby dieselgenerators,willstop.Thewaterflowrateinthecorewilldiminishrapidlyand,aftercomplete shutdown of the primary system pumps, there will be natural circulation in the system due to convection.Thisnaturalcirculationassurestheremovaloftheresidualheatfromthecore.Itshould benotedthatthisresidualheatwilldiminishesprogressivelyintimeaftershutdownofthereactor. Thereactorshutdownofthereactortriggersaturbineshutdown,andtheclosingoftheinletvalvesof the latter. The normal feedwater being lost, an automatic startup signal is sent to the auxiliary feedwatersystemtoensurethesupplyofwatertothesteamgenerators.Thissystem,consistingof twomotordriven pumpsbacked upbythefirstlevelsafetydieselgeneratorsandbyaturbopump drivendirectlybythesteamproducedatthesteamgeneratoroutlets,providessufficientwaterflowto thesteamgeneratorstoremovetheresidualheatofthereactor.Thesteamisreleasedthroughthe relievevalvestotheatmosphere.

Ifthelossofoffsitepoweroccurswhentheunitisnotinconditionsallowingtheremovalofresidual energythroughthesteamgenerators,theshutdowncoolingsystem(Tihange:RRA,Doel:SC)takes overthecooling.Theshutdowncoolingsystemispoweredbyfirstlevelsafetydieselgenerators.

5.1.1.1. Design provisions

Tihange 1 Thereare two first level safety diesel generators (GDS)eachofapowerof3552kW(powerin continuousregime),cooledbywaterfromtheriverMeuseorbythegroundwaterviatherawwater system(CEB).OneGDSaloneissufficienttopowerthenecessaryauxiliarysystems.Thisredundancy isanadditionalsafetyelement.Thesegeneratorsaredimensionedforthesafeshutdownoftheunitin theworstcasescenario.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 99 Theunitalsohasasecond level emergency electric power supply (GUS turbo-alternator and DUR diesel generator) that is not strictly necessary in case of loss of external electric power. However, these power sources further increase the autonomy of the site (although it would be sufficienttouseonlythefirstlevelsafetydiesel generators). The same applies with respect to the reservedieselgenerator(GDR). Tihange 2 and 3 Thereare three first level safety diesel generators (GDS) eachofapowerof5040kW(powerin continuousregime)cooledbywaterfromtheriverMeuseviatherawwatersystem(CEB).Twoofthe GDSarenecessarytobringandmaintaintheunitinastableandcontrolledstate.Eachsafetydiesel generatorisphysicallyindependentandelectricallyseparatedfromtheothertwosothatanyfailureor incidentinonegeneratorwillnothaveconsequencesforthetwoothers. The units also have a second level emergency electric power supply (3 GDU diesel generators)thatisnotstrictlynecessaryincaseoflossofexternalelectricpower.However,these powersourcesfurtherincreasetheautonomyofthesite(althoughitwouldbesufficienttouseonly thefirstlevelsafetydieselgenerators).Thesameapplieswithrespecttothereservedieselgenerator (GDR). Doel 1/2 Thereare four first level safety diesel generators Current situation: four firstlevel diesels each with a capacity of 2100 kW, shared by both units.Thesedieselgeneratorsarecooledbyaircoolersandaredesignedtoensuretheunit shutsdownsafely. Futuresituation :thepresentfourfirstleveldieselgeneratorswillbereplacedduring2012by four new first level diesel generators each with a capacity of 2500 kW. The new diesel generators are cooled by air coolers and are moreover resistant to earthquake (DBE). In additionafifth,identicalfirstleveldieselgeneratorisforeseen.Itcanreplaceoneofthefour otherdieselgeneratorsincaseofunavailability. There also two second level emergency diesel generators eachwithacapacityof2300kW, shared by both units and cooled by air coolers. These diesel generators belong to the Emergency SystemsBuilding(GNS)andaredesignedtoassurepowertoallauxiliarysystemsrequiredforasafe shutdownandformaintainingasafesituationintheeventofthelossofallexternalpowersources andthefirstleveldieselgenerators.Thesesecondleveldieselemergencygeneratorsandthesystems they power are independent of the firstlevel dieselgenerators.Theseemergencydieselgenerators andthesystemstheypowerareprotectedagainstexternalaccidents. Two additional auxiliary diesel generators each with a capacity of 1675 kW are responsible for supplying the systems intended for guaranteeing the safety of people and equipment that are not relatedtonuclearsafety.

Doel 3&4 Eachunithas three first level diesel generators eachwithacapacityof5040kW.Theyarecooled byaircoolers.Thesegeneratorsaredesignedtoassurethesafeshutdownoftheunit. Areservefirstleveldiesel generator(phidiesel)withacapacityof5040kWissharedbytheunitsDoel 3andDoel4.ItislocatedonthesiteofDoel3andiscooledbyanaircoolingsystem.Thisaggregate canbeconnectedinlessthan1hourinordertoreplaceoneofthefirstleveldieselgeneratorsofDoel 3orDoel4. Eachunithas three second level diesel generators eachwithacapacityof2240kW.Theseare locatedinthebunkeroftheunitandarecooledbythewaterfromthecoolingpondwhichbelongsto theunit.Thesedieselgeneratorsaredesignedtoassurepowertoallauxiliarysystemsinthebunker requiredforasafeshutdownandformaintainingasafesituationintheeventofthelossofallexternal powersourcesandfirstleveldieselgenerators.Theseemergencydieselgeneratorsandthesystems theypowerareprotectedagainstexternalaccidents. Eachunithastwoadditionalauxiliarydieselgeneratorsavailableeachwithacapacityof800kW.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 100 5.1.1.2. Autonomy

Tihange 1 Theunithasadieselfuelreservoirwithauseful capacityof80m³perfirstleveldieselgenerator, givingthem autonomy of 3.5 days foreach generator withoutanymakeup ofreservoirs and while functioningat100%load. UsingonlythesystemsnecessaryforthecoolingoftheunitincaseofLOOPwithoutotherincident, thisautonomyis4.5daysconsideringthecoolingoftheunitandthepassagefromhotshutdownto cold shutdown. The use of the additional diesel fuel contained in a reserve diesel fuel tank (CVA B01Hc)givesautonomyofabout20days. After reduction ofthe load to only thesystems required tomaintain the unitin cold shutdown, the lubricatingoilavailablefortheGDSandthesecuritystockpresentonthesite(approximately6000l forthethreeunits)givesautonomyofmorethantwoweeks.

Tihange 2 and 3 Thetotalstoragecapacityofdieselfuelforthefirstlevelsafetydieselgeneratorsis: - threetankswithausefulcapacityof170m³perreservoirinTihange2; - threetankswithausefulcapacityof170m³perreservoirinTihange3; - onetankwithausefulcapacityof170m³forthecommonreservedieselgenerator(GDR). Thereisalsoanemergencymanuallinkwiththedieselfueltransferpipesoftheemergencydiesel generatorswhichhaveamainstoragetankwithacapacityof185m³. Autonomy of 7 days is therefore available without anymakeup to thedieselfuel tanks andwhile functioningat100%loadofthetwosafetydieselgeneratorsperunitintheworstcasescenarioin termsofload. UsingonlythesystemsnecessaryforthecoolingoftheunitincaseofLOOPwithoutotherincident, thisautonomy is about 15 daysifthe coolingof the site from hot shutdown to cold shutdown is included. Moreover, using the diesel fuel remaining in a reserve diesel fuel tank (CVA B08), this autonomyisextendedtoabout25days. Concerning the lubricating oil, each diesel generator is equipped with its own filling and draining system and with a storage tank holding up to 2000 litres. Autonomy at full power is 7 days. This supposes anintervention byan operator to adjusttheoillevelinthedieselengineevery28hours duringoperatingatnominalpower.

Doel 1/2 Thefirstleveldieselgeneratorshaveautonomyofatleast15days. Thetanksofthefirstleveldieselgeneratorshave,inaccordancewiththeTechnicalSpecifications,a stockthatallows15daysautonomy. IfallthedieselfuelavailableonDoel1/2inthesecondleveldieselgeneratorsandauxiliarydiesel generatorsandintheWABwouldbeused,theautonomybecomes34days. Thelubricatingoilsupplyavailableintheoilcarterandthereservetanksaremorethansufficient.

Doel 3 and Doel 4 Thefirstleveldieselgeneratorshaveautonomyofatleast15days. ThedieselfuelsupplyinaccordancewiththeTechnicalSpecificationsallows23daysautonomyatDoel 3and20daysatDoel4. If the diesel fuel tanks of the first level diesel generators and the second level generators are completelyfull,thereisautonomyof35daysforDoel3and28daysforDoel4. Thelubricatingoilsupplyavailableintheoilcarterandthereservetanksaremorethansufficient.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 101 5.1.1.3. Measures allowing prolonged use of internal electric power

Toextendtheautonomyofelectricpowersupply,oneessentiallyusesthereservesofdieselfueland lubricatingoilavailablein:(1)thecommontanks,(2)inthoseofthedieselgeneratorsnotavailableor not necessary for maintenance of a stable prolonged shutdown and (3) in the on site storehouse (transferviainternalorexternalmeans).Inthissituation,withtheunitinstablecontrolledshutdown state,theenergyneedsarethoserequiredtomaintaintheunitinthestablestateratherthantobring theunittothestablestateasduringthefirsthoursfollowingtheinitialevent.Inparticular,thediesel generatorsrunatreducedload,whichgreatlyreducestheirconsumption. For Tihange, it should be noted that a common procedure for the three units applies in case of protractedproblemwiththeexternalelectricnetwork,unstablepowersupplyorblackout.Thesupply ofdieselfuelonthesitefollowsaninternalprocedure.Thesupplyofdieselfuelisgovernedbya contractthatprovidesforadeliveryonsitewithinamaximumperiodof25hours.

For Doel,atanker truckispresent onthe site with which diesel fuel can be transferred from the unuseddieselfueltanksofthesecondleveldieselgenerators,thereserve(phi)dieselgenerator,the secondary diesel generators, the WAB and between the4units.BothinDoel1/2andinDoel3&4 transferringthedieselfuelisonlynecessaryafter1to2weeks.Thisismorethanenoughtogetthe requiredpersonnelonsite.

5.1.1.4. Measures that may be considered to increase the robustness of the installations A few procedures and minor organizational optimizations ensure even greater security. In case of prolonged loss of external power and impossibility of newsuppliesof dieselfueland oil, it willbe necessarytominimizetheconsumptionofthesafetydieselgenerators.Forthatpurposeaprocedure definingthenonessentialloadsmustbeprovidedfortheunitsofbothsites.

InTihange1,themakeupoflubricatingoilistakenatthesumpofthedieselgeneratorsfromtheoil barrels.Theunitsalsohasareservetankofoilforthesafetydieselgenerators(GDS)(approximately 2000l).Ananalysiswillbeconductedinordertoconsideraminimumreserveinthistank.Moreover, procedures shall alsobe amended in order to anticipatethe makeupof oilfor thedifferentdiesel generators(applicableforthesite).

5.1.2. Loss of offsite power (LOOP) and loss of the first level on- site back-up power supplies (Station Black-out) Thisparagraphconsidersthelossofoffsitepowerandofthefirstlevelinternalelectricpower. Thisscenario,calledstationblackout,postulates,successivelyorsimultaneously: - thelossofexternalpower(380kVand150kVlines,seebeginningofChapter5); - failureofhouseloadoperation; - lossoffirstlevelsafetydieselgenerator. Note:thereservedieselgeneratorsarealsoconsideredasunavailableforreasonsofcoherenceofthe scenario.

Inthesecircumstancestheunitshaveasecondlevelofprotectionallowingtomaintainthereactorina stableandcontrolledstateandassuringthecoolingofthespentfuelpools.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 102 5.1.2.1. Design provisions and autonomy IncaseofLOOPandlossofthefirstlevelsafetydieselgenerators,thenecessarysafetyequipment stillneedtobesupplied.Thiscanbedoneby: - thereactorunitsonsitewhicharenotshutdown; - thesecondlevelemergencydieselgenerators; - steamdrivenpumps; - batteries. Theautonomiesmentionedconcernthesituationinwhicheachunitmustuseitsownreserves,which representstheworstcasescenario.IncaseofanincidentthatdoesnotaffectallunitsontheNPPsite the total reserves of the site will be used via external means for the unit(s) affected, which will increaseautonomy. Tihange 1 Theemergencysystem(SUR)hasseveralobjectivesincludingbringingandmaintainingtheunitina stableandcontrolledshutdownincaseoftotallossofexternalandinternalelectricpowersupply. TheSURincludestwosourcesofelectricpowerthatstartupautomaticallywithinlessthanoneminute afterthelossofpower: - the emergencyturboalternator(GUS) with a power of80 kW,available if at leastone of the steamgeneratorsisoperationalandthatoperatesifthetemperatureofthewaterintheprimary systemexceeds180°C; - the emergency diesel generator (DUR) withapowerof 288 kW (power in continuous regime), cooledbyawater/airexchanger. These two emergency systems are situated in the Emergency Building (BUR) and power the equipmentrunningon380V. ThecapacityoftheDURdieselfueltank(containerholding500lintheBURBuilding)givesautonomy of 7 and a half hours. Manual diesel fuel transfer achieved by gravity from the CVA B01Hc tank, increases autonomy to more than 200 days, which exceeds by far the time necessary for the restorationofexternalpowerortheinstallationandstartupofconventionaldieselgenerators. Thisdieselfueltankandtheoilreserve(600l)onsiteensureanautonomyofseveralweeks. Tihange 2 and 3 Inthedesignbasis,thistypeofaccidentchallengesthesecondlevelofprotection,managedbythe EmergencyBuilding(reinforcedbuildingcalledBUS).Theroleoftheemergencysystems(CUS)isto protect the power station and the environment from the consequences of an accident of external origin,inparticularthelossoffirstlevelprotectionsystems. Thesecondlevelofprotectionhasseveralsystemsthemostimportantofwhichare:AUG(Emergency feedwatertosteamgenerators),theCRU(Emergencycooling),theCIU(emergencyinjection)andthe IJU(emergencypumpsealinjection,Tihange3only;theintegrityofthesepumpsealsisensuredby theCRUinTihange2). Theelectricpowerofthisequipmentisprovidedbythreeemergencydieselgeneratorseachwitha powerof2240kW(powerincontinuousregime)situatedintheBUSoftheunit,cooledbywaterfrom theriverMeuseorbygroundwater(CEU).Thesegeneratorsaredimensionedtoprovidepowersupply for all the auxiliaries in the BUS necessary for bringing and maintaining the unit in stable and controlledshutdownincaseoflossofallexternalpowersupplyandfirstlevelsafetydieselgenerators. Thedieselfuelstoragecapacityassetbythetechnicalspecificationsallowsfullloadoperationofthe two emergency diesel generators (GDU) on the three sites for at least 7 days in the worstcase scenario.Usingonlytheequipmentnecessaryforplacingandmaintainingtheunitincoldshutdown, autonomyisincreasedto50days.ForthisuseismadeoftheremainingdieselfuelinthetankCVA B08, common to Tihange 2 and 3, and the diesel fuel in the firstlevel diesel generator tanks (via externalmeans). Oilconsumptionis3.2l/h atfullpowerandthecapacityofthetankis1000lperdieselgenerator GDU. This gives autonomy of about 13 days. Taking account only of the equipment essential for

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 103 passagetocoldshutdown,thecapacityoftheoiltankandthereservestockgivesautonomyofat least4weeks. Doel 1/2 Therealsotwosecondlevelemergencydieselgeneratorseachwithacapacityof2300kW,sharedby both units. These diesel generators belong to the Emergency Systems Building (GNS) and are designedtoassurepowertoallauxiliarysystemsrequiredforasafeshutdownandformaintaininga safe situation in the event of the loss of all external power sources and the first level diesel generators. The second level emergency diesels are cooled by closed water/air heat exchangers located in the EmergencySystemsBuilding.

Doel 3 and Doel 4 Eachunithasthreesecondleveldieselgeneratorseachwithacapacityof2240kW.Thesearelocated in the bunker of the unit. These diesel generators are designed to assure power to all auxiliary systemsinthebunkerrequiredforasafeshutdownandformaintainingasafesituationintheevent ofthelossofallexternalpowersourcesandfirstleveldieselgenerators. ThesecondlevelemergencydieselsarecooledbytheLUsystemthatgetsitscoolingwaterfromthe LUponds.Theyareindependentoftheprimaryultimateheatsink.

5.1.2.2. Analysis of loss of offsite power (LOOP) and loss of the first level on-site back-up power supplies Theanalysisbelowpostulatesthatonlyasingleunitisaffected.Differentinitialstatesoftheunitwill beconsidered: - steam generators available: the primary circuit is closed which allows the use of the steam generatorstocoolthefuel; - open primary system: the reactor coolant system is open (during outage of the unit) and the steamgeneratorsarenotavailabletocoolthefuelwhichisstillintheopenreactorvessel; - coreinspentfuelpool:theunitisinoutageandallthefuelisremovedfromthecoreandputin thespentfuelpools. Steam generators available Thisscenarioispartofthedesignofalltheunits.Fortherecentunits,thesecondlevelofprotection systemsallowthereactortobeplacedandmaintainedincoldshutdown. Thedesignoftheoldestunits(Tihange1,Doel1/2)differsignificantlyfromtherecentunits.

Tihange 1 Theunitisbroughtandmaintainedinastableandcontrolledintermediateshutdown,known asthefallbackstate. Theresidualheatofthecoreiscooledbythesteamgeneratorswhicharefedbytheauxiliary feedwaterturbopompEAS.Theautonomyoftheauxiliaryfeedwatertank(EAS)issufficientto allowamanualalignmentwiththegroundwatersystem. Movingtocoldshutdownisnotpossible.TheGUSandtheDUR,notbeingelectricalsourcesof 6kV,cannotpowertheshutdowncoolingpumps(RRA).Itisthereforenecessarytostayon the steam generators which supposes a primary system temperature of about 180 °C in order to allow thefunctioning of the turbopomp – aslong as the6 kV power supply is not recoveredforthesepumps. Thereisnocliffedgeeffectforthisscenario. The groundwater system has autonomy of at least 30 days considering a single affected unit. This autonomy largely exceeds the time neededuntilarrivalofequipmentorwaterfromanotherunitorfromoutsidethesite. Theavailable capacities of dieselfuel andoil in the unit allow autonomy of several weeks, whichlargelycoversthetimeuntilarrivalofequipmentorconsumablesfromanotherunitor fromoutsidethesite. Doel 1/2

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 104 Fortheremovaloftheresidualheat,onecanrely: - in first instance on the Auxiliary Feedwater (AFW) Turbo pump for feeding the steam generators. The pump gets its water from the higher located AFW tank and MW tank. These180m³aresufficienttokeepthepowerstationathotshutdownfor7hours. - furthermore, on the second level feedwater supply of the steam generators: the Emergency Feedwater system (EF). This has a stock of 400 m³ per unit, sufficient for autonomy of 20 hours. Refilling of the EFtank is realizedbythefireprotectionsystem (FE). AftercoolingdownwiththeEF,theshutdowncoolingsystem(SC)maybetakenintoservice7 days after the reactor shutdown for the removal of the residual heat. The SCcoolers and pumpsarecooledbythesecondlevelemergencycoolingsystem(EC).ThiscoolstheECwater byaircoolers.Awatersupplyisthennolongernecessary. Therearetwosecondleveldieselgeneratorsavailablebutonlyonedieselgeneratorisneeded forsupplyingtheconsumersofbothunits.Witharealisticconsumptionandiflessessential consumersarestopped(heating,ventilationathalfstrength),thedieselfuelstockissufficient forapproximately5days.

Therearenocliffedgeeffectsforthisscenario.Thereisenoughwaterstorageavailableon sitetoachieveconditionswhereaswitchtotheECforcoolingoftheSCispossible.After5 daysthesecondleveldieselgeneratorsmustberesuppliedwithdieselfuel.Thatismorethan enoughtimetogetdieselfuelfromotherplacesonoroffthesite.

Tihange 2 and 3 The residual heat of the core is removed by the steam generators which are fed by the auxiliaryfeedwaterturbopompEAA.Onemayfurtherusethesecondlevelsupplyofthesteam generators,theemergencyfeedwatersystem(AUG). Thesecondlevelofprotectionsystemsallowthereactortobeplacedandmaintainedincold shutdown.Thereisthereforenocliffedgeeffectforthisscenario. Theonlyproblemthatmightariseistheexhaustionofdieselfueloroilforthesecondlevel dieselgenerators,whichwillhappenafteraminimumofoneweek.Thisautonomycoversthe time before the arrivalof equipment or consumables from another unit or from outside the site. Doel 3 , Doel 4 Fortheremovaloftheresidualheat,onecanrelyinfirstinstanceontheAuxiliaryFeedwater (AF)turbopumpforfeedingthesteamgenerators.Thepumpgetsitswaterfromtwohigher locatedAFtanks.Theseeachcontainatleast700m³water.Thisissufficienttocooltheunit toshutdownconditionsandthencoolitforatleastanadditional16hoursusingthesteam generators. For the removal of the residual heat one may further use the second level feedwatersupplyofthesteamgenerators,theEmergencyFeedwatersystem(EF). Allpumpsandheatexchangersnecessaryduringthestabilizationandcoolingdownarecooled bythesecondlevelcoolingsystemLU.TheautonomyofthewatersupplyfromtheLUponds isatleast26days. AllelectricalsuppliescomefromthesecondleveldieselgeneratorsintheBunker.Twoofthe threedieselgeneratorsaresufficienttopowertheconsumersoftheunit.Thereissufficient dieselfuelstockpresentforatleast10days.Thatismorethanenoughtimetogetdieselfuel fromotherplacesonoroffthesite. Thesecondlevelofprotectionsystemsallowthereactortobebroughtandmaintainedincold shutdownstate.Thereisthereforenocliffedgeeffectforthisscenario. Open primary system

Tihange 1 In this case the shutdown cooling system of the reactor (RRA) remains connected but not operationalsinceitrequiresapowersupplyof6kV.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 105 If it is possible to close the primary system, the accident management procedure foresees restoring the use of the steam generators by allowing theprimary systemto heatupuntil restoration of function of the EAS turbopump. The rest ofthe sequence isdescribed above (Steamgeneratorsavailable). Ifitisnotpossibletoclosetheprimarysystemitisstillpossibletoexecuteafeedandbleed operation.InthiscasecoldwaterfromtheB01Bitankisfedtotheprimarysystemandsteam isextractedbyaVBPventilatortothechimneyandfiltrationsystemsoftheVBP. Thereisnocliffedgeeffectforthisscenario.ThemakeupfromtankB01Biisinfactsufficient forfunctioningforatleast72hours.Thisautonomycoversthetimeuntilarrivalofequipment or waterfrom another unit or from outside the site.Anexteriorlinkallowsconnectionofa tankertruckcontainingboratedwaterformakeupintankB01Bi.

Dieselfuelandoilautonomiesgivenaboveallowamplytowaitforthearrivalofequipmentor consumablesfromanotherunitorfromoutsidethesite.

Doel 1/2 The removal of the residual heat from the open reactor cooling system is realized by SC pumpswhicharepoweredbythesecondleveldieselgenerators.ThecoolingoftheSCpumps andcoolersistakenoverbytheECsystem.Nowatersupplyneedstobeprovidedfortheunit withtheopenRCsystem. Ifaccountistakenfor1unitwithanopenprimarysystemand1unitwithsteamgenerators available,thefuelcapacityofthesecondleveldieselgeneratorsissufficientformorethan5 days.Furthermoreifthestockofthefirstleveldieselgeneratorsisusedtosupplythesecond leveldieselgenerators,thenthefuelstockissufficientfor1month. The unit of which the primary system is open, is cooled from the beginning by both EC coolers.Itisnotnecessarytoaddwater.Withoutcoolingafullyloadedopenreactorwillstart toboilunderthemostconservativecircumstancesafter20minutes(halfleg,fullcore,5days aftershutdown).ThemanualalignmentoftheECsystemtakes45minutes.Inthatcasethe core would boil for a short time but the inventory is maintainedby theRJsystemand the RWST. After a little morethan 5 daysthe second leveldiesel generators must be resupplied with dieselfuel.Thatismorethanenoughtimetogetdieselfuelfromotherplacesonoroffthe site.

Tihange 2 and 3 Thesecondlevelsystems,poweredbytheemergency diesel generators GDU, can maintain thereactorincoldshutdown(andcooltheCTPspentfuelpools). Theonlyproblemthatmightariseistheexhaustionofdieselfuelandoilforthesecondlevel dieselgenerators,whichwillhappenafteratime(minimum oneweek)compatiblewiththe time before the arrivalof equipment or consumables from another unit or from outside the site.

Doel 3 , Doel 4 TheremovaloftheresidualheatfromthereactorisrealizedbytheSCsystemandtheLU system,bothpoweredbythesecondleveldieselgenerators. Dieselfuelconsumptionislowerthaninthe‘steamgeneratorsavailable’scenario.TheBunker cancontinueformorethantwomonthswiththedieselfuelstockfromthefirstleveltanks. Therearenocliffedgeeffectsforthisscenario.

Core in spent fuel pool

Tihange 1 Inthisscenariothespent fuelpoolisnotcooledbytheCTPexchangers(thepumpsofthe normalpooltreatmentsystemCTPP01Bd1and2arenotbackedupbytheSUR).Ananalysis ofthepossibilityofemergencyrepoweringoftheCTPpumpsbytheSURwillbeconducted. Thefuelassembliesinthepoolremaincooledbythewaterpresentinthepool.Evaporation begins approximately 40 hours after the loss of normal cooling. In these conditions the

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 106 situation to avoid is the uncovering of the fuel assemblies (period of at least two weeks withoutwatermakeup).Watermakeupinthespentfuelpool,carriedoutwithinfewhours by conventional or nonconventional systems, allow the fuel to be kept under water. The makeupwatercomesfromtankB01Bi,eitherbygravityorbypumpP04Bd(poweredbythe DUR). The current SUR procedures will be amended in order to provide makeup and steam evacuation. Doel 1/2 Duringafullcoreunloading,thecoreisstoredinthePLpoolsoftheNuclearAuxiliaryServices Building (GNH). The cooling of the PLpools is taken over after the loss of the first level systemsbythesecondlevelPLaircooler,via2PLpumpspoweredbythesecondleveldiesel generators. Ifaccountistakenof1unitinhotshutdownand1unitofwhichthewholecoreisunloaded, thenthefuelstockintheEmergencySystemsBuildingissufficientfor7days. Ifoneusesthestockofthefirstleveldieselgeneratorsinadditiontothistosupplythesecond leveldieselgenerators,thenthefuelstockissufficientforapproximately40days. Anuncooledspentfuelpoolwillonlystarttoboil after 15 hours. The PLsystem is aligned manuallywithin1.5hours.Thisismuchlessthanthe15hoursavailable. ThePLsystemismoreoveraclosedsystemforwhichnoadditionalwaterisrequired. After 7 days the second level diesel generators mustberesuppliedwithdieselfuel.Thatis morethanenoughtimetogetdieselfuelfromotherlocationsonoroffthesite. Tihange 2 and 3 Thesecondlevelsystemsallowthereactortobeplacedandmaintainedincoldshutdownand coolthe CTPpools.ThespentfuelpoolsintheDEbuildingcanbecooledbyaCEUwellin Tihange 2 or Tihange 3. The autonomy of the groundwater is at least 30 days. There is thereforenocliffedgeeffect. Theonlyproblemthatmightariseistheexhaustionofdieselfuelandoilforthesecondlevel dieselgenerators,whichwillhappenafteratime(minimum oneweek)compatiblewiththe timebeforethearrivalofequipmentorwaterfromanotherunitorfromoutsidethesite.

Doel 3, Doel 4 ThecoolingofthespentfuelpoolsintheSpentFuelBuildingremainsassured.Theremovalof theresidualheatfromthespentfuelpoolsisrealizedusingthePLsystemandtheLUsystem, bothpoweredbythesecondleveldieselgenerators. Dieselfuelconsumptionislowerthaninthe‘steamgeneratorsavailable’scenario.TheBunker cancontinueformorethantwomonthswiththedieselfuelstockfromthefirstleveltanks. Therearenocliffedgeeffectsforthisscenario. Several units of the Tihange site affected Themanagementoftheaccidentforthisscenariowillbeidenticaltothatforthecaseinwhichasingle unitofthesiteisaffected,sinceonlytheequipmentandreservespropertoeachunitareusedinthe shortterm(atleast72hoursinTihange1andoneweekinTihange23). Themaindifferenceistheuseofgroundwaterbyseveralunits,whichisdiscussedlateron(lossof primaryultimateheatsink). However,in case of loss ofexternalelectricpower combined with the loss of the firstlevel diesel generators,theunitsTihange2and3canusewaterfromtheriverMeuseexceptforthecoolingof theDEpools.Tihange1isthereforetheonlyunitthatwillusethegroundwateroverthemediumterm asaheatsink(autonomyof30daysifasingleunitisaffected).Itwillalsobenecessarytoprovidefor themediumtermtheuseofwellsforthecoolingoftheDE.Eveninthesecasesthesitewillalways haveautonomyofseveralweeks.Thereisthereforenocliffedgeeffect. Several units of the Doel site affected Doel3&4donotusethesystemsfromDoel1/2,sothatthisadditionallosshasnoeffect.Iftheentire siteisaffected,Doel3&4 musthoweversharethewaterstockavailablefromtheLUpondswithall units.Howeverthisstockissufficient. ThedieselfueltankoftheWABalwaysremainsavailable.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 107 Otherunitsaffectedwillnotcauseadditionalcliffedgeeffects.

5.1.2.3. Battery capacity and autonomy Tihange 1 ThepanelsnecessaryforthefunctioningoftheSUR(includingthosebackedupbybatteries)willbe repoweredbytheDURandtheGUS,thusgivingthemautonomyatleastequaltothatoftheSUR(up toseveralweeks).TheautonomyofthebatteriesoftheSURisnotlimitinginthiscase. Tihange 2 and 3 ThepanelsnecessaryforthefunctioningoftheBUS(includingthoserepoweredbybackupbatteries) willberepoweredbyGDU,givingthemautonomyatleast equalto that ofthe GDU (up toseveral weeks).TheautonomyofthebatteriesoftheBUSisnotlimitinginthiscases. Doel 1/2 Inthecaseofthelossofallexternalandinternalfirstlevelpowersources,thebatteriesofthefirst leveldieselgeneratorsmaystillbereliedon.Thebatteriesofthefirstlevelsystemsareabletoensure powerfortheinstrumentationandcontrolandthesignalizationfor4to16hours. Thesecondlevelsystems,includingtheirdieselgenerators,areentirelyoperationalinthiscase.The batteriesofthesecondleveldieselgeneratorsarethereforecontinuouslyrechargedusingrectifiers.As longasthesecondlevelemergencydieselgeneratorsareoperational,theautonomyofthosebatteries isunlimitedandthepowersupplyofinstrumentationandcontrolisassured. Doel 3, Doel 4 Inthecaseofthelossofallexternalandinternalfirstlevelpowersources,thebatteriesofthefirst leveldieselgeneratorsmaystillbereliedon.Thebatteriesofthefirstlevelsystemsareabletoensure powerfortheinstrumentationandcontrolandthesignalizationfor3to27hours. Thesecondlevelsystems,includingtheirdieselgenerators,areentirelyoperationalinthiscase.The batteriesofthesecondleveldieselgeneratorsarethereforecontinuouslyrechargedusingrectifiers.As longasthesecondlevelemergencydieselgeneratorsareoperational,theautonomyofthosebatteries isunlimitedandthepowersupplyofinstrumentationandcontrolisassured.

5.1.2.4. Autonomy of the site before degradation of the nuclear fuel

Tihange NPP This incident is a part of the design of the power stations. A series of equipment and reserves available on site allows running for more than 72 hours without equipment or consumables from outsidethesite.Theincidentwillbemanagedaccordingtotheproceduresinforcebytheshiftcrew andoncallteams.

Doel NPP Thisincidentisapartofthedesignofthepowerstations.Thereissufficientwateranddieselfuel presentonthesiteforseveralweeks.Standardoperatingproceduresareavailablesothattheshift personnelcanhandlethissituation.

5.1.2.5. (External) actions provided to avoid degradation of the nuclear fuel

Tihange 1 Because this scenario is part of the present design of Tihange 1 (at power), it is therefore not necessary(intheshortterm)touseexternalmeans. The unit has equipment powered by the SUR that is sufficient to handle this type of incident, as describedpreviously,andthereforetopreservetheintegrityofthefuel.Inthisscenarioprioritywill thereforebegiventoretrieveasourceofelectricpower(external,GDSorGDR).

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 108 Moreover, water makeup may also be carried out from the reserve in B01Bi to the pools, other emergencysystemallowasupplyoffireprotectionwatertothespentfuelpooleitherindirectlybya hydrantsupplyingthepoolfillingtank,ordirectlyfromahydrantfillingthepool.Inbothcasesthefire systemispressurizedbyitsdieselmotorpump(approximately450m³/h)orbyamobilemotorpump. Thefireprotectionsystemofthethreeunitsmayalsobeinterconnected. These solutions may beimplemented well beforethe temperatureofthewatermakesitdifficultto accessthebuilding,ifnecessary.Theminimumtimebeforeboilingisabout10hours. Tihange 2 and 3 Becausethisscenariowasconsideredaspartofthedesignoftheunits,itisthereforenotnecessary (intheshortterm)touseexternalmeans.Thesecondlevelprotectionsystemsallowthecoolingof thefuelstoragepoolandoftheDEpoolforTihange3. Inthisscenarioprioritywillbegiventoretrieveanexternalsourceofelectricpower.

Doel NPP BecausethisscenariowasconsideredaspartofthedesignoftheunitsDoel1/2(atpower),Doel3 andDoel4,itisnotnecessaryunderthosecircumstancestouseexternalmeans. Inthisscenarioprioritywillbegiventoretrieveanexternalsourceofelectricpower.

5.1.2.6. Measures that may be considered to increase the robustness of the plant

Tihange NPP InTihange1themanagementofthisaccidentusesasasourceofelectricpowertheemergencydiesel generatorDURandtheGUS.Amakeupofdieselfuelfortheemergencydieselgeneratorisnecessary three times a day. This makeup is manual. The implementation of an automatic system will be analyzed. Studieswillbeconductedtoanalyzethepossibilityofrepoweringthepumps(CTP,RRA)inTihange1 inordertomaintainclosedloopcoolingforthepoolsandtheprimarysystem(inconditionsinwhich thesteamgeneratorsarenotavailable)inthistypeofscenario. ThecurrentproceduresformodificationoftheSURwillbeamendedinordertoensureamakeupand steamreleaseforthescenariowiththecoreintheBANDspentfuelpool. Aproceduredefiningthenonessentialloadsinemergency situation shouldbe providedin orderto limitconsumptionofdieselfuelforalltheTihangeunits. Moreover procedures should be amended in order to ensureregularmakeupofoilforthevarious dieselgenerators.

Doel NPP Ifthereisnoprospectofenduringrecoveryoftheexternalgridordeliveryofnewdieselfuelafter72 hours,allnonessentialconsumersarestopped.Theapplicableproceduresareamendedforthis. Intheeventofthelongtermlossoftheexternalgridandtheinabilitytosupplynewdieselfuelfrom outside the site, the provision is made to pump thedieselfuel stockavailable on site to the most essentialdieselgeneratorsstillavailable.Thisisnecessaryattheearliestafter15daysatDoel1/2and 20daysatDoel3&4.Maintenancestaffisrelieduponforthis,andwillcertainlybeavailableinthat timeperiod.Thismeasureandtheelaboration,withreferencetothoseexecutingit,mustbedescribed inanorganizationalmemo.Trainingoftheinvolvedstaffisprovided.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 109 5.1.3. Loss of external power (LOOP) and loss of all on-site back-up power provisions (total Station Blackout) Thisparagraphconsidersthelossofallsourcesofelectricpower,externalorinternal,firstleveland secondlevel.

5.1.3.1. Design provisions InthesecircumstancestheNPPsiteonlyhasbatteries,turbopumpsandwaterreservesthatcanbe moved by gravity or by nonconventional mobile means. In this exceptional case, the site has an autonomyvaryingfromfewhourstoseveraldays.Thescenarioisthereforeusedforthedefinitionof additional nonconventional means allowing ensuring that the unit stays in a stable and controlled stateoverthelongterm. Inallcasesthecompletelossofexternalandinternalelectricpowerismanagedinitiallybyaccident procedures(highprioritytorapidrestorationofadieselgeneratororofanexternalsourceofelectric power)andthenaccordingtopredefinedcriterialaiddownintheSAMG.

ItshouldalsobenotedthatTihange1hastheparticularityofaemergencyturboalternator(GUS). Thislatter,whichwillbeavailableaslongasthesteamgeneratorproducessufficientsteampressure, isanimportantasset.Infact,theGUSallowstherepoweringofcertainequipmentsuchastheTPA EASbatteries,theprimarysystempumpsealinjectionpumpandoneoftheemergencyair compressors.

5.1.3.2. Battery capacity and autonomy Tihange NPP Incaseoflossofallexternalandinternalelectricpower,thelastelementsthatcanbedeployedare thebatteriesthataredesignedtoguaranteepowerfortheinstrumentationandcontrol/commandfora minimumof3hoursfor Tihange1 (3hoursforTihange2or Tihange3)accordingtothetechnical specifications. Onthebasisofrealconsumptionmeasurements(estimationofrealcapacity)theprogressivelossof power supplyin connection with firstlevel batteries starts after 4 hours of running inTihange 1 (5 hoursinTihange2orTihange3)andcanspanmorethan17hoursinTihange1(morethan15hours inTihange2orTihange3). Similarlytheemergencyequipmenthasanestimatedbatteryautonomyofmorethan7hoursrunning for Tihange 1 (more than 7 hours in Tihange 2 or Tihange 3) in case of total loss of external and internalelectricpowersupply. Doel NPP Intheeventofthesimultaneouslossofallexternalandinternalpowersources,thebatteriescanstill bereliedon:  InDoel1/2thebatteriesofthe1 st levelsystemsand2 nd levelsystemswillensurethesupply oftheinstrumentationandcontrolandthesignalizationfor4to16hours.  InDoel3&4thebatteriesofthe1 st levelsystemsand2 nd levelsystemswillensurethesupply oftheinstrumentationandcontrolandthesignalizationfor3to27hours.

5.1.3.3. Autonomy of the site before degradation of the nuclear fuel becomes inevitable Differentinitialstatesoftheunitwillbeconsidered: - steam generators available: the primary circuit is closed which allows the use of the steam generatorstocoolthefuel; - open primary system: the reactor coolant system is open (during outage of the unit) and the steamgeneratorsarenotavailabletocoolthefuelwhichisstillintheopenreactorvessel; - coreinspentfuelpool:theunitisinoutageandallthefuelisremovedfromthecoreandplaced inthespentfuelpools.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 110 Steam generators available UsingtheAFWturbopumps,theunitcanbecooleddownandkeptathotshutdown.Theregulating AFWvalvescanbemanuallyactuated.Steamfromthesteamgeneratorsisventedusingsteamrelief valves. The main limitation encountered (cliffedge effect) is the exhaustion of the water contained in the auxiliaryfeedwatertankandthenthelossofinstrumentationwiththelossofthebatteries. Specificfeaturesandvaluesarepresentedbelow:

Tihange 1 The volume of the auxiliary feedwater tank is 120 m³; this allows no more than 3 hours cooling (until complete emptying of the steam generators) if the SBO is sudden. Non conventional means are available to restore the supply of water to this tank via the fire protectionsystem. The fire protection diesel motorpumpandthefittingofhoseswillallow supplyingofthistankwithinaveryshorttime(30minutes).Thesenonconventionalmeans allowavoidingthiscliffedgeeffect. However,toincreasetherobustnessoftheinstallations,feasibilitystudieswillbeconductedin ordertoexaminethepossibilitiesofincreasingthecapacityoftheauxiliaryfeedwatertankand fortheadditionofabackupfeedwaterpump. When the batteries of the instrumentation and control panels are empty (cliffedge effect), approximately7hoursaftertheaccidentinitiation,theturbopumpcutsoffandthefeedwater tothesteamgeneratorsislost.Thesteamgeneratorsdryoutisexpectedtooccurmorethan 12 hours after the loss ofelectric power supply. Alternative means of restoration of control andcommandareunderconsiderationtoavoidlossofcoolingofthecore.Thesameapplies formaintainingaminimuminstrumentation.Maintainingofthefunctioningoftheturbopump willallowtheeventualuseoftheCMUinordertoprovidesupplyforthesteamgeneratorsat lowpressure.

Doel 1/2 TheAFWtankhasa90m³capacity.Thenormalrefillingofthistankisnotpossibleinthe absenceofpower,butitispossibletoswitchtotankMW1/2R2whichhasthesamevolume. Theunitcanbekeptathotshutdownfor7hoursthisway.Iftheunitiscooledfasterusing thesestocks,theautonomyis1.5hours. ItispossibletoinjectFEwaterusingfirehosesintheMWsafetycollectoranddirectlytothe AFWtankviathisroute.Ifthefireservicedieselpumpisstillavailableitwillbeusedtopump waterfromtheTWtank(1300m³)totheAFWtanks.Asabackupfortheaforementioned refilling options there is a diesel pump present on site which can be used to pump water directly from the large MW tank (1500 m³) to the AFW tank. As an ultimate backup the mobile diesel pumps on site can be used to pump water from any available water stock directlytotheAFWtank.ItisalsopossibletofillthestockswiththeFEsystemfromtheLU pondsofDoel3&4(3x30000m³). In the first 10 hours there is enough battery supply to monitor all parameters. Within this periodanalternativesupplymustbeprovidedtomakeitpossibletocontinuetomonitorall parametersinordertoavoidoverfillingorboilingdryofthesteamgenerators.

Tihange 2 and 3 TheremovalofresidualheatbytheSG,fedbytheEAAturbopump,islimitedbytheavailable volume in the EAA tank (680 m³in Tihange2and 800 m³ in Tihange 3) if makeup is not performedatthelatestwithinapproximately17hoursinTihange2(23hoursinTihange3) afteraccidentinitiation.Maintainingthefunctioningoftheturbopumpwilleventuallyallowthe use of the CMU to guarantee feedwater to the steam generators when these are running underlowpressure. When the batteries of the instrumentation and control panels are empty, after a period estimatedtobebetween6to12hoursincaseofTihange2(14hoursinTihange3)afterthe accidentinitiation,theregulationofthespeedoftheturbopumpandthegeneratedflowrates tothesteamgeneratormustbeperformedmanually.Atthispointthereadingofthesteam generatorwaterlevelisalsolost.Theoperatormustfirsthavesetacorrectwaterflowrateto the steam generators, otherwise this could eventually result in the drying out or, in the opposite case, an excess of water in the SG. Maintaining a minimum instrumentation is providedbynonconventionalmeans.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 111 Doel 3, Doel 4 Thereis2x700m 3wateravailableintheAFtanks,whichisenoughformorethan8hours. Afterwards,theMWtanks(2000m 3)canbealignedmanually.AndfinallytheLUponds(3X 30000 m 3) are aligned manually towards the AFcollector. This way there is enough water supplyfordozensofdays.Asanultimatebackupthemobiledieselpumpsonsitecanbeused topumpwaterfromanyavailablewaterstocktotheLUponds. Ifthereisnopoweratall,thebatterieswillensurepowertotheinstrumentationandcontrol systemsforatleast4to6hours. Inthefirst3hoursthereisenoughbatterysupplytomonitorallparameters.Withinthisperiod an alternative supply must be provided to make it possible to continue to monitor all parametersinordertoavoidoverfillingorboilingdryofthesteamgenerators.

Primary system open Thiscasecoversaconsiderablenumberofconfigurationsoftheprimarysystemthatdiffermarkedly by the amount of residual heat and by the water inventory in the primary system (including the volumeinthereactorbuildingpools).Theworstcasescenarioisthefirststepreferredtoas"midloop orreducedinventory"ofaunitoutage. Aftertotallossofelectricpowerthewaterintheprimarysystemheatsuptoboilingwithinaninterval oflessthanhalfanhourtoanhourfollowedbyreleaseoftheproducedsteaminthereactorbuilding. Thisreleaseofsteamwouldhavethepotentialeffectoftriggeringaprogressiveincreaseofpressure inside the containment and blocking the gravity feed if nothing is initiated to depressurize the containment. Specificfeaturesandvaluesarepresentedbelow: Tihange 1 InTihange1thegravityfeedfromtankB01Biiseffectiveandcandelaythecoreuncovering foroneday.Ifnoactionistakenthefuelwillbedamagedaftermorethanoneday. A VBP ventilation (backed up by firstlevel generators GDS and by the DUR) avoids pressurizationofthecontainmentbyremovalofthegeneratedheat.Incaseofemergency, thepartialopeningofthecontainmentalsoallowsthispressurizationtobeavoided.Additional managementstrategiesofcontainmentoverpressurewillbeexamined. Doel 1/2 Theevaporatedwater is replenished by gravitationally emptyingthe RWST into the primary system.Ifmakeuptotheprimarysystemisperformed,thepressureinthereactorbuilding willhaverisentofailurepressureattheearliestafter3days.Bythenthespraysysteminthe reactor building must be taken into service or the reactor building must be vented in a controlledway. Tihange 2 In Tihange 2, the gravity feed from the CTP tanks is effective and can delay the core uncoveringbyeighthours.TherefillingoftheCTPtanksfromvarioussourcesofwater(partial drainageofthepoolsoranyotheralternativemeans)allowsextensionoftheirautonomyuntil restorationofaconventionalsourceofcooling. Tihange 3 InTihange3,thegravityfeedfromtheCTPtankscannotbeperformedduethepositionofthe tanks(lowerthantheprimarysystem).Ifnoactionistakenthefuelwillbedamagedafter3 hours.Afeasibilitystudyisforeseenforanalternativemakeup. TherefillingoftheCTPtanksfromvarioussourcesofwater(partialdrainageofthepoolsor any other alternative means) allows extension of their autonomy until restoration of a conventionalsourceofcooling. Doel 3, Doel 4 Theevaporatedwater is replenished by gravitationally emptyingthe RWST into the primary system. At the earliest after 3 days, the pressure in the reactor building will have risen to failurepressure.Bythenthespraysysteminthereactorbuildingmustbetakenintoservice.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 112

Core in spent fuel pools Incaseofcompletelossofallexternalandinternalelectricpowerthespentfuelpoolisnotcooledby thespentfuelpoolexchangers. The cooling of the fuel is maintained by evaporation and water makeup, implemented within few hours.Intheory,withoutcoldwatermakeuptothepool,evaporationwillstartafterseveralhours, andthetimebeforeuncoveringoffuelassemblies(cliffedgeeffect)isafewdaysifthetransfertube isclosedandnoactionistakentoremedythesituation. Accesstothebuildingwilleventuallybecomedifficultbythepresenceofsteam.Anyoperationsinside thebuildingwillthereforehavetobeexecutedasquicklyaspossible.Theopeningofasteamrelieve (doors,stairsetc.)willallowavoidingoverpressureinsidethebuilding. The time required for water makeups is compatible with the periods mentioned above. Given the numerousmeansthatcanbeusedintheunitforwatermakeup,thiscliffedgeeffectisveryunlikely. Several units of the Tihange site affected TheaboveanalysiswasconductedforeachoftheTihangeunitsindependently.Ifseveralunitsare affectedatthesametime,therewillnotbeanyadditionalconstraintssince,intheshortterm,each unitusesitsownmeansanditsownreserves.

Several units of the Doel site affected ForDoel,iftheentiresiteisaffected,thereisanimpactonsomeevaluationsoftheautonomy. ForDoel1/2theFEsystemcannotbekeptunderpressurebythesystemsfromDoel3&4.Asaresult theautonomyoftheDoel1/2systemsisshortenedfromquasiunlimitedtoshorter,butstillsufficiently longperiods. ForDoel3&4,theFEsystemcannotbekeptunderpressurebythesystemsfromDoel1/2andother (nonconventional)meansaretobeusedtocompensatefortheevaporatedwaterforthespentfuel scenarios.

5.1.3.4. (External) actions foreseen to avoid degradation of nuclear fuel

Thecompletelossofexternalandinternalelectricpowerismanagedinitiallybyaccidentprocedures (highpriorityforrapidrestorationofadieselgeneratororanexternalsourceofelectricpower)then bythesevereaccidentguidesSAMGfollowingpredefinedsetsofcriteria.Incaseofcompletelossof firstlevelandsecondlevelelectricpower,onlyequipmentrunningon battery (untilempty)andthe backupfeedwaterturbopumpremainavailable. Theactionsplannedtopreventdamagetothefuelandthetimebeforetheonsetofdamageinthis scenarioaredescribedpreviously. Atpresentnoadditionalequipmentfromoutsidethesiteinthecaseofcompletelossofexternaland internalelectricpowerareconsideredbythesitelicensee. FortheTihangeNPP,aspartoftheperiodicsafetyreviewsafloodingthatcausescompletelossof electricpowerwasstudiedwhichledtothesettingupofadditionalmeasures(CMUequipment).In linewithadefinedstrategy,thesettingupanduseofCMUequipmentisimplementedinthiscase.

5.1.3.5. Measures that may be considered to increase the robustness of the plant

Tihange NPP Thecompletelossoffirstlevelandsecondlevelelectricpowerisnotconsideredinthedesignbasis accidentsofthepowerstationsTihange1,2or3.Theautonomyofthebatteriesandtankswillallow thetemporarypreservationofcertainfunctions(corecooling). A series of nonconventional systems has been introduced to respond to an exceptional flood (eventuallyresultinginatotalstationblackout),butthissupposesanalertperiodcompatiblewiththe timenecessaryfortheimplementationoftheseresourcesandpassagetoanemergencysituation.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 113 The more limiting analysis conducted for this scenario has identified certain concerns in the managementofcompleteandsimultaneouslossofallelectricpowersources(externalandinternal). This scenario is used as the envelope case for determination of additional emergency means. The followingpointssummarizethesolutionsconsidered.Unlessotherwiseindicatedtheyapplytoallunits ofthesite. Commitment for implementation - Provisionofanadditional380 Velectricpowersupplyinordertobeabletorestoreelementary functionsincaseoflossoffirstlevelandsecondlevelelectricpowersupply - Use of the CMU generator to repower control command allowing the functioning of the TPS in Tihange1; - Introductionofadditionalpoollevelmeasuresonthebasisofthefollowingconstraints:lossofall electricpowerandinformationgatheringoutsidethebuilding; - ImplementationofprovisionstoallowisolationofSIaccumulatorsduringdepressurizationofthe primarysystem. Commitment for feasibility studies - FeasibilitystudyfortheadditionofaflangedconnectionfromoutsidetheBANinordertobeable tospraythereactorbuildingusingamobilepumptoavoidoverpressureinthebuilding; - FeasibilitystudyinordertoincreasethecapacityoftheEASandtoaddanemergencyfeedwater motor(Tihange1); - Feasibilitystudyfortheprovisionofnonconventionalmeansinordertoensuremakeupforthe primarysystemincaseofopenprimarycircuit(forTihange2and3); - FeasibilitystudyforreliablemanualactionsontheSGatmosphericdischargevalves(Tihange 1 and3); - Feasibilitystudyforaddingmobilecompressorstobeconnectedtotheemergencycompressedair system. Procedures must be foreseen to respond to this type of event, integrating the necessary non conventionalmeansandactionstrategies(forexample:rapiddepressurizationtolimitdamagetothe pump seals, coordination with nonconventional means present on site, removal of nonessential loads,steeringofthelocalTPA,watermakeupandremovalofsteamfromthepoolsandprioritization oflocalactionsincaseoflossofnormalcoolingofthepools,etc.). Itwillalsobenecessarytomodifytheexisting"accidentprocedures"totakeaccountofthisscenario. Proceduresdescribingtherepoweringofrequiredequipmentbynonconventionalmeansmustalsobe provided. Theorganizationoftheresponsetothistypeofnonconventionalaccidentmustalsobeimplemented (management of equipment, documents, etc.) without affecting the management of design basis incidents/accidents.

Doel NPP Steam generators available Thefollowinghardwaresolutionsareplanned: • Thedieselgeneratorsrequired(10x30kVA,4x350kVA)arealreadyavailableonsite,and can be used as emergency power for the instrumentation and control systems and measurementsystems. • ForDoel1/2,theturbopumpisfedfromthesmallAFWtank.Mobiledieselpoweredpumps areavailableonsitetorefillthistank. • TopreventnitrogenfromtheSIaccumulatorsendingupintheprimarysystemanalternative powersourceisforeseentopowertheisolationvalvesoftheSIaccumulatorswiththemobile dieselgenerators. Thefollowingproceduralamendmentsareplanned: • Updating an operating procedure in the case of total SBO or LUHS (e.g. fast cooling down usingsteamgenerators). • Thenecessaryproceduresareforeseentousetheaforementionedresources.

Primary system open Thefollowinghardwareamendmentsareplanned:

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 114 • For Doel 1/2, the cooling of the reactor will be realized initially through boiling and gravitational refilling of the inventory. After 12 hours the SPpump will take this over. A connectionisforeseentobeabletopowertheSPpumps from the available mobile diesel generators. • ForDoel1/2,ifthereispressureintheRCsystem,thespraypipingtothereactorbuildinghas to be isolated. Whether another manual valve can be installed for this purpose is being investigated. • ForDoel3and4,studyingwhetherthenecessaryconnectionsmaybeprovidedonthesuction anddischargesideoftheSPpumpandbuyingamobilepump(250m³/hat13bar)torealize alternativeSPflowrate. Thenecessaryproceduresareforeseentousetheequipmentmentionedabove.

Core in spent fuel pools Thefollowinghardwaresolutionsareinvestigated: To make it possible to refill the PLpools in the GNH or SPG more easily, it is being investigatedwhetherpermanentpipesandconnectionscouldbeprovidedtoallowthisfrom theoutsideusingmobilepumps.Thenecessaryproceduresareforeseentousetheequipment mentionedabove.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 115 5.2. Loss of heat sink

5.2.1. Loss of the primary ultimate heat sink (LUHS) Tihange NPP The TihangeNPP,situatedbesidetheriverMeuse,has several heat sinks. In normal situation, the three units in Tihange use water from the Meuse, drawn from a water intake channel forming an artificialstretchoftheriver,asaheatsinkforthecoolingsystems.Besidesthepossibilityofpumping fromtheintakechannel,theunitsinTihange2and3alsohaveadeepwaterintakeintheriverbed, allowingthe cooling system ofthese units to befed in caseof significantdrop inthe level of the Meuse. IncaseoflossofwaterfromtheriverMeusealltheunitsalsohavewellsfedbythegroundwater.The sitealsohasseveralwaterreservoirs. Itshouldalsobenotedthat,since2011,accesstoanindependentgroundwatersourcedeeperthan thegroundwatertableconstitutesanadditionalresource.

Figure 15 - Plan of heat sinks in Tihange.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 116 Doel NPP

UndernormaloperationtheunitsusetheScheldtforcooling.WaterfromtheScheldtiscontinuously pumpedthroughtheCWsystem.AtDoel1/2apartoftheCWflowisusedtocooltheCCsystem.At Doel3&4apartoftheCWflowisusedtorefillthecoolingtowersoftheRNsystem.Inthecaseofthe lossofallconnectionswiththeScheldttheunitsmustbecooledbyalternativecoolingsystems. For Doel 1/2 and Doel 3&4 the loss of the primary ultimate heat sink is the loss of the supply of coolingwater(CW,CoolingWater)fromtheScheldt.

Figure 16 - Plan of heat sinks in Doel.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 117 5.2.1.1. Design provisions

Tihange NPP ThethreeunitsofthesiteinTihangeusetheMeuseastheirprimaryultimateheatsink.Thelevelof theriverismaintainedataconstantvaluebythedamatAmpsinNeuville,situated2kmdownstream ofthewaterintakepointofthepowerstation. Thewaterintakeforthepumpsoftherawwatersystem(CEB)issituatedinawaterintakechannel whichisanartificialbranchoftheriver. AllsystemsmentionedinthisscenarioareclassifiedasresistingtoaDBEearthquake.

Tihange 1 ThescenarioconsideredbelowtakesaccountofanaccidentoccurringinTihange1only. a) Design measures of Tihange 1 Therawwatersystem(CEB)oftheunitincludestwocompletepumpingtrainsplusathirdreserve pump and may be powered electrically by the safety diesel generators (GDS). One CEB train is sufficienttobringandmaintaintheunitinthecoldshutdownstate. IfthelevelofwaterintheMeusefallstoolowfortheCEBpumps,thegroundwatersystem(whichis partoftheCEB)willbealignedmanually.Intheeventofbreakofalargelockgateinthedamat AmpsinNeuville, situated downstream of the site, the personnel on site should have 30 minutes, accordingtothesafetyanalysisreport,torealignthesystemsinsuchaway.Thistimelimitmaybe increasedupto1to2hoursdependingontheconsideredflowrateoftheMeuse. Thegroundwatersystemcanofcoursebeconnectedmanuallyincaseoftotallossofsuctionofthe CEBintheintakechannelforanyotherreason,suchaspluggingofthewaterintakefilters.However, the filters situated upstream of theCEBpumpsareequipped withabypass check valve that opens underhydraulicpressureincaseofhighloadloss(50mbar)onthefilter. Measuresarealsotakentomonitorthefiltersandthescreenrakes:regularinspectionsofthewater intake stations to check the fouling of the filters, switch to recirculation of the unit in case of exceptionalhighwatertoavoidmassinrushofleaves,etc. Thegroundwatersystem,whichisasafetywatersupply,maybepoweredelectricallybythesafety dieselgenerators(GDS).Thissystemhastwowells,eachequippedwithtwopumps.Onlyonepump runsatatime.Thesecondpumpisactivatedonlyincaseoffailureofthefirst.Thesedifferentwells areplacedgeographicallydistantfromeachotherandfromthewaterintakestation. Moreover, a hose link between the groundwater system in Tihange 1 and one of the CEU Meuse pumpsinTihange2couldalsobeestablished. The groundwatersystem hasan autonomyofat least 30 days if only one unit is affected. In the scenarioofabreakinthedamatAmpsinNeuville,onlyTihange1woulddrawfromthegroundwater whileTihange2and3wouldcontinuetodrawwaterviathedeepwaterintakesintheMeuseriver bed. b) Autonomy of Tihange 1 before fuel damage IncaseoflossofnormalsuctionoftheCEBpumpsinthewaterintakechannel,thealternateultimate heatsink,thatis,thegroundwatersystem,mustberealignedmanually.Inthehypotheticalcasenot being part of the design base of an instant loss of the CEB pumps, there will no longer be any availableheatsinkuntiltherealignmentofthegroundwatersystemiscompleted.Incaseofgradual lossofsuctionoftheCEBpumps,forexample,incaseofbreakofalockgateinthedamatAmpsin Neuville,theshiftcrewhaveenoughtimetoconnectthegroundwatersystembeforelossoftheCEB pumps. Forthereasonsjustexplained,thelossofheatsinkisseparatedintotwoscenarios: 1.InstantlossofsuctionbytheCEBpumpsfromthewaterintakechannel. 2.GraduallossofsuctionbytheCEBpumpsfromthewaterintakechannel(includedindesignbasis).

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 118 SCENARIO 1: Instant loss of suction by the CEB pumps from the water intake channel Steam generators available ThesteamgeneratorsaresuppliedwithwaterbytheEASpumpsthatdrawfromtheEAStank (120m³).WithoutmakeuptheautonomyoftheEAStankwouldbelimitedto60minutes. However, makeup is triggered automatically by a floating valve once the water reaches a preset level (from the demineralised water tanks). This automatic makeup increases the autonomytoatleast4hours. Primary system open CoolingbytheRRAexchangersisnotpossiblebeforerealignmentofthegroundwatersystem. If the primary system has a reduced water inventory (situation of outage with reduced inventory,etc.)atthetimeoftheaccident,makeuptotheprimarysystemispossiblefrom tankB01Biviaoneofthelowpressureinjectionlines.Useofthismakeupallowssufficient timetolineupthegroundwatersystem.Thisleadstoscenario2. Core in spent fuel pools Thepoolis not cooledbefore realignmentofthe groundwater system, but its temperature evolvesslowlyanddoesnotposeaproblemduringthistime. Afterlineupofthegroundwatersystemthescenariobecomesscenario2. SCENARIO 2: Gradual loss of suction by the CEB pumps from the water intake channel IncaseofgraduallossofnormalsuctionofMeuseriverwaterfromtheintakechannel,the groundwaterwellsarerealignedmanuallytotheessentialusersbeforetotallossoftheCEB pumps. AhoselinkbetweenthegroundwatersysteminTihange1andoneoftheCEBMeusepumps inTihange2couldalsobeprovided. ThecapacityoftheCEUwellsgivesthemautonomyofatleast30daysifonlyoneunitis affected. Steam generators available Groundwater makeup for the steam generators is provided from the EAS tank and pumps. Thegroundwatersystemcouldeventuallyaddwaterintothetankandallowmaintainingthe reactorinastableandcontrolledstate.Thegroundwaterwillalsobeusedforthecoolingof thereactorbytheRRAexchangers. Primary system open CoolingbytheRRAexchangersispossibleusingthegroundwatersystem.Thegroundwater systemisabletomaintainthereactorinstableandcontrolledshutdown. Core in spent fuel pools TheCTPpoolscanbecooledbythegroundwatersystem. c) General conclusions for Tihange 1 Thereisnocliffedgeeffectincaseofinstantorgraduallossoftheprimaryultimateheatsink.Infact, inTihange1,thisaccidentismanagedbyuseofthegroundwatersystemaftermanualrealignment. Autonomyofthegroundwaterisatleast30daysifonlyoneunitisaffected.Thislargelycoversthe timefordeploymentofadditionalmeansfromthesiteorfromoutsidethesite.

Tihange 2 and 3 Thescenarioconsideredbelowconsidersanaccidentoccurringinoneofthetwounits(Tihange2or 3).Theprincipleisthesameforbothunits. a) Design measures of Tihange 2 and 3

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 119 The raw water system (CEB) of each unit includes three complete pumping trains and may be poweredelectricallybythesafetydieselgenerators(GDS).TwoCEBtrainsaresufficienttoplaceand maintaintheunitinthecoldshutdownstate. TherearetwodeepwaterintakesintheMeuseriverbed,eachhavingasufficientcapacitytocoverall requirementsandabletofeedtheCEBpumps.Thesedeepwaterintakesarenormallyclosed.Ifthe leveloftheMeusefallsbelowthatofthebedofthewaterintakechanneloneoftheseconnections withtheriverbedisopenedmanually. IntheeventofbreakofalargelockgateinthedamatAmpsinNeuville,situateddownstreamofthe site,thepersonnelonsiteshouldhave2hours20minutes,accordingtothesafetyanalysisreport,to realign the systems in such a way. This time limit may be increased up to more than 6 hours dependingontheconsideredflowrateoftheMeuse. ThedeepwaterintakesintheMeusecouldalsobeusedintheeventthatthenormalsuctionofthe CEBpumpsfromtheintakechannelbecomesimpossibleforotherreasons,forexample,pluggingof thescreenrakes.However,thefilterssituatedupstreamoftheCEBpumpsareequippedwithabypass checkvalvethatopens(underhydraulicpressure)incaseofhighloadloss(50mbar)onthefilter. Measures are also taken to monitor the filters and screen rakes: regular inspections of the water intake station to check the fouling of the filters, switch to recirculation of the unit in case of exceptional high water to avoid massive inrush of leaves, verification of correct functioning of the screenrakes,etc. Incaseoftotallossoftherawwatersystem(CEB),theemergencywatersystem(CEU)cansupply thewaternecessarytobringingandmaintainingtheunitinastateofstableandcontrolledshutdown. The CEU consists of three trains and is powered by the second level emergency diesel generators (GDU). Each CEU train has a pump that draws from the intake channel (Meuse water) and a well (groundwater)pump. Normally, the twopumpsdo notfunctionsimultaneouslysince,dependingon thesituation,oneofthetwocouldbelostfollowing an accident of external origin. These different wellsareplacedgeographicallydistantfromeachotherandfromthewaterintakestation. IncaseoflossoftheCEBfunctionfromtheintakechannelbuttheMeuseremainsavailable,theCEU Meusepumpscouldstillbeusedbyopeningthedeepwaterintakesfromtheriverbed(seeabove), allowingwatersupplytothepumps. ThespentfuelpoolsoftheDEbuildingarecooledindirectlybytheCEBinTihange3.Incaseoftotal lossoftheCEBfunctionofTihange3,asupplyofgroundwaterisavailablefromaCEBwellpumpin Tihange2or3. b) Autonomy of the Tihange 2 and 3 units before fuel damage Ifnormalwaterintakefromthechannelislost,theCEBpumpsinTihange2and3candrawwater directlyfromthedeepwaterintakesintheriverbedoftheMeuse.Thisrequiresmanualopeningof the connection,whichcanbe achieved withinaperiod of time compatible with the time of loss of normalwaterintake.Evenincaseofbreakinthedam at AmpsinNeuville, thelevel ofthe Meuse wouldremainsufficientlyhightobeabletobedrawwaterviathatroute. Forthereasonsthathavejustbeenexplained,thelossofheatsinkisseparatedintotwoscenarios: 1.LossofnormalintakeofMeuseriverwaterfromtheintakechannel(includedindesignbasis); 2.TotallossofintakeofMeuseriverwater(includedindesignbasis). SCENARIO 1: Loss of normal intake of Meuse river water from the intake channel (included in design basis) Asalreadymentioned,itispossibletoestablishamanualconnectionbetweenthesuctionof theCEBpumpsandthedeepriverwaterintakeonthebedoftheMeuse,whichkeepstheCEB systemavailable.Autonomyisthenunlimited. Steam generators available InitiallythecoreiscooledbythesteamgeneratorssuppliedwithwaterbytheEAAsystem.In casetheEAAtankrunsemptyitispossibletosupplythesteamgeneratorsusingreservesof demineralisedwaterandthen,ifnecessary,rawwater.This canbeachievedbythenormal CEBviatheEAApumpsorbytheAUGsecondlevelsystem.However,theautonomyofthe EAAallowsreachingconditionswhichallowsuseoftheRRAshutdowncoolingsystem.This

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 120 systemisitselfcooledbytheintermediatecoolingsystem(CRI)whichisinturncooledbythe CEB. Primary system open TheCRI(cooledbytheCEB)coolsdownthecoreviatheRRAexchangersandtheCTPpools viatheCTPexchangers. Core in spent fuel pools TheCRI(cooledbytheCEB)coolsdowntheCTPpoolsviatheCTPexchangers. DE spent fuel pools ThespentfuelpoolsintheDEbuildingarecooledindirectlybytheCEBofTihange3.Since the deep river water intake and the external electric power sources are still available, autonomyisunlimited. InthisscenariotheheatsinkisstilltheMeuse.Thereisnocliffedgeeffect. SCENARIO 2: Total loss of intake of Meuse river water (included in design basis) ThesituationoftotallossofwaterintakefromtheMeuseisincludedinthedesignbasisofthe secondlevelprotectionsystemsofTihange2andTihange3. Theheatsinkinthiscaseisthegroundwater.ThecapacityofthewellsoftheCEUdrawing fromthegroundwatergivesautonomyofatleast30 daysifonlyoneunitisaffected.This autonomyislargelysufficientbeforethearrivalofequipmentorwaterfromanother unitor fromoutsidethesite. Steam generators available Thesecondlevelsystems(suppliedwithwaterfromtheCEUwells)describedpreviouslycan placeandmaintainthereactorinstableandcontrolledshutdown. Primary system open Thesecondlevelsystems(suppliedwithwaterfromtheCEUwells)canmaintainthereactorin stableandcontrolledshutdown. Core in spent fuel pools TheCTPpoolscanbecooledbythesecondlevelprotectionsystems(CTPexchangerssupplied withwellwaterviatheCRU). DE spent fuel pools ThespentfuelpoolsintheDEbuildingarecooledviatheSTPexchangersbytheSEUsystem suppliedwithwaterfromtheCEUwells. c) General conclusions for Tihange 2 and 3 Thereisnocliffedgeeffectincaseofinstantorgraduallossoftheheatsink.Infact,thisaccidentis managed,inTihange2and3,byuseoftheCEBsystem(deepwaterintakesfromtheriverbedofthe Meuse)ortheCEUsystem(groundwater).Thegroundwaterautonomyisatleast30daysifonlyone unitisaffected.Thislargelycoversthetimefordeploymentofadditionalmeansfromthesiteorfrom outsidethesite.

Several units of the Tihange site affected Themanagementofalossofheatsinkinthethreeunitsdependsessentiallyonthepossibilityofuse ornotofthedeepriverwaterintakeintheMeusefortheunitsTihange2and3. IfthedeepriverwaterintakeintheMeuseisstillavailable,Tihange1usesgroundwaterandTihange 2and3useMeuseriverwater.Autonomyisthenatleast30daysforTihange1andunlimitedfor Tihange 2 and 3. If the deep river water intakes are all lost, the three units resupply from the groundwatertable.Autonomyisthenthreeweeks. Thedesignbasesoftheunitsconsidertheuseofgroundwaterbyonlyoneunit.Theautonomyofuse ofgroundwaterwasdeterminedconsideringsuchhypothesis.Incaseofaneventaffectingmorethan

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 121 oneunit,therealisticcaseoftwounitswithsteamgeneratorsavailableandoneunitcooledbythe RRAisconsidered. Newprocedureswillbeissuedinordertotakeinto account loss ofthe primary ultimateheatsink affectingmorethanoneunit. In that case the control of the temperature of the primarysystemmustbeachievedbythesteam generators for those reactor units where the steam generators are available, in order to limit groundwaterconsumptionbyavoidingpassageoftheseunitstoRRA.

IfTihange3isoneoftheunitsaffectedbyatotallossofriverwaterintakefromtheMeuse,thepool intheDEbuildingisnolongercooledbytheconventionalsystems.Tolimitgroundwaterconsumption, thecoolingwillthenachievedbywatermakeupprovidedbyvariousnonconventionalmeanspresent on site. They can be deployed within few hours, thisislongbeforedamageofthefuelassemblies start,whichismorethan20days.

Doel NPP Theprobabilityoftheentiresitebeingaffectedbythelossoftheprimaryultimateheatsinkisvery unlikelyforDoel.ThewaterintakeareasofDoel1/2andDoel3&4aresignificantlyseparatedfrom eachotherandtheiroperatingprincipleisdifferent.ThepumpingstationofDoel1/2issituatedinthe Scheldt. The pumping station of Doel 3&4 is situated on the site itself but is connected via undergroundpipestoasuctionwellintheScheldt. 5 InthecasewhereDoel3&4isaffectedandDoel1/2isnotaffectedbythelossoftheprimaryultimate heatsink,thecoolingwatercanbepumpedfromDoel1/2toDoel3&4.Thisalignmentrequireslocal manualactionsandtakesafewhours.

Doel 1/2 Theunitsaredesignedtokeepthesafetyequipmentandthereactorcooledinthecaseofthelossof theprimaryultimateheatsink.Wefirstdescribebelowtheavailablebackupsystemsofthefirstand secondlevelandthenthescenariosinthethreeoperatingconditions. a) Design measures of Doel 1/2 : Back-up from the first level systems Inthecaseofthelossoftheprimaryultimateheatsink,thecoolingoftheCCsystemisassuredby theRWsystem(RawWatersystem).TheRWsystemisasafetysystemcomprisingfourtrainsandcan bepoweredbythefirstlevelsafetydieselgenerators.TheRWsystemcomprises4closedloopscooled bycoolingtowerswithforceddraft.Tocompensateforthelossofwaterinthecoolingtowers,the coolingtowertankscanberefilledinadiversifiedway: • Gravitationalrefillingfromthecitywaterreservoir. • Gravitationalrefillingfromthecommondemineralisedwatertank. • RefillingwithScheldtwater. • Inadditiontothepreviousrefillingoptions,thereisalsothepossibilitytorefilltheRWcooling towersdirectlyviatheFEsystem. Refilling is assured automatically during approximately12hoursbyagravitationalrefillingfromthe TWandRWtanks.Manualactionsareneededfortheotherrefillingoptions. b) Design measures of Doel 1/2 : Back-up from the second level systems IftheCC/RWsystembecomesunavailableinadditiontotheprimaryultimateheatsink(CWsystem), thenthecoolingoftheSCsystem (Shutdown Cooling)andofthePLpoolsforthestorageofspent nuclearfuelisassuredbythesecondlevelsystems. • AsareplacementoftheCCsystemontheSC,there isthesecondlevel coolingsystemEC (EmergencyCooling).TheECsystemiscommontobothunits.Itcomprises2pumpsand2air coolersthatareplacedinparallelonasingleloopandthatcancoolthefourheatexchangers of the SC and the six SC pumps. The equipment of the system is located in the GNS EmergencySystemsBuilding(pumpsandexpansiontank), and on the roof of the GNS (air coolers).TheSCpumpsandcoolersarelocatedintheNuclearAuxiliaryServicesBuildingand gettheirelectricalsupplyfromboththefirstandsecondlevels. • As replacementof thePLcoolersthe cooling ofthe pools ofthe Nuclear Auxiliary Services Buildingmaybeswitchedtoanaircooler(belongingtothePLsystem)ontheroofoftheGNS EmergencySystemsBuilding.TwoofthethreePLpumpscanbepoweredbythesecondlevel

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 122 dieselgeneratorstoassurethisfunction.ThethirdPLpumpispoweredbythefirstleveldiesel generators. Aslongasthefirstlevelsystemsareoperational,thesecondlevelsystemsarenotneeded.Thediesel generatorsofbothlevelsarecooledbyaircoolersandthereforeremainavailablewithouttheprimary ultimateheatsink,withoutCC/RWandwithoutEC. c) Autonomy of Doel 1/2 before fuel damage Steam generators available The first level RWcooling towers ensure that all safety related first level systems remain cooledviatheCCsystem. Thecooling of the core isassured by cooling via the steam generators andthe subsequent transitiontoSCcooling.Thecoolingviathesteamgeneratorsisguaranteedatthefirstlevel by the AFWsystem (Auxiliary Feedwater). At the second level the EFsystem (Emergency Feedwater)intheGNSEmergencySystemsBuildingmaybeused. Therearenocliffedgeeffectsforthisscenario. There is more than sufficientwater supply availableatDoel1/2forrefillingtheRWcoolingtowers.Furthermorerefillingispossiblevia theFEsystemfromtheponds(3x30000m 3)atDoel3&4. IfthewatersupplyisexhaustedthenthesecondlevelsystemsofDoel1/2willbeusedand the ECsystem in the Emergency Systems Building will take over the function of the CC system.

Primary system open The first level RWcooling towers ensure that all safety related first level systems remain cooled. The core is cooled via the SCsystem and the CCsystem which is cooled in turn by the alternateultimateheatsink(RW). Therearenocliffedgeeffectsforthisscenario. There is more than sufficientwater supply availableatDoel1/2forrefillingtheRWcoolingtowers.Furthermorerefillingispossiblevia theFEsystemfromtheponds(3x30000m 3)atDoel3&4. IfthewatersupplyofthepondsisexhaustedthentheECsystemintheEmergencySystems BuildingwilltakeoverthefunctionoftheCCsystem.

Core in spent fuel pools ThefirstlevelRWcoolingtowersensurethatthespentfuelstoragepoolsremaincooled. The core is cooled via the PLsystem and the CCsystem which is cooled in turn by the alternateultimateheatsink(RW). Therearenocliffedgeeffectsforthisscenario. There is more than sufficientwater supply availableatDoel1/2forrefillingtheRWcoolingtowers.Furthermorerefillingispossiblevia theFEsystemfromtheponds(3x30000m 3)atDoel3&4. IfthewatersupplyofthepondsisexhaustedthenthePLcoolersintheEmergencySystems BuildingwilltakeoverthefunctionoftheCCsystem.

Doel 3&4 Eachunitisdesignedtokeepthesafetyequipmentandthereactorcooledinthecaseofthelossof the primary ultimate heat sink. The CCsystem is always cooled via the RNsystem (RNcooling towers),whichrecievesmakeupwaterfromtheCWsystem.IftheCWsystemislost,theRNsystem automaticallyswitchestotheCDsystemtocompensatethelossofwaterinventory.TheCDsystem takesitswaterfromtheLUpondsofDoel3&4(3x30000m³). a) Design measures of Doel 3&4: Back-up from first level systems The RNsystem is a closed system that cools the CCsystem and that releases the heat to the atmosphere via cooling towers. The RNsystem comprises three cooling loops for cooling the heat exchangersoftheintermediatecoolingsystemCC.EachRNloophasasetof2coolingtowerswith forceddraft.Tocompensateforthelossofwaterofthecoolingtowers,waterhastobeaddedtothe RNsystem.Therearedifferentalternativesforthiswatersupply: • TheadditionalwaterofthesetowersisusuallysuppliedbythewaterintakeareaofDoel3&4 viaCWpumpsfromDoel3&4. • FromtheLUpondsrefillingoftheRNisprovidedviatheCDsystem.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 123 • InadditiontothepreviousrefillingoptionsthereisalsothepossibilitytofilltheRNcooling towersbytheFEsystem. b) Design measures of Doel 3&4:Back-up from second level systems If the CC/RN system also becomes unavailable in addition to the primary ultimate heat sink, the emergency cooling system (LUsystem) can provide the cooling needed to bringthe unitsto a cold shutdownstateandtomaintainitinthisstate.TheLUsystemcomprisesthreeindependenttrainsthat areautomaticallypoweredbythesecondleveldieselgenerators(KE)iftheexternalpowersourcesare lost. Ineachunitthecoolingwaterispumpedupfromthe corresponding LUpond, directly sent to the coolers(PL,SC,…)andsentbacktotheLUpond. ThreeindependentartificialLUpondsareprovided.Thepondsarefarenoughawayfromthereactor unitssothattheunits´powerstationandthecoolingpondscannotbeaffectedsimultaneouslybyan externalaccident.BothDoel3andDoel4havetheirownLUpondwithawaterreserveof30,000m³. The third coolingpondserves as an industrialwater reserve (IW) and, if necessary, as a common reserveforthecoolingpondsofDoel3&4. TakingaccountofacapacityreservedfortheFEsystem(firefighting)anddifferentpossiblelosses, forafewweeksthereremainssufficientwaterintheLUpondstoguaranteetheproperfunctioningof theLUpumps.Thetemperatureofthepondremainsalsolimitedto50°Cduetothermalinertiaand spraysystem. Aslongasthefirstlevelsystemsareoperational,thesecondlevelsystemsarenotnecessary.Thefirst leveldieselsarecooledbyaircoolersandremainthusavailablewithoutprimaryultimateheatsink, withoutCC/RNandwithoutLU.ThesecondleveldieselsarecooledbytheLUsystemandremainthus availablewithoutprimaryultimateheatsinkandwithoutCC/RN. c) Autonomy of Doel 3&4 before fuel damage Steam generators available The first level RNcooling towers ensure that all safety related first level systems remain cooled. Thecooling of the core isassured by cooling via the steam generators andthe subsequent transitiontoSCcooling.Thecoolingviathesteamgeneratorsisguaranteedatthefirstlevel by the AFsystem (Auxiliary Feedwater). At the second level the EFsystem (Emergency Feedwater)intheGNSEmergencySystemsBuildingmaybeused. Therearenocliffedgeeffectsforthisscenario.TheLUpondscontainsufficientwaterforan autonomyofatleast26days.ThatismorethanenoughtobeabletorefilltheLUponds.

Primary system open The first level RNcooling towers ensure that all safety related first level systems remain cooled. ThecoreiscooledviatheSCsystemandtheCCsystemwhichiscooledinturnbytheRN coolingtowers. Therearenocliffedgeeffectsforthisscenario.TheLUpondscontainsufficientwaterforan autonomyofatleast26days.ThatismorethanenoughtobeabletorefilltheLUponds.

Core in spent fuel pools ThefirstlevelRNcoolingtowersensurethatthespentfuelstoragepoolsremaincooled. ThepoolsremaincooledviathePLsystemandtheCCsystemwhichiscooledinturnbythe RNcoolingtowers. Therearenocliffedgeeffectsforthisscenario.TheLUpondscontainsufficientwaterforan autonomyofatleast26days.ThatismorethanenoughtobeabletorefilltheLUponds.

Several units of the Doel site affected IftheentiresiteisaffectedandthewaterreservesofDoel1/2becomeexhausted,thenDoel3&4has tosharethepondswithDoel1/2.ThewaterreserveinthepondsissufficienttoprovideDoel1/2with wateraswell.Furthermoreonedisposesofseveralweekstorefilltheponds.Butbeforethishappens thesecondlevelsystemsatDoel1/2canbetakenintoservice.Theserelyentirelyonaircoolersthat donotrequireanyrefilling.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 124 5.2.1.2. (External) actions foreseen to prevent fuel damage

Tihange NPP AsdescribedinthepreviousparagraphthelossoftheMeusewaterriverismanagedinvariousways accordingtotheunits. The shift crew teams aretrained to respond to thistypeofaccident.TheInternalEmergencyPlan (PIU)isstartedandnoequipmentfromoutsidethesiteisnecessaryoverthemediumterm.Itshould howeverbenotedthat,incaseofbreakofalockgateinthedownstreamdamatAmpsinNeuville,the periodneededforanobstructionofthebreachbyreservecofferdams(twocofferdams)permanently availableonsiteisestimatedbythe“ServicedesVoiesHydrauliques”atamaximumoftwodays.If thestructureofthedamisintact,thisallowsquiterapidrestorationofthecorrectleveloftheMeuse.

Doel NPP This incidentis a partof the designbasis ofthe units and is countered perfectly by the available installations,thestandardoperatingproceduresandtheshiftcrew.

5.2.1.3. Measures that may be considered to increase the robustness of the plant

Tihange NPP ThelossofwaterfromtheMeuseriverisconsideredinthedesignbasisofeachofthethreeunitsin thethreepossibleconfiguration:steamgeneratorsavailable,primarysystemopenandcoreinspent fuel pools if only one unit draws from the groundwater. This type of accident does not require additionalmeasures.

However, if all three units have to draw from the groundwater, it is necessary to optimize water consumption.Methodstolimitwaterdrawingfromthegroundwateranddeterminingwhichwell(s)to usepreferentiallymustbeincludedinproceduresand/orinthestrategyformanagementofa"multi unit”accident.

Doel NPP Thisincidentisapartofthedesignbasisoftheunitsandcanbecounteredperfectlywiththeavailable systems,thestandardoperatingproceduresandtheshiftcrew.Nomodificationstothehardware,no newproceduresandnoorganisationalmeasuresarerequired.

5.2.2. Loss of the primary ultimate heat sink and alternate ultimate heat sink(s)

Tihange NPP Thesimultaneouslossofprimaryandalternateultimateheatsinkisnotpartofthedesignbasesof Tihange units. However, the analysis given below shows that the site has emergency means and sufficient autonomy for the management of this type of accident compatible with the time for deploymentofnonconventionalmeansfromoutsidethesiteinadditionofthoseavailableonsite.

Doel NPP InDoeltherearetwoalternateultimateheatsinksineachunit.Itisshownthattheunitsaredesigned towithstandthelossofoneofthetwosystems.Thelossofbothsystemssimultaneouslyis highly unlikelyandisthereforenotapartofthedesignbasis.Inafewspecificcasesthismeansthatonewill haverelyonnonconventionalmeans.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 125 5.2.2.1. Autonomy of the site before fuel damage

Tihange NPP Bydesignthesitehasdiversifieditsheatsinksinordertoreducetheriskoftheirsimultaneousloss. Asaresult,thetotallossoftheprimaryultimateheatsink(theriverMeuse)andthealternateultimate heatsink(thegroundwatertable)isnotincludedinthedesignbasisoftheunits. Thisscenarioconsidersthesuccessiveorsimultaneouslossof: - waterfromtheintakechannelflowingfromtheMeuse; - deepwaterintakesontheriverbedoftheMeuse,installedforTihange2and3,tocompensatea possiblefallinthewaterleveloftheriver; - waterfromthegroundwaterwells(eachofthethreeunitshasseveralwellssituatedindifferent placesonthesite). The analyses below consider the worstcase and highly unlikely scenario of immediate and simultaneousloss of allthese heat sinks with the external electric power still available. In case of gradual and successive loss of these sources (more realistic situation), the autonomies would be greater than those indicated in the paragraphs below. The cases described below are therefore extremelyconservative. Theseanalysessupposethateachunitusesitsownreservesofwaterandequipment.Incaseofan accidentaffectinglessthanthreeunits,transfersofwaterarealwayspossible,afterconnectionofone unittotheotherunitsinordertoincreasetheautonomyoftheaffectedunit(s). Thetotallossoftheheatsinkswillpreventthecontinuousfunctioningofthevariousfirstleveland secondlevelsafetysystems(inparticularthedieselgenerators)intheabsenceofcoolingapartfrom thosenotrequiringwatercooling(suchasGDRforexample,whichisaircooled),orthosethatare selfcooled. Theconstructionofanewdemineralizedwaterproductioncircuitforthewholesiteisinprogress.For thisoperationinvestigationshaverevealedtheexistenceofadeepgroundwatertableattheTihange site. Three wells have been dug into this water table; they are equipped with pumps. It is already possibletousethissourceofwaterbymeansofhoses.Theautonomiesestimatedbelowdonottake accountofthisnewsourceofwater.

Tihange 1 Steam generators available ThesteamgeneratorsaresuppliedwithwaterbytheselfcooledEASpumpsdrawingfromthe EAStank(120m³).Withoutmakeup,theautonomyoftheEAStankwouldbelimitedto60 minutes. However, a makeup is triggered automatically, thanks to a floating valve, as the waterreachesapresetlevel. Theavailablevolumesofwater(1120m³)andtheinertiaofthewaterpresentinthesteam generators allow a cooling via the steam generators for at least 1.5 days. An additional reserveofwateravailableinthetwocondenserscouldalsobeused(approximately320m³). Incaseofemergency,thiswatercouldbesenttothesteamgenerators. In the event that cooling by the steam generators is lost and no alternative supply to the steamgeneratorsisfound,itispossibletoplace the primary system in a “feed and bleed" configuration by direct injection of borated water and by discharging through the SEBIM valvesofthepressuriser. Giventhelossofallheatsinksthecliffedgeeffectoccursuponlossofwaterforthesteam generatorcooling(afterapproximately1.5days).Thisperiodallowssufficienttimetodeploy alternativemakeupmeansavailableonsite. Infactitispossibletoaddmakeupwaterviathefirewatersystemusingnonconventional means,inthiscaseamobilemotorpumpunitdrawingwaterdirectlyfromtheMeuse.Using suchmeans,thiscliffedgeeffectcanthereforebeavoided.

Primary system open

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 126 The"feedandbleed"principleisusedfortheprimarysystem.Thesteamisreleasedthrougha VBPventtothechimneyanditsfiltrationsystems. Therequired reaction time depends onthe waterinventory in the primary systemincluding thereactorpool.Withoutadditionalwatermakeuporreactivationofthecooling,thewater from B01Biinjectedinto theprimary systemisevaporated in slightly more than 5 days. A steamreleaserouteisforeseeninordertoavoidthereactorbuildingoverpressure.Incasethe steam in the reactor building is not released, and without use of containment spray, the overpressureriskstodamagethecontainmentstructureafter3to4days. TheunitalsohasareserveofwaterinitsCISaccumulatorsthatcouldbeuseddependingon theircontentofwateratthetimeoflossoftheheatsinks.Finally,thereservesofwaterinthe CABtankscouldalsobeused. Thecliffedgeeffectoccurswhenalltheboratedwatertanksareempty.TheB01Bitankgives autonomywellbeyond72hours.Thisautonomycoversthetimeuntilarrivalofequipmentor water from another unit or from outside the site. Besides the available reserves in other boratedwatertanks,anexternallinkisforeseenforatankertruckcontainingborontoensure makeupofB01Bi.Usingthesemeans,thiscliffedgeeffectcanthereforebeavoided. Core in spent fuel pools The spent fuel pool is no longer cooled by the normal systems. Evaporation starts approximately10hoursafterthelossofthenormalcoolingsystems. Nonconventionalmeansmaybedeployedtoensureawatermakeupinafewhours,thatis, wellbeforetheassembliesbegintouncoverwhich,intheory,occursatleast4daysafterloss ofnormalcooling(fueltransfertubeclosed). The cooling of the fuel is maintained by evaporation and water makeup, which can be deployedinafewhours.Overtime,accesswillberendereddifficultbythepresenceofsteam in the reactor building. Thus, any eventual operations in the building must be executed as soonaspossible.Procedureswillbeissuedforthemanagementofthepoolsinthistypeof scenario. The introduction of additional level measurements in the spent fuel pools is also considered.

Thesituationtoavoidistheuncoveringofthefuelassemblies(cliffedgeeffect).Thetimefor installing water makeup is compatible with the time periods mentioned before. There is thereforenocliffedgeeffect.

Tihange 2 and 3 Steam generators available ThesteamgeneratorscanbesuppliedbytheselfcooledEAApumpsthatdrawfromtheEAA tank(totalcapacity690m³forTihange2and800m³inTihange3). When this tank is empty the contents of the following tanks can be routed to the steam generators: • EDNB06:capacity800m³inTihange2andEDNB05:capacity800m³inTihange3; • EDNB07:capacity300m³inTihange2andEDNB07:capacity500m³inTihange3; • Condenser:averagecontent170m³inTihange2and350m³inTihange3; • PEDB01:averagecontent110m³inTihange2andPEDB03:averagecontent110 m³inTihange3. Theavailablevolumesofwater(2166m³forTihange2and2523m³inTihange3)andthe inertiaofthewaterpresentinthesteamgeneratorsallowacoolingviathesteamgenerators foratleast3.5daysinTihange2and5daysinTihange3. In the event that cooling by the steam generators is lost and no alternative supply to the steamgeneratorsisfound,itispossibletoplacetheprimarysystemina"feedandbleed" configurationbydirectinjectionofboratedwaterandbydischargingthroughthepressurizer relievevalves.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 127 Giventhelossofallheatsinksthecliffedgeeffectoccursuponlossofwaterforthesteam generatorcooling(afterapproximately3.5daysinTihange2and5daysinTihange3).This periodallowssufficienttimetodeployalternativemakeupmeansavailableonsite.Thiscliff edgeeffectcanthereforebeavoided.

Primary system open ThecontentoftheCTPtankscanbeinjectedintheprimarysystemincaseofreducedwater inventory.Withoutadditionalwatermakeuporreactivationofthecooling,thewaterfromCTP injectedintotheprimarysystemisevaporatedinslightlymorethan6dayseitherinTihange2 or in Tihange 3. A steam release route is foreseen in order to avoid the reactor building overpressure. In case the steam in the reactor building is not released, and without use of containmentspray,theoverpressureriskstodamagethecontainmentstructureafter3to4 dayseitherinTihange2orinTihange3. TheunitalsohasareserveofwaterinitsCISaccumulatorsthatcouldbeuseddependingon theircontentofwateratthetimeoflossoftheheatsinks.Finally,thereservesofwaterinthe CABandCUStanks(around450m³)couldalsobeused. Thecliffedgeeffectoccurswhenalltheboratedwatertanksareempty.JusttheCTPtanks give autonomy well beyond 72 hours either in Tihange 2 or in Tihange 3. This autonomy coversthetimeuntilarrivalofequipmentorwaterfromanotherunitorfromoutsidethesite. Thiscliffedgeeffectcanthereforebeavoided. Core in spent fuel pools The spent fuel pool is no longer cooled by the normal systems. Evaporation starts approximately8hoursafterthelossofthenormalcoolingsystems. Nonconventionalmeansmaybedeployedtoensureawatermakeupinafewhours,thatis, wellbeforetheassembliesbegintouncoverwhich,intheory,occursatleast2daysinTihange 2(3daysinTihange3)afterlossofnormalcooling(fueltransfertubeclosed). The cooling of the fuel is maintained by evaporation and water makeup, which can be deployedinafewhours.Overtime,accesswillberendereddifficultbythepresenceofsteam in the reactor building. Thus, any eventual operations in the building must be executed as soonaspossible.Procedureswillbeissuedforthemanagementofthepoolsinthistypeof scenario. The introduction of additional level measurements in the spent fuel pools is also considered.

Thesituationtoavoidistheuncoveringofthefuelassemblies(cliffedgeeffect).Thetimefor affecting water makeups is compatible with the time periods mentioned before. There is thereforenocliffedgeeffect. DE spent fuel pools InthisscenariotheusedfuelpoolsintheDEbuildingarenotcooledbythenormalsystems. Evaporationbeginsabout4daysafterlossofcoolingofthepools.Nonconventionalmeans, deployed in a matter of hours, are foreseen to achieve makeup of water before the uncoveringofthefuelassemblies(atleast3weeks).Provisionisalsomadefortheevacuation ofsteam. Thereisthereforenocliffedgeeffect.

Several Tihange units affected TheaboveanalysiswasconductedforeachoftheTihangeunitsindependently.Ifseveralunitsare affectedatthesametime,therewillnotbeanyadditionalconstraintssince,intheshortterm,each unitusesitsownmeansanditsownreserves.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 128 Doel NPP AtDoel1/2andDoel3&4twoalternateultimateheatsinksareavailable.Thereforethescenariois splitintotwosteps. Doel 1/2: Step 1: loss of CW (primary ultimate heat sink) + RW (first alternate ultimate heat sink) TheDoel1/2powerstationisdesignedtoindependentlywithstandatotallossofthefirstalternate ultimateheatsink(RWcoolingtowers)becauseoftheavailabilityofthesecondlevelsystemsinthe EmergencySystemsBuilding. IntheeventofthelossoftheRWcoolingtower(firstlevelcoolingtowers)theCCsystemwillbecome unavailable.Asaresultmultiplefirstlevelsafetysystemswilllosetheircooling. TotallossoftherefillingtotheRWcoolingtowersishighlyimprobableasmultipleredundantrefilling optionsareavailable.

Steam generators available TheAFWpumpsandthesecondlevelsystems(GNSEmergencySystemsBuilding)ensurethat theunitiscooledandmaintainedincoldshutdown. In this scenario the (selfcooling) AFWpumps (2 motor pumps & 1 turbo pump) remain available to feed the steam generators from the AFWtank and MWtanks. The steam generatorscanalsobefedbytheEFpumps. Therearenocliffedgeeffectsforthisscenario.

Primary system open The second level systems (GNS Emergency Systems Building) ensure that the unit is maintainedincoldshutdown. WithanopenprimarysystemthecoreiscooledwiththeSCsystem,whichinturniscooledby theCCsystem.Intheeventofthelossofthe CCsystem,theECsystemisalignedtotake overthisfunction. AligningtheECsystemtotheSCsystemtakes45minutesatmost.However,ifnowateris added,thewaterinthereactorwillstarttoboilwithinthehour.Thisperioddependsonthe timeintervalbetweentheshutdownandtheinitiatingevent,thelevelofwaterinthereactor andthepossibilityofincreasingthewaterlevel.AslongastheECsystemisnotalignedtothe SCsystemthewaterlevelismaintainedbyinjectionofboratedwaterviatwoRJpumps. Withinanhourthewaterinthereactorwillstarttoboil.Thatwaterwillcontinuetoboiluntil thecoolingviatheECsystemisrecovered.Therearesufficientresourcestocompensatefor theevaporatedwater.TheECsystemcancontinuetorunwithoutrestriction.

Core in spent fuel pools Thesecondlevelsystems(GNSEmergencySystemsBuilding)ensurethatthePLpoolsremain cooled. ThenuclearfueliscooledviathePLsystem.InthisscenariothePLsystemofthefirstlevelis realignedtothePLaircoolersoftheEmergencySystemsBuilding.Thenuclearfuelwillremain cooledinthemeantimebythewaterinthePLpools.Thatwaterwillonlystarttoboilafter15 hours. Once thePLsystem has beenalignedtothe Emergency Systems Building it can be operatedwithoutlimitinthisway. ThePLsystemisalignedmanuallywithin1.5hours.Thisismuchshorterthanthe15hours available.FurthermorethePLsystemisaclosedsystemwherenowaterhastobeadded.

Doel 1/2 Step 2: loss of CW (primary ultimate heat sink) + RW (first alternate ultimate heat sink) + air coolers Emergency Systems Building (second alternate ultimate heat sink) TheDoel1/2unitisnotdesignedtoindependentlywithstandthetotallossofbothalternateultimate heatsinks.Simultaneoustotallossofthefirstandsecondalternateultimateheatsink(CW+RWand theaircoolersEmergencySystemsBuildings)ishighlyimprobable. Coolingofthenuclearfuelandmaintainingthesubcriticalitycanstillbeguaranteedhowever.

Steam generators available

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 129 Thereactorsarecooledbythefirstandsecondlevelsystemsviathesteamgenerators.Inthis scenariothe(selfcooled)AFWpumps(2motorpumps&1turbopump)areavailabletofeed thesteamgenerators. BecausetheSCsystemcannotbetakenintoservice,thisconditionmustbemaintainedforan unlimitedperiod.Thereforewatermustbecontinuouslysuppliedtothesteamgenerators. ThewaterreservesofDoel1/2giveanautonomyofmorethantendaysperunit.Withthe volume in the LUponds of Doel 3&4 the steam generators of Doel 1 and Doel 2 can in principlebesuppliedforafewmonths. Therearenocliffedgeeffectsforthisscenario.

Primary system open In this scenario the water in the reactors starts to boil and the evaporated water is compensatedbyfreshwater.Waterinthereactorwillstarttoboilwithinanhour.Thewater levelinthereactoriskeptatasufficientlevelbyaddingboratedwaterviathe2RJpumps. AsabackuptheRWSTmayalsobedrainedgravitationallytofeedthereactorviatheSC system. Afteralossofallheatsinksthereactorbuildingishermeticallysealedtoavoidthatthesteam formed would be released into the environment. As a result the pressure in the reactor building will rise. The pressure rise can be delayed by spraying cold water in the reactor buildingviatheSPsystem. Thefailurepressureofthereactorbuildingwillbereachedafter3daysattheearliest.Bythat timethefirstlevel(CC)orthesecondlevel(EC)heatsinkshouldhavebeenrestored.Ifthat doesnotsucceedthenthereactorbuildingmustbeventedinacontrolledway. Asaresultofthepresenceofsteam,accesstothereactorbuildingwillbecomedifficultindue course.

Core in spent fuel pools In this scenario the water in the spent fuel pool startstoboilandtheevaporatedwateris compensatedbyfreshwater.Boilingthewaterinthepoolsisanefficientwaytoremovethe heatfromthenuclearfuelelements. Within15hoursattheearliestthewaterinthespentfuelpoolwillstartboiling.Asaresultof thepresenceofsteam,access to thepoolsbecomes more difficult in due course. For that reason it is necessary to make the water supply available before boiling starts. The time availableismorethanenoughtorefillthespentfuelpools. Therearesufficientmeansandthereissufficient timeavailableto keepthePLpoolsfilled. Withoutthisfillingitwilltakeanother4.8daysbeforethewaterlevelhasdroppedtothetop ofthenuclearfuelelements.

Entire site affected IftheunitsDoel3,Doel4andWABarealsoaffected,thecoolingofthereactorsofDoel1&2 remainsassured.InthatcaseDoel1&2sharethewateroftheLUpondswithDoel3&4.Asa resulttheautonomyofferedbythesepondsdecreasesalittle. Howeverthisdoesnotintroduceadditionalcliffedgeeffects. - Doel1&2hassufficientwaterreserves(AFW,MW,EF)tocover10days.Thatissufficient time to provide an alternative water supply for the steam generators or tofill the LU pondssharedwithDoel3&4byexternalmeans. - If the entire site is affected, the available borated water has to be shared. However borated water isonly necessary in the scenario ‘primarysystemopen’andtwooutages neveroccursimultaneouslyonthesite.

Doel 3&4 Step 1: loss of CW (primary ultimate heat sink)+ RN (first alternate ultimate heat sink) TheunitsDoel3andDoel4aredesignedtoindependentlywithstandatotallossofthefirstalternate ultimateheatsink(RNcoolingtowers)withthehelpofthesecondlevelsystemsintheBunkerandthe correspondingwatersupplyfromtheLUponds. IftheRNcoolingtowersarelosttheCCsystembecomesunavailable.Asaresultmultiplefirstlevel safetysafetysystemswillhavenocooling. Total loss of the refilling of the RNcooling towers is highly improbable, as there are multiple redundantrefillingoptions.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 130

Steam generators available TheAFpumpsandthesecondlevelsystemsintheBunkerensurethattheunitiscooledand keptinacoldshutdownstate. Inthisscenariotheprimarysystemiscooledwiththesteamgeneratorstoatemperatureand pressure that have droppedsufficiently to takeinto servicetheshutdowncooling(SC).The selfcooledAFpumps(motor&turbo)remainavailabletofeedthesteamgenerators. 5 Therearenocliffedgeeffectsforthisscenario.TheautonomyoftheLUpondsisatleast26 days.Thisismorethanenoughtorefillthepondbyexternalmeans.

Primary system open Thesecondlevelsystems(bunker)ensurethattheunitiskeptinacoldshutdownstate.The coreiscooledviatheSCsystem.AfterthelossoftheCCsystemtheSCsystemiscooledby theLUsystem. CoolingviatheLUsystemisrestoredwithinamaximumof½anhour.Ifthecoolingcannot berestoredthewaterinthereactorwillstarttoboilwithinanhour. OperationonLUsystemcancontinuetorunfor26days.Thisismorethanenoughtorefillthe pondsbyexternalmeans. Core in spent fuel pools ThesecondlevelsystemsintheBunkerensurethatthePLpoolsremaincooled. ThespentfuelpooliscooledwiththePLsystem.AfterlossoftheCCsystemthePLsystemis cooledbytheLUsystem. ThecoolingofthepoolsviatheLUsystemisrestoredwithinthehour.Thatismuchshorter thanthe8to10hoursavailable.Anoncooledspentfuelpoolwillonlystarttoboilafter8to 10 hours. The operation on LUsystem can continue to run for 26 days. That is more than enoughtorefillthepondsbyexternalmeans.

Entire site affected If the other units are also affected, the cooling of the units Doel 3 and Doel 4 remains assured.Doel3andDoel4donotusetheDoel1/2systems,exceptabackupoptioninthe scenario‘coreinspentfuelpools’.IftheLUsystemwouldalsosupplyafewsystemsofDoel 1/2 via the FEsystem, the autonomy of the cooling ponds also decreases by a few days. Considering the very high level of autonomy there is more than enough time to refill the ponds. Otherunitsaffecteddonotprovideanyadditionalcliffedgeeffects.

Doel 3&4 Step 2: loss of CW (primary ultimate heat sink)+ RN (first alternate ultimate heat sink)+ water supply from LU-ponds (second alternate ultimate heat sink) The units Doel 3 and Doel 4 are not designed to independently withstand the total loss of both alternateultimateheatsinks. Simultaneoustotallossofthefirstandsecondalternateultimateheatsinkishighlyimprobable. Coolingofthenuclearfuelandmaintainingthesubcriticalitycanstillbeguaranteedhowever.

Steam generators available Thereactorsarecooledbythefirstandsecondlevelsystemsviathesteamgenerators.Inthis scenariothe(selfcooled)AFpumps(2motor&1turbopump)areavailabletofeedthesteam generators. BecausetheSCsystemcannotbetakenintoservice,thisconditionmustbemaintainedforan unlimitedperiod. Thereforewatermustbecontinuouslysuppliedtothesteamgeneratorsin ordertoguaranteethesafetyfunctions. Thenormaltotalwaterinventory(5280m 3)givesanautonomyofmorethan2weeks.Thisis morethanenoughtoprovideextrawaterviaexternalmeans. Therearenocliffedgeeffectsforthisscenario.

Primary system open In this scenario the water in the reactors starts to boil and the evaporated water is compensated by fresh water.The water level in the reactor is kept at a sufficient level by addingboratedwaterviatheaircooledCVpumpor2RJpumps.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 131 AsabackuptheRWSTmayalsobedrainedgravitationallytofeedthereactorviatheSC system. Afteralossofallheatsinksthereactorbuildingishermeticallysealedtoavoidthatthesteam formed would be released into the environment. As a result the pressure in the reactor building will rise. The pressure rise can be delayed by spraying cold water in the reactor building via the SPsystem. After 24 hours the maximum pressure is 2.4 bar, which is far below the design pressure of 4.5 bar. The failure pressure of the reactor building will be reachedafter3daysattheearliest.Bythattimethefirstlevel(CC)orthesecondlevel(LU) heatsinkshouldhavebeenrestored.Ifthatdoesnotsucceedthenthereactorbuildingmust beventedinacontrolledway. Asaresultofthepresenceofsteam,accesstothereactorbuildingwillbecomedifficultindue course.

Core in spent fuel pools In this scenario the water in the spent fuel pool startstoboilandtheevaporatedwateris compensatedbyfreshwater.Boilingthewaterinthepoolsisanefficientwaytoremovethe heatfromthenuclearfuelelements. Within8hours(Doel3)or10hours(Doel4)attheearliestthewaterinthespentfuelpool will start boiling. As a result of the presence of steam, access to the pools becomes more difficult in due course. For that reason it is necessary to make the water supply available beforeboilingstarts. Therearesufficientmeansandthereissufficient timeavailableto keepthePLpoolsfilled. Withoutthisfillingitwilltakeanother4daysbeforethewaterlevelhasdroppedtothetopof thenuclearfuelelements.

Entire site affected Iftheotherunitsarealsoaffected,thecoolingofthereactorsofDoel3andDoel4remains assured.Doel3andDoel4donotneedsystemsfromDoel1/2forthisscenario’s,exceptto increasethealreadylargeautonomy.

5.2.2.2. (External) actions foreseen to prevent fuel damage

Tihange NPP Asexplainedabove,thetotallossofheatsinkwillpreventthecontinuousfunctioningofthevarious firstlevel safety and secondlevel systems (in particular the diesel generators) in the absence of coolingapartfromthosenotrequiringwatercoolingorthosethatareselfcooled. TheInternalEmergencyPlanwillbestartedand,ifnecessary(bydecisionoftheemergencydirector), theEngineeringDepartmentcouldalsobemobilized. The accident will be managed in accordance with the "accident” and “critical function monitoring” procedures.Intheparticularcaseofopenprimarysystem,the"accident”proceduresintheirpresent version do not fully describe the management of this beyonddesign accident typically, steam evacuationrouteswereprovided,buttheproceduresdonottakeaccountofthistypeofscenario.The variousprocedureswillbeamendedtotakeaccountofthedifferentaspectsrevealedforthistypeof accident.Moreover,anintegratedstrategywillalsobeintroducedforthemanagementofthistypeof beyonddesignaccident.

Cooling of the spent fuel pools Thecoolingofusedfuelisachievedbyboilingofwater in these pools. Makeup ispossible by the conventionalsystems (CTP, EDN, CAB) ornonconventional,andcanbedeployedinatimeperiod (lessthananhourfortheconventionalmeansandinamatterofafewhoursfornonconventional means)shorterthantheperioduntiltheuncoveringoffuelassemblies(severaldays).

Cooling of the long-term storage pools (DE building) ThespentfuelintheDEiscooledbytheboilingofwatercontainedinthesepools,givingatimelimit beforedamagetothefuelofatleast3weekswithoutwatermakeup.Makeupispossiblewithinthis timelimitfromtheconventionalsystems(STP,SDN,SAB,etc.)orfromthenonconventionalsystems

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 132 andcanbedeployedinatimeperiodoflessthananhourfortheconventionalmeansandinamatter ofafewhoursfornonconventionalmeans(timeforguidanceonly). Non conventional means Ultimate(nonconventional)meansareavailableonsitewhichcanbedeployedtomaintainthecooling ofthepools(CTPandDE). For Tihange 1 it consists of the fire water supply to the spent fuel pool. This can be done either indirectlythroughafirehydrantsupplyingthepoolfilltankordirectlyfromafirehydrantsupplying thepool.ThepressurizationofthefirewatersystemcanbeachievedintheMeusebyanimmersed mobilepump(availableonsite)andmakeupbytankertruckviatheCMUsystem. ForTihange2italsoconsistsofawatersupplyfromthefirewatersystemthatcanbepressurizedby thefirepumpofanothernonaffectedunitorbyamotordrivenpumpinstalledintheriverbedofthe Meuse.Thiscanbedonefromanyfirehydrantinthesystemtorefillthespentfuelpools. ForTihange3itconsistsofaresupplyofthepoolsspentfuelpoolsandthelongtermstorage(DE) poolsfromtheeffluenttanksoftheprimarysystem. Doel NPP AtthewaterintakeofDoel1/2intheScheldtaloadingquayisforeseentosupplywaterfromaship viathe‘Polarispipeline’tothepowerstationatDoel1/2.Therearenocontractstodeliverwateras therearesufficientwatersuppliesonsite. Becausetheimprobabilityofthisscenario,theuseofexternaloffsitemeansisnotconsidered,

5.2.2.3. Measures that may be considered to increase the robustness of the plant

Tihange NPP

Diversification of sources The construction of a new demineralized water productioncircuitforthewholesiteisinprogress. Investigationshave revealedthe existenceof a deep groundwater table at the Tihange site. Three wellshavebeendugintothiswatertable;theyareequippedwithpumps.Theconstructionofanew demineralisedwaterproductioncircuitforthewholesiteisinprogress. Threedeepwellsduginthesezonesallowaglobal flow of approximately 105m³/h. Longduration pumping tests have confirmed the capacity of this limestone water table and demonstrated its independencefromthegroundwatertable. Branchinghasalreadybeeninstalledonthisnewsystemforthenonconventionalmeans.Itscapacity exceedsthelongtermwaterrequirementsofthesteamgenerators.

Modification or creation of procedures Itisnecessarytocreateormodifyproceduresinorderto: - define an integratedstrategy for this accident (loss of all heat sinks) not taken into account at design(managementofpressureinthebuildingin"feedandbleed"configuration,optimumuseof availablemeans,etc.); - integratethesenewscenariosintheexistingprocedures; - integrateuseofthenewdemineralisedwaterinstallationforunitresupplybynonconventionalor conventionalsystems.

Doel NPP Theunitsareabletorespondtothisscenario.Nohardwarechangesareneeded. Therequiredproceduresareprovidedforandmaybeexecutedwiththeshiftcrewteamspresent.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 133 5.3. Loss of the primary ultimate heat sink combined with loss of off-site power and loss of first level on- site back-up power supply

Tihange NPP Thelossofprimaryultimateheatsinkcombinedwithlossofoffsiteandfirstlevelelectricpoweris consideredinthedesignbasesofthesite. TheprimaryultimateheatsinkoftheTihangeNPPisanartificialbranchoftheMeuse.Incaseofloss ofaccesstotherivertheunitsinTihangeusean alternate ultimate heat sink. Theloss ofoffsite powerandthelossofthefirstbackuppowersupply(safetydieselgenerators)willpreventtheuseof firstlevelpumpsdrawingwaterfromtheprimaryultimateheatsink.Thelossoffirstlevelandoffsite electric power thus implicitly results in loss of access to the Meuse for the firstlevel pumps. The analysisgivenbelowshowsthatthesitehassufficientemergencysystemsandautonomycompatible withthetimerequiredforrestorationofanexternalelectricpowersupplyorforresupplyfromoutside thesite.

Doel NPP Thelossofprimaryultimateheatsinkcombinedwithlossofoffsiteandfirstlevelelectricpoweris consideredinthedesignbasesofthesite. Intheeventofalossofoffsitepowertogetherwiththelossofthefirstlevelsafetydieselgenerators, theCWpumpsofDoel1/2andthemakeuppumpsoftheRNcoolingtowersofDoel3&4willnotbe powered. The loss of the external electricity grid together with the loss of the first level diesel generatorsthereforealwaysautomaticallyimpliesthelossoftheprimaryultimateheatsink. Theconclusionsofthepreviousscenario‘Lossofoffsitepower(LOOP)andlossoffirstlevelonsite backuppowersupply’(§5.1.2)thereforeremainvalidinthisnewscenario.

5.3.1. Autonomy of the site before fuel damage

Tihange NPP This scenario supposes the loss of external electric power (very high voltage lines) and firstlevel safety diesel generators (GDS and GDR generators) combined with the impossibility of accessing water from the river Meuse. When the first level of protection is lost (except TPAEAA) it will be necessarytogooverthesecondlevelemergencysystems.

Tihange 1 Thealternateultimateheatsinkwillbethewaterfromthegroundwatertable.Thispoint hasbeen discussedpreviouslyandthereservesavailableontheunitwillallowcoveringtheperioduntilstartup ofthegroundwater. ThesituationoflossofwaterfromtheMeusecombinedwithastationblackoutisconsideredinthe designofTihange1.RecoursewilltherebetakentotheEmergencySystem(SUR)usingprocedures knownas"beyondH3dimensioning"and"groundwelluse". ManagementofthisaccidentandSURautonomyareidenticaltowhatisdescribedintheparagraph 5.1.2.1.

Core in spent fuel pools Inthisscenariothespentfuelpoolisnotcooledbyaclosedloopsystem.Itishoweverpossibletoadd makeup water by simple gravity, either by pump P04Bd via tank B01Bi, or using nonconventional meanswithinafewhoursperiod,orwellbeforetheuncoveringofthespentfuelassemblies(afew days). Ifasingleunitisaffectedthegroundwaterautonomyisatleast30days.RecoursetotheSURallows an autonomy beyond72 hours by using only equipmentandreservesavailableonsite.Thesetime periodsallowsarrivalofequipmentorwatermakeupfromanotherunitorfromoutsidetheunit. Thereisthereforenocliffedgeeffectinthiscase.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 134 Tihange 2 et 3 Inthefirstcasetheheatsinkmaybeeitherthegroundwaterwells(limitedautonomy)ortheMeuse viathedeepriverwaterintakes(unlimitedautonomy). TheaccidentresultsinthelossofthefirstlevelsafetysystemsexcepttheTPAEAA,whichrunsuntil the water reserves run out or the batteries run empty (without external action). In the design, recourseistakentothesecondlevelemergencysystems,whichusetheprimaryultimateheatsink (theMeuse)orthealternate(welldrilledintothegroundwatertable)andemergencydieselgenerators (GDU).Thesesystemsallowplacingandmaintainingthereactorinastableandcontrolledshutdown andthecoolingoftheCTPspentfuelpools(seeparagraphs5.1.2.3and5.1.2.4). Core in spent fuel pools The cooling of the CTP pools (Tihange 2 and 3) and DE pools (Tihange 3) is achieved by the conventionalmeansviatheexchangersoftherespectivesystemscooledbygroundwater(orbyriver waterfromtheMeuse). In case of total loss of intake of river water from the Meuse (that is, including deep intake), groundwaterautonomyisatleast30daysifonlyoneunitisaffected. IftheunitaffectedisTihange3,thespentfuelpoolsoftheDEbuildingcanbecooledfromtheCEU wells in Tihange 2 or Tihange 3. The pools are cooled by the CTP exchangers supplied from the groundwater. Thesecondlevelprotectionsystems,poweredbytheGDUdieselgenerators,canplaceandmaintain thereactorinastableandcontrolledshutdownandcooltheCTPandDEpools(Tihange3).Thereis thereforenocliffedgeeffectforthisscenario. Theonlypossibleproblemistherunningdryofthedieselfuelfortheemergencydieselgenerators GDU, which occurs after a minimum of one week. This autonomy allows the deployment of compensatory means. The water autonomy of the alternate ultimate heat sink is unlimited if deep waterintakesfromthebedoftheMeuseremainsavailable,andlastforatleast30days(onlyoneunit affected) if lost (groundwater autonomy). This autonomy allows the deployment of compensatory means. Several units of the site affected The management for Tihange 1 is similar to the case "Only Tihange 1 affected". The particularity wouldbetheshareduseofthegroundwater. The management for Tihange 2 or 3 is similar to that for the case "Only Tihange 2 or Tihange 3 affected".Theparticularitywouldbetheshareduseofthegroundwaterifthewaterintakefromthe bedoftheMeuseforunit2and/or3is(are)unavailable. A hose link between the groundwater system in Tihange 1 and one of the Meuse CEU pumps in Tihange2couldalsobeinstalled. Core in spent fuel pools Intheworstcasethepoolscouldbecooledbywatermakeupusingnonconventionalmeans(mobile pumps,hoses,dieselgenerators)presentonthesite.Theycanbedeployedwithinfewhours,thatis, beforeexpiryoftheperiodoftimebeforedamagetothefuel,whichisseveraldays.Itwillthenbe necessarytoarrangesteamreleaseroutes. DE spent fuel pool IfseveralunitsincludingTihange3areaffectedbytotallossofintakeofriverwaterfromtheMeuse, thespentfuelpoolsintheDEbuildingcannolongerbecooledbytheconventionalsystems(limitation ofheatsink)intheshortterm.Nonconventionalmeans(pumps,hoses,dieselgenerators),deployed inafewhours,candelivermakeupwaterbeforetheuncoveringofthespentfuelassemblies(which occursafteratleast3weeks).Provisionisalsomadeforreleaseofthissteam. Doel NPP The autonomy for this scenario is identical to the autonomy described in paragraph 5.1.2.4. The description of the autonomy of the site does not refer to means which use river water from the Scheldt.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 135 5.3.2. (External) actions provided to prevent fuel damage

Tihange NPP Thelossofprimaryultimateheatsinkcombinedwithlossofoffsiteandfirstlevelelectricpoweris consideredinthedesignbasesofthesite. Thepersonnelinvolvedinthemanagementofthistypeofaccidentreceivesadequatetrainingforuse oftheEmergencySystemSUR(inTihange1)orthesecondlevelemergencysystems(Tihange2and 3). TheInternalEmergencyPlanwillbestartedwithcalloutofthe standbyteamsasdescribedin Chapter6. Noactionorequipmentfromoutsidethesiteisnecessaryintheshortterm.

Doel NPP The(external)actionsforthisscenarioareidenticaltotheautonomydescribedinparagraph5.1.2.5. The description of the (external) actions does not refer to means which use river water from the Scheldt.

5.3.3. Measures that can be considered to improve the robustness of the installations

Tihange NPP Themeasuresthatcanbeconsideredtoimprovetherobustnessare identical tothosedescribedin paragraph5.1.2.6.

Doel NPP The measures that can be considered to improve the robustness are identical to the measures described in paragraph 5.1.2.6. The description of the measures does not refer to a measure to restoretheprimaryultimateheatsink.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 136 5.4. Loss of the primary ultimate heat sink combined with a total Station Black-out

Tihange NPP TheprimaryultimateheatsinkoftheTihangeNPPisanartificialbranchoftheMeuse.Incaseofloss ofaccesstotheMeuse,theunitsinTihangeuseanalternateultimateheatsink.Thismostunlikely scenariocombinestotalstationblackoutwithlossoftheprimaryultimateheatsink.Suchascenariois notpartofthedesignbasesofTihangeunits.Theunitsstillhavewaterfromthegroundwaterordeep waterintakesbutcannolongeruseitduetolackofelectricpower. Theconclusionsofthescenario‘Lossoffsitepower(LOOP)andlossofallonsite backuppower(Total StationBlackout)’(paragraph5.1.3)thereforealsoremainvalidinthisscenario.

Doel NPP Intheeventofatotalstationblackout,theCWpumpsofDoel1/2andthemakeuppumpsofthe RNcoolingtowersofDoel3&4willnotbepowered.ForthatreasonatotalStationBlackout automaticallyimpliesthelossoftheprimaryultimateheatsink. Theconclusionsofthescenario‘Lossofoffsitepower(LOOP)andlossofallonsite backuppower (TotalStationBlackout)’(paragraph5.1.3)alsoremainvalidinthisscenario.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 137 5.5. Loss of the primary ultimate heat sink combined with the loss of off-site power and Design Basis Earthquake

InthisscenarioitisassumedthataftertheDesignBasisEarthquake(DBE)theexternalelectricitygrid andtheprimaryultimateheatsinkarenolongeravailable. Intheeventofthelossofoffsitepowerallsafetysystemsmustbepoweredbythereactorunitson sitethathavenotbeenshutdown,thedieselgeneratorspresentonsite,batteriesandsteamdriven pumps. InthisscenariotheonlyavailableequipmentisthatwhichhasbeendesignedtoresistaDBE The analysis given below shows that the sites have emergency means and sufficient autonomy to managethistypeofaccidentwithinthetimeperiodrequiredforrestorationofanoffsitepowersupply orresupplyfromoutsidethesite.

5.5.1. Autonomy of the site before fuel damage

Tihange NPP TheresistanceofthedamatAmpsinNeuville(situateddownstreamofthesite)incaseofdesignbasis earthquake(DBE)wasanalyzed.Themainconclusionisthatitsfunctionofwatercontainmentwould bepreserved.Therefore,theworstcasetoconsiderisaslowreductionofleveloftheMeusefollowing a possible deterioration of the systems regulating the dam atAmpsinNeuville.The study has been completeduptothereviewlevelearthquake(RLE). If the level of the Meuse is maintained, which corresponds to the most likely case, the accident correspondstoaLOOPasdescribedinparagraph5.1.1. Thecaseofprogressivereductionisexaminedbelow. Tihange 1 The gradual loss of suction by the CEB pumps (part of the design bases) is considered. The simultaneouslossofoffsitepowerwillleadtouseofthefirstlevelsafetydieselgenerators(whichare seismicallyqualified). Afterrealignment,thegroundwatersystemwillsupplytherawwatersystem(CEB),normallydrawing from the water of the Meuse. This safety water supply from the CEB allows coping with the consequencesoftheevent,thisregardlessofthestateofoperationoftheunitatthetimeofaccident (steamgeneratorsavailable,primarysystemopenorcoreinspentfuelpools).Infact,thissystemcan ensurecoolingofthesafetydieselgenerators,watersupplythesteamgenerators,coolingthecoreby theRRAsystemandcoolingthepools. The autonomy of the firstlevel safety diesel generators is at least 3.5 days. The groundwater autonomyisatleast30days.InthisscenarioTihange2and3usethedeepriverwaterintakeinthe MeuseandthereforedonotrequiretheirCEBwells.Tihange1thenhastwowellsatitsdisposalforat least30days.Theseperiodsallowcoveringthetimeuntilarrivalofequipmentfromanotherunitor fromoutsidethesite.Thereisthereforenocliffedgeeffect. Tihange 2 and 3 ThisscenariocorrespondstothegraduallossofsuctionintheCEBpumps.Thisproblemishandledby switchingtodeepwaterintakesfromtheMeuse.Thesimultaneouslossofoffsitepowerwillleadto useofthefirstlevelsafetydieselgenerators. The deep water intakes from the Meuse,whichremainsavailable incaseof failureof thedamat AmpsinNeuville,canbeconnectedtotherawwatersystem(CEB).ThissafetywatersupplyofCEB allows the management of the consequences of the event, and this regardless of the state of operationoftheunitatthetimeofaccident(steamgeneratorsavailable,primarysystemopenorcore inspentfuelpools).Infact,thissystemcanensurethefunctioningofthefirstlevelsafetysystems: thecoolingofthesafetydieselgenerators,supplytothesteamgenerators,thecoolingofthecoreby theRRAsystemandthecoolingofthepools.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 138 Spent fuel pools ThecoolingoftheCTPpoolsandthepoolsintheDEbuilding(Tihange3)isthenprovidedbytheCEB and the CRI, which requires the repowering of the CTP and STP pumps (Tihange 3) from backup panels.Thisrepoweringinvolvesanelectricrealignment,executedwellbeforetheboilingofthepools, andthereforelargelybeforeexpiryoftheperioduntildamagetothefuel(severaldays). Theautonomyofthefirstlevelsafetydieselgeneratorsisatleastoneweek,andtheuseofthedeep riverwaterintakeintheMeusegivesunlimitedwaterautonomy.Theseperiodsoftimeallowcovering thetimeuntilarrivalofequipmentfromanotherunitorfromoutsidethesite.Thereisthereforeno cliffedgeeffect. Several units of the site affected Thefactthatseveralunitsareaffecteddoesnotinvolve any additional constraint compared to the previoussituationsinceTihange2and3donotusegroundwater.

Doel NPP

Doel 1/2 Theunits1/2aredesignedtoindependentlywithstandatotallossofoffsitepowertogetherwiththe loss of the primary ultimate heat sink (at power). This is realized withthe secondlevel emergency systems.AllsecondlevelemergencysystemsatDoel1/2arecompletelydesignedtoresisttheDesign BasisEarthquake(DBE).

AtDoel1/2,thefollowingsystemsaredesignedtowithstandtheDBE: - AllsecondlevelsystemsintheEmergencySystemsBuilding - Theprimarysystem(RC) - Theshutdowncoolingsystem(SC) - Thesecondarysystemuptothefirstisolationvalve(FW/MS) - Thestoragetankfordemineralisedwaterof1500m³(MW) AftertheFukushimaaccident,seismicupgradeoftheAFWturbopumpsandtheirtanks(smallstorage tank–100m 3)weredone. Intheeventofthelossofexternalpower,thefirstlevelandsecondleveldieselgeneratorsremain readyfordeployment. ThecurrentfourfirstlevelsafetydieselgeneratorsarenotdesignedfortheDBE.

Steam generators available TheearthquakeresistantsecondlevelsystemsintheEmergencySystemsBuildingensurethat theunitiscooleddownandmaintainedinacoldshutdown. Allsafetyfunctionsremainguaranteed. TheresidualheatisremovedusingthesecondlevelEFsystem. Furthermore, when the first level diesel generators are no longer available, the AFWturbo pumpremainsavailableforrefillingthesteamgeneratorsfromtheAFWtank. Therearenocliffedgeeffectsforthisscenario. ThereissufficientwatersupplypresentonsitetocooldownuntilonecanswitchtotheEC systemforcoolingtheSCsystem.AfterthisswitchtheprimarysystemiscooledbytheSC systemandnofurtherwatersupplyisneeded. Afterapproximately5daysthesecondleveldieselgeneratorsmustberefuelled.Thatismore thanenoughtimetogetdieselfuelfromotherplaceseitheronoroffthesite.

Primary system open Thesecondlevelsystemsensurethattheunitismaintainedinacoldshutdownstate. The removal of the residual heat of the open reactor is realized using SCpumps that are poweredbythesecondleveldieselgenerators.ThecoolingoftheSCpumpsandcoolersis takenoverbytheECsystem. Ifthecoolingcannotberestored,thewaterinthereactorwillstarttoboilwithinanhour.This perioddependsonthetimeintervalbetweentheshutdownandtheinitiatingevent,thewater levelinthereactorandthepossibilitytoincreasethewaterlevel.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 139 That water will continue to boil until the cooling via the ECsystem is restored (after a maximumof45minutes).Thewaterinventoryiskeptatasufficientlevelbyfillingwiththe RJsystemorbygravitationallyemptyingtheRWSTtotheprimarysystem.Theoperationon theECsystemmaycontinueindefinitly.Nowaterneedstobesupplied. After5.5daysthesecondleveldieselgeneratorsmustberefuelled.Thatismorethanenough timetogetfuelfromotherplacesonoroffthesite.

Core in spent fuel pools Thesecondlevelsystemsensurethatthespentfuelpoolsremaincooled. ThePLsystemisalignedtotheEmergencySystemsBuildingwithin1.5hours.Thisisfaster thanthetimeavailableof15hours,beforeboilingstarts. ThePLsystemisaclosedsystem.Nowaterneedstobeadded. After7daysthesecondleveldieselgeneratorshavetoberefuelled.Thatismorethanenough timetogetfuelfromotherplacesonoroffthesite.

The entire site is affected IftheotherunitsarealsoaffectedthecoolingofthereactorsatDoel1/2remainsassured. ThesupplyfromtheLUpondsmustbesharedwiththeotheraffectedunits.Thesupply(3x 30,000m³)issufficientlylarge. Otheraffectedunitsdonotinduceanyadditionalcliffedgeeffects.

Doel 3&4 TheunitsDoel3andDoel4aredesignedtoindependentlywithstandatotallossofoffsitepower togetherwiththelossoftheprimaryultimateheatsink.Thefirstlevelsafetysystemsandsecondlevel emergencysystemsatDoel3andDoel4areallfullydesignedtowithstandtheSSE. Theconclusionsofthescenario‘Lossofoffsitepower(LOOP)alsoremainvalidinthisscenario. Thelossoftheexternalgridalwaysgoestogetherwiththelossoftheprimaryultimateheatsink.

5.5.2. (External) actions foreseen to prevent fuel damage

Tihange NPP ThelossofheatsinkandoffsitepowerfollowinganearthquakeofintensitycomparabletotheDBEis consideredinthedesignofthesite. Thistypeofaccidentismanagedbytheshiftcrew teams in the control room and by the standby teams.TheInternalEmergencyPlandescribedinChapter6willbestarted(withcalloutofthevarious standbyteams).Thesitehassufficientreservesofdieselfuelandoil.Itisthereforenotnecessaryto considerexternalactionsintheshortterm.

Doel NPP EliaisexpectedtoprovidetheNPPwithpowerasquicklyaspossible.Seeparagraph5.1aboveforthe descriptionofthemethodsavailableforthisandthecorrespondingrepairtimes. AtthewaterintakeofDoel1/2intheScheldtaloadingquayisforeseentosupplywaterfromaship viathe‘Polarispipeline’tothepowerstationatDoel1/2.Therearenocontractstodeliverwateras therearesufficientwatersuppliesonsite. 5

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 140 5.6. Spent nuclear fuel storage

Tihange NPP - DE building As already mentioned, the various systems and systems involved in the pools are linked to the operationoftheunitTihange3andthereforetothestateoftheunitatthetimeofoccurrenceofa possible accident. Therefore, and for comprehension sake, the analyses concerning the spent fuel poolsweredescribedintheparagraphsontheunits(specificallyTihange3).

Doel NPP - SCG building ThestorageofspentnuclearfuelinthecontainerssituatedinthenuclearfuelcontainerbuildingSCG isentirelypassive.Noelectricityoractiveheatsinkisrequiredtocoolthecontainers. Thenuclearfuelisstoredintransportcontainersthatareresistantagainstexternalcircumstancesthat mightoccurasaresultofroadaccidentsontheroad.Thestoragebuildingtogetherwiththecontainer providesshieldingandanimprovedheatremovalundernormalconditions. Loss of offsite power, loss of the first level diesel generators, loss of the second level diesel generators,lossoftheprimaryultimateheatsinkandlossofthealternateultimateheatsinkshaveno impactwhatsoeveronthecoolingorintegrityofthecontainerssituatedintheSCG.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 141 5.7. Synthesis of the main results presented by the licensee Basedontheinformationinthelicensee’sstresstestreportsandtheadditionalinformationprovided bythelicenseeduringtechnicalmeetingsandonsiteinspections,themainresultsforthetopic“loss ofelectricalpowerandlossofultimateheatsink”areasfollows. Scenarios Thedefinitionoftheselectedscenariosaswellasthevariousstatesofthereactormentionedinthese scenarios (steamgeneratorsavailable,primarycircuit open and connected to the shutdown cooling system, core fully unloaded in the spent fuel pools) are in agreement with the stress test specifications. Takingintoaccountthe different levels of safety systems (first level safety systems and second level emergency systems)intheBelgianNPPs, multipleultimateheatsinks,withseveralmeanstodrawwater:riverbythesite(Scheldtriver at Doel, Meuse river at Tihange), artificial cooling pond (Doel), and ground water wells (Tihange), thefollowingdifferentscenarioswereassessed: 1. lossofoffsitepowersupply(LOOP); 2. lossofoffsitepowersupplyandfirstlevelinternalpowersupply(stationblackout); 3. loss of offsite power supply and firstlevel and secondlevel internal power supplies (total stationblackout); 4. lossofprimaryultimateheatsink; 5. lossofprimaryultimateheatsinkandalternateultimateheatsinks; 6. loss of primary ultimate heat sink together with loss of offsite power supply and firstlevel internalpowersupply; 7. lossofprimaryultimateheatsinktogetherwithlossofoffsitepowersupply,firstleveland secondlevelinternalpowersupplies; 8. lossofprimaryultimateheatsinktogetherwithloss of offsite power supplyand combined withDBEearthquake.

Initiating events (for example earthquake) and their consequences on the safety functions are not systematicallyconsideredinthemanagementofthefirst7scenariosandinthedeterminationofthe autonomy of the equipment needed to cope with thesescenarios. Forexamplenon seismic tanks (water,dieselfuel/oil)areusedassupplementaryreservesineachscenario. However,the impact of the initating events flooding andearthquakehasalready been assessed in detailinthepreviouschapters. Inaddition,thelastscenario(scenario 8)assumesthatafteraDesignBasisEarthquake(DBE)the externalelectricitygridandtheprimaryultimateheatsinkarenolongeravailable.Inthisscenariothe onlyequipmentthatiscreditedintheassessmentistheonethathasbeendesignedtoresistaDBE.

Several units affected on the site Foreachscenario,thelicenseefirstassessedtheimpactseparatelyoneachreactorunitonthesite. ThesimultaneousimpactonallunitsonaNPPsitewasalsoaddressedsystematicallybythelicensee forthevariousscenarios(withspecificregardtotheautonomyofthedifferentresourcesinthiscase).

Safety functions Thestresstestsspecificationsdemandthatthelicenseeshallidentifythemeanstomaintainthethree fundamental safety functions (fuel cooling, control of reactivity, confinement of radioactivity) and supportfunctions(powersupply,coolingthroughultimateheatsink). Concerningthethreesafetyfunctions,the“fuelcooling”isthesafetyfunctionthatismostrelevant whendealingwithlossofelectricalpowerandlossofheatsinkscenariosandwasassessedindetail.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 142 Thesafetyfunction“controlofreactivity”posesnomajorproblemaslongasthereisnoextrapure water supplied to the primary circuit. The safety function “confinement of radioactivity” has been addressedbyfocusingontheaspectofmaintainingthecontainmentbuildingintegrity. The reassessment allowed the licensee to identify for some scenarios areas for improvement. A number of additional hardware improvements (for example non conventional means) or improvementstoprocedureshavebeenproposedbythelicensee,someofwhichhavealreadybeen implemented. Design basis Thedifferentscenarioseitherarepartoftheinitialdesignbasis,orwerereassessedduringthefirst periodicsafetyreview,orare“beyonddesignbasis”scenarios. • InitialDesignBasis Thescenariosof“Lossofoffsitepower(LOOP)”and“Lossofprimaryultimateheatsink(LUHS)”are partoftheinitialdesignbasisofalltheBelgianunits.Thescenario“LossofprimaryUHS,LOOPand earthquakeDBE”ispartoftheinitialdesignforalltheBelgianunitsexceptfortheDoel1/2units. Forthefourmostrecentunits(Tihange23andDoel34),thescenarios“StationBlackout(SBO)” and“LossofprimaryUHSandSBO”arealsoconsideredintheinitialdesignbasisoftheseunits.A secondlevelofprotectioncalledthe“Bunker”allowsfacingthesesituations.Allthesystemswhich arepartofthesecondlevelofprotection(classifiedelectricalandI&Csystems,fluidssystems,etc.) are physically and electrically independent from the first level of protection. Furthermore, these classifiedsystemsmeetsafetyrequirementssuchasredundancy,independency,qualification(e.g. earthquake,aircraftcrash),testing,etc. • Designreassessedduringthefirstperiodicsafetyreview Fortheoldestunits(Tihange1andDoel1/2),thescenarios“StationBlackout(SBO)”and“Lossof primary UHS and SBO”, “Loss of primary UHS, LOOP and earthquake DBE” (only for Doel 1/2 becauseoftheDBEaspects)werenottakenintoaccountduringtheinitialdesign. Duringthefirstperiodicsafetyreviewoftheseunits,anewbuildingwithasecondlevelofprotection wasaddedforthecoolingsourcesandtheelectricalpowersupply.Thissecondlevelofemergency systems, called “SUR” (“Systèmes d’Ultime Repli”) for Tihange 1 and “GNS” (“Gebouw NoodSystemen”)forDoel1/2,isabletocopewiththeabovementionedscenarios. However,theimprovementsimplementedinthatframeworkincludesomelimitations,ofwhichthe mainonesare: - ForDoel1/2:thesecondlevelonlycoversthepoweroperationstates(andtheremovalofthe residual heat in the spent fuel pools in normal conditions). This situation was regarded as acceptableatthetimeconsideringthattheshutdownstatesdurationwaslimited.Consequently, thesecondlevelsystemsarenotrequiredinshutdownstates.However,itisclearthatthediesel generators are physically present on the site and they would be used if they are not under maintenance. Likewise, the system for residual heat removal was designed for a heat load correspondingto7daysafterthereactorshutdown(includingconservatism),theunitbeingfirst cooleddownbythesteamgeneratorsforaperiodoftime.Sincethen,proceduresandhardware modificationsweresetuptobettermanagethatscenario. This point was identified in the framework of the “Long Term Operation” (“LTO”) project of thesetwounitsandissubjecttoanimprovementproject. - ForTihange1:thesecondlevelisnotentirelyseismicallyqualifiedasthishazardwashandled by the first level; the second level allows to deal with an SBO and some external hazards. Similarly,fortheshutdownstates,theRRAandCTPpumpsarenotresuppliedbythesecond level. • BeyondDesignBasis The scenarios “Total SBO”, “Loss of primary and alternate UHS”, “Loss of primary UHS and total SBO”areconsideredasbeyonddesignsituationsforalltheBelgianunits. Duetothepresenceofasecondlevelofprotectionindependentfromthefirstlevelofprotection,the installationsin the Belgian unitsare robustto face different scenarioslike “SBO”,“Lossof primary

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 143 UHS”,“LossofprimaryUHSandSBO”,“LossofprimaryUHS,LOOPandearthquakeDBE”.Theoldest unitsarelessrobustbuttheutilitieshavedefinedactionstoimprovethesituation.

5.7.1. Scenario “Loss of offsite power (LOOP)” ThisscenariowasstudiedintheoriginaldesignbasisofalltheBelgianunits.Thisaccidentismanaged bythefirstlevelsafetysystems(andincaseoffailure,bythesecondlevelemergencysystems–cf. SBOscenario).Thelicenseeassessedtheautonomyfordieselfuelandlubricatingoilforthediesel generatorsneededbythesesafetyandemergencysystems. Thereisnocliffedgeeffect,theautonomybeingsufficientforatleast72hours.Thisautonomycovers thetimeuntilarrivalofequipmentorwaterfromanotherunitorfromoutsidethesite. The licensee envisages the modification or writing of procedures in order to further improve the autonomyofthediesels: • aprocedurewillbeadaptedforanticipatingmanuallytheoilandfuelsupplementtothediesel generators; • aprocedurewillbedrawnupfordefiningthenonessentialloadstobedisconnectedfromthe dieselgeneratorsinordertominimizethefuelconsumption.

5.7.2. Scenario “Station Black Out (SBO)” ThisscenariowasstudiedintheoriginaldesignbasisofthefourmostrecentBelgianunits(Tihange2 and3,Doel3and4)andduringthefirstperiodicsafetyreviewfortheoldestones(Tihange1and Doel 1/2). There is no cliff edge effect. For Tihange 1, a reinforcement of the robustness of the installationsisforeseeninthesecondlevelofprotection(toavoidfeedandbleed)(seesecondbullet hereafter). Thelicensee’sreassessmentevokesrightlyforTihange1alimitationlinkedwiththecurrentdesignof the unit, namely the impossibility to connect the RRA system to the emergency power supplies – penalizingsituationforthe“Openprimarycircuit”configurations.Theenvisagedresponseisthe“feed andbleed”topreventthesituationtoworsenintoasevereaccident. ForDoel1/2,asexplainedpreviously,thesecondlevelcandealfullywiththatscenarioonlywhenthe unitisinitiallyinpoweroperation.Thisaspectisnotclearlypresentedinnthelicensee’sevaluation. However, procedure and hardware modifications were progressively implemented and improve the management of this scenario. Other improvements are expected as part of the “Long Term Operation”(“LTO”)project. Thelicenseeplansanalysesofhardwaremodifications.Revisionandwritingof proceduresarealso foreseen: • theimplementationofanautomaticfuelsupplementtothedieselDURfueltankfromtheCVA fueltankwillbestudied(Tihange1); • intheframeworkoftheLTOprojectofTihange1,studieswillbecarriedoutforanalyzingthe possibilityofsupplyingthespentfuelcoolingpumpsandtheshutdowncoolingpumpsbythe SURsystem(6kV); • the existing SUR procedures will be revised in order to ensure a water supplement and a steamevacuationinthespentfuelpools(Tihange1); • Aprocedurewillbedrawnupfordefiningthenonessentialloadstobedisconnectedfromthe dieselgeneratorsinordertominimizethefuelconsumption.

5.7.3. Scenario “Total SBO” ThisscenarioisabeyonddesignbasisscenarioforalltheBelgianunits.Inordertoavoidthecliffedge effectsthelicenseehasproposedasetofadditionalmeasures.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 144 Forthestatesinwhichthesteamgeneratorsareavailable,themanagementofthisscenariorelieson theremovaloftheresidualheatviatheauxiliaryfeedwaterturbopumpandsteamgeneratordischarge totheatmosphere.Ifthisprocessisphysicallyfeasible,thefollowingaspectsshallbepointedout: - if the unit is not initially in a power operation state, the start of the turbopump requires a sufficientpressureintheprimarycircuit.ForexampleatDoel1/2,thispressureisrelativelyhigh (24bars).Ariseofthepressureandtemperatureisnotplannedinthemanagementactions, consistinginadepressurizationandafastdecreaseofthetemperaturetoprotecttheprimary pumpssealsincaseoflossofinjectiontothoseseals.Thelicenseehasconfirmeditsstrategyin thatcase,namelyatemporaryriseofthepressureandtemperaturetoallowtheturbopumpto start. Indeed, the primary pumps seals are supposed to survive a temporary solicitation (engineeringjudgementbasedontestsresults). - the control valves for the auxiliary feedwater and the discharge to the atmosphere can be manually actuated locally, after the loss of control compressed air and/or batteries. Nevertheless,thoseoperationsareperformedindifficultaccessconditionsandwithnovisibility ontheresults(noindicationofthesteamgeneratorlevel).Hencethereisariskofoverfilling(or drying)thesteamgenerator. Themaincommitmentsofthelicenseearedescribedhereafter: • useofnonconventionalmeans: torefillthesteamgeneratorsandthespentfuelpools, toensuremakeupfortheprimarycircuitinopenconfiguration(forTihange2and3), toavoidtheoverpressureinthereactorbuilding, torestoretheelectricalpowersupplytoinstrumentationandcontrolpanels,motors, valves, tomakeoperabletheemergencycompressedaircircuit; • feasibilitystudyinordertoincreasethecapacityoftheauxiliaryfeedwater(EAS)systemand toaddanemergencyfeedwatermotor(Tihange1); • feasibility studyfor reliable manual actions onthe steam generators atmospheric discharge valves(Tihange1and3); • drawingupofaspecific“TotalSBO”procedure.

5.7.4. Scenario “Loss of the primary ultimate heat sink” ThisscenariowasstudiedintheoriginaldesignbasisofalltheBelgianunitswhenoneunitofasiteis affectedbythisaccident. There is no cliff edge effect. This accident is managed by the second level of protection systems (groundwaterwellsforTihangeandcoolingpondwaterforDoel).ForTihange2and3,emergency deepwaterintakes(2perunit)drawwaterdirectlyinthebedoftheMeuseriver.Accordingtothe safetyanalysisreports,theseemergencywaterintakesareconsideredasanadditionallineofdefence indepthfortheseunits. Thegroundwaterwellsorcoolingpondsallowanautonomyof30days(Tihange)or26days(Doel) whenoneunitofthesiteisaffectedbythelossofprimaryUHSinaccordancewiththedesignbasis.If allunitsofDoelareaffectedbythelossoftheprimaryUHS (beyond design scenario) thelicensee confirmedthattheautonomyofthepondsissufficient.IfallunitsofTihangeareaffectedbytheloss oftheprimaryUHStheautonomyofthewellwateris3weekswithout the use ofthe emergency waterintakes(Tihange2and3).IftheseintakesareavailabletheautonomyisunlimitedforTihange 2and3andof30daysforTihange1. The licensee plans towrite a newprocedureto manage a multiunit accident and to optimize the waterconsumptionofthesecondlevelofprotection(wellsorponds).

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 145 5.7.5. Scenario “Loss of primary and alternate ultimate heat sinks” Thescenario“Lossofprimaryandalternateultimateheatsink”wasnotstudiedintheoriginaldesign basisoftheBelgianunits. ForTihange,thereexistcliffedgeeffectsatthetimeofthelossofcoolingofthesteamgenerators whenthesteamgeneratorsareavailable,andatthetimeallboratedwatertanksareemptywhenthe primarycircuitisopen.Inthesecases,thetimesforlininguptheNCMequipment(mobilepumpin Meusetorefillthesteamgeneratorsandtankerwithboratedwatertorefilltherefuelingwaterstorage tanks)areestimatedtobesufficientbythelicensee. Thelicenseeindicatesalsothatintheshorttermthewaterautonomywillbeincreasedbyanewdeep water ground well independent from the existing well systems. This new water source has been recentlydiscoveredandwillbeusedfortheproductionofdemineralizedwater. ForDoel,similarcliffedgeeffectscanbepreventedbyrelyingonsitesystems. Themaincommitmentsofthelicenseearedescribedhereafter: • useofnonconventionalmeans: torefillthesteamgeneratorsandthespentfuelpools, toensuremakeupfortheprimarycircuitinopenconfiguration(forTihange2and3), toavoidtheoverpressureinthereactorbuilding; • drawingupofaspecific“LossofprimaryandalternateUHS”procedure; • intheshorttermtherobustnessoftheinstallationwillbereinforcedbyanewdeepground waterwell.Thisnewwellindependentfromtheexistinggroundwaterwells,couldconstitute anadditionalsourceofwaterforthe3unitsofTihange.

5.7.6. Scenario “Loss of the primary UHS with SBO” ThisscenariowasconsideredinthedesignbasisoftheBelgianunits.Thereisnocliffedgeeffect.This scenarioismanagedbythesecondlevelemergencysystems.

5.7.7. Scenario “Loss of the primary UHS with total SBO” ThisscenarioisabeyonddesignbasissituationforalltheBelgianunits.Inordertoavoidthecliff edgeeffectsthelicenseehasproposedasetofadditionalmeasures.

5.7.8. Scenario “Loss of the primary UHS, LOOP and earthquake DBE” ThisscenariowasconsideredinthedesignbasisoftheBelgianunits.Thereisnocliffedgeeffect.This scenarioismanagedbythesecondlevelofprotectionsystemsfortheunitsofTihangeandDoel1/2, andbythefirstandsecondlevelsofprotectionssystemsforDoel3and4. ForDoel1/2,thelicenseetakescreditoftheauxiliaryfeedwaterpumpsanttheassociatedtanks.By designtheseequipmentarenonseismicallyqualified.ShortlyaftertheFukushimaaccident,theutilities decided to upgrade these equipment and make improvements to assure their availability after an earthquake.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 146 5.7.9. Spent Fuel Pools Fortheevaluationoftherobustnessofthespentfuelpools,themostconservativescenarioisatotal SBOattheendofthecoreunloading(corefullydischargedandspentfuelpoolsfilled). The spent fuel pools can be gravityrefilled from tanks permanently connected to the fuel pools (refuelingwaterstoragetanks,boratedwater,anddemineralizedwater)oftheunit.Thevariouswater suppliesonsitearesufficienttoensuretherequiredmakeupinthelongterm.Thelicenseeconfirms thatnonconventionalmeans(tankerormobilepumpswiththeirownpowersupplytakingwaterfrom the primary or the alternate UHS, fire protection system…) can be lined up in lessthan one hour. Hardware modifications areenvisaged for thesiteof Doel (pointsof connection and hard pipes)to increasetherobustnessoftheinstallations. Theautonomiesmentionedinthefinalreportsarenotverydetailed.Complementaryinformationwas givenbythelicenseeduringspecificinspectionswhichleadstotheconclusionthattheseautonomies arecompatiblewiththeinternalbackupfacilities ortheexternalfacilities(nonconventionalmeans) thatwillbeinstalledtorefillthespentfuelpools.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 147 5.8. Assessment and conclusions of the regulatory body Theapproachadoptedbythelicenseetoreassessthemanagementofthelossofelectricalpowerand lossofultimateheatsinkcomplieswiththemethodologyprovidedbythelicenseeandapprovedby theregulatorybody. Duetothepresenceofasecondlevelofprotection(emergencysystems)fullyindependentfromthe firstlevelofprotection(safetysystems),theinstallationsintheBelgianunitsareveryrobusttoface thedifferentscenarios.Furthermore,thesedifferentsafetyandemergencysystemsarediversifiedand meetsafetyrequirementssuchasredundancy,independency,qualification,testing,etc. Generallyspeaking,thelicenseemustguaranteetheavailabilityandproperfunctioningofthevarious devicesevokedintheframeworkofthestresstestsprogram,includingthebeyonddesignscenarios: • through the technical specifications that indicate the requirements in terms of availability, testingandallowedoutagetime,forallsafetyrelatedequipment.Thelicenseeshouldreview the plants technical specifications in order to further improve the availability of the second level emergency equipment. In particular, the maximum allowed downtimes and the time limitsforreturntoserviceshouldbereevaluatedandjustified,giventherisksinvolved(see alsorequirement7inparagraph6.7). • throughtheconsiderationofadverseweatherconditions.Someweatherconditions(extreme coldorheatwaves)werenotconsideredinthestresstestsspecifications.However,ifthese events might not be regarded as initiating events, the licensee shall verify that the various means implemented for the management of accidental scenarios are effectively usable in practice, be it in winter (freeze and snow periods are not exceptional in Belgium), or in summer(periodsofrelativelyhightemperaturesforseveraldaysorweeks). Based on the assessment of the licensee’s reports and the supporting documents, the subsequent technicalmeetingsandtheonsiteinspections,theregulatorybodyconsidersthattheresultingaction planisadequate. However,theregulatorybodyidentifiedadditionaldemandsandrecommendationstofurtherimprove therobustnessofalltheBelgianunits:

1. Theoperabilityofthenonconventionalmeansshouldbejustifiedonthebasisoftechnical data(design,operation,alignmentandconnections,periodictesting,preventivemaintenance, etc.). 2. The technical characteristics of the nonconventional means (NCM) should account for the adverse(weather)conditionstheymaybesubjecttoduringthewholeperiodofoperation. 3. Thelicenseeshould,incollaborationwithELIA,managerofthehighvoltagenetwork,makea feasibilitystudytoensureabettergeographicalseparationofthehighvoltagelines(380and 150kV)tofurtherimprovethereliabilityoftheexternalpowersupplytotheNPPs.Inaddition, thelicenseeshould,inagreementwithELIA,ensurethatincaseofLOOPtheNPPshavethe highestpriority for reconstruction of the external power supply to the NPPs. The regulatory body shall take the necessary steps, in collaboration with other competent authorities, to ensurethefulfilmentofthisrecommandation.

4. In relation to the “total SBO” scenario, the potential overfilling or drying of the steam generatorsduetothelossofultimatecompressedairshouldbeexamined. 5. Inrelationtothe“totalSBO”scenario,theoperabilityoftheAFWturbinedrivenpumpdueto thelossofventilationintheturbinedrivenpumproomshouldbeexamined. 6. In case of (total) station blackout, the licensee should assess whether all containment penetrations can be closed in due time and whether the relevant containment isolation systemsremainfunctional,inparticularduringoutagesituations.Thefeasabilityofclosingthe

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 148 personnelandmaterialhatchesshouldbeassessed.Thesetopicsshouldbeaddressedinthe “totalstationblackout”procedure. 7. Thelicenseeshalljustifythatthewatercapacity(quantityandflowofcoolingwaterforthe consumers)ofthesecondlevelofprotectionissufficientwhenalltheunitsofthesiteare affectedbythelossofprimaryUHS.Ifneededastrategytooptimizethewaterconsumption shouldbedeveloped. 8. ForTihange,thelicenseeshouldreinforcetheemergencylightinginthedifferentroomsand placeswheretheoperatorsshouldinterveneduringthedifferentscenarios. 9. Inrelationtothe“lossofprimaryUHS”scenario,thelicenseeshallcarryoutalignmentand operatingtestsoftheemergencydeepwaterintakesfromtheMeuseriverbedin2012(for Tihange2and3). 10. In relation to the “loss of primary UHS” scenario, thelicensee should justifythe availability (accessibility,operabilityandalignment)oftheemergencywaterintakesofTihange2and3in accordancewiththerequirementsofUSNRCRG1.27. 11. Twoconfigurationsshouldbeevaluatedbythelicenseeforthespentfuelpools: a. Configurationwithafuelassemblyhandledinthereactorpoolduringa“TotalSBO”. Thefuelassemblyshouldmanuallybehandledinasafeposition.Thelicenseeshould investigate the provisions (hardware installations, procedures, lighting, etc.) to be implementedforthisconfiguration. b. Configuration with the loss of water inventory in the spent fuel pools. The internationalexperiencefeedbackhasalreadypointedoutpotentialproblemswiththe design ofthe siphon breakersin the spent fuelpools. In case of piping rupture, an insufficientcapacityofthesiphonbreakersmayleadtoafastuncoveringofspentfuel assemblies.Thelicenseeshouldexaminethissafetyconcern.

Chapter5–Lossofelectricalpowersupplyandlossofheatsink 149 6. Severe accident management Inordertoprovideaselfstanding nationalreportforthesubsequentpeerreviewprocess,firstthe relevantinformationsuppliedbythelicenseeinitsstresstestsreportsisrecalled. Attheendofthischapter,afinalsectionprovidestheconclusionsandtheassessmentoftheBelgian regulatorybody(FANCandBelV). 6.1. Organisation and arrangements of the licensee to manage accidents

6.1.1. Organisation of the licensee to manage the accident

6.1.1.1. Staffing and shift management in normal operation Shiftcrewensureacontinuouspresenceonsiteandarealwayscomposedasdescribedinthetable belowandaccordingtotheminimumrequirementsofthesafetyanalysisreport.

Table 14: Minimum composition of shift crew according to the state of the units

Unit Status of the unit Number of personnel in the shift crew

Inoperation,hotshutdownorintermediate 7 shudown Tihange1 Coldshutdown 6

Inoperation,hotshutdownorintermediate 8 shudown Tihange2 Coldshutdown 6

Inoperation,hotshutdownorintermediate 7 shudown Tihange3 Coldshutdown 6

Doel1andDoel2inoperation 9

Doel1/2 Doel1orDoel2incoldshutdown 9

Doel1andDoel2incoldshutdown 7

Doel3andDoel4inconditions1(operation)to 13 4(intermediateshutdown)

Doel3orDoel4notinconditions1(operation) Doel3andDoel4 9 to4(intermediateshutdown)

Doel3andDoel4notinconditions1 7 (operation)to4(intermediateshutdown) Theshiftcrewareassistedbytheradiationprotectionagents,thefirebrigadeandthesitesecurity. Themissionoftheshiftcrewconsistsintaking–24hoursaday,7daysaweek–thefirstappropriate actionsshouldanyeventoccur.Innormaloperatingconditionsorincaseofaproblem,theycanrely at any time upon a teamof oncall technicians and staff. In case of an emergency at a unit, the internal emergency plan is activated. It ensures mobilization of the necessary internal and external resourcestomanagetheevent.

Chapter6–SevereAccidentManagement 150 6.1.1.2. Measures taken to enable optimum intervention by personnel Incaseofanuclearaccident,theshiftcrew,supported by theradiation protection agents, the fire brigadeandthesitesecuritypersonnel,allpresentonsite,istodealwiththeaccident.Theshiftcrew isinthecontrolroomwheretheywillcallintheoncallpersonnel. Therolesoftheoncallpersonnelaredefinedintheemergencyplanningorganization. Thereareatleastfivemembersperoncallteam,whoremainondutyfor12hours. Theoncallpersonnelwillbepresentwithinatimespanplannedinadvance.Inaddition,availability tests have shown that 80 % of the other oncall personnel (not on duty at that moment) can be presentwithinadelayof2hours. Theoncallpersonnelwillthenoccupythedifferentemergencyresponsecentres. Tihange NPP AtTihange,themanagementofanemergencyisensuredfromthreeseparateplaces: • fromtheunitcontrolroomwhereshiftcrewoperatorsareworkinginnormalandaccidental conditions; • fromthe“unit operation centre”,called“COT”atTihange(located nexttothe controlroom anddesignedwiththesameresistancefeaturesasthecontrolroom),wherethefirstpartof theemergencymanagementteammeetsandfromwhich the technical management of the eventtakesplace; • fromthe“siteoperationcentre”called“COS”atTihange(physicallydistantfromthecontrol room)wherethesecondpartoftheemergencymanagementteamgathersandfromwhich communicationandexternalrelationswiththeoutsideworldaremanaged. Initially, the emergency is managed from the control room of the concerned unit. As soon as the internalemergencyplanisactivated,anemergency managementteamissetup.Itincludesalocal team, which meets in the unit operation centre (COT) located next to the control room of the concerned unit. The rest of the emergency management team meets in the site operation centre (COS) located in the administrative building. The team that meets in the COT deals with technical aspects,whiletheteamgatheredintheCOSfocusesonorganizationandcommunication(inparticular withpublicauthorities)aswellasonstrategicdecisionsforemergencymanagement. Inaddition,anoffsitereceptionandfallbackcentrecalled“CARA”islocatedinLesAwirs,at12km fromtheTihangeNPP.Intheeventofanemergency,theCARAwillfulfilthefollowingfunctions: • itcanfunctionasanoffsitefallbackemergencycentreinsituationswherethenormalonsite operation centre (COS) is inaccessible; the oncall emergency team can manage the emergencyinasafeandcontinuousmannerfromtheCARAcentre; • itcanbeusedasagatheringandbriefingroomforshiftcrewandresponseteamsjustbefore theygototheplant;informationabouttechnicalaspectsandprotectivemeasurestotakeare providedtothepersonnelofthelicenseeandcontractors; • it can be used as a decontamination facility for the personnel, in case of a severe contaminationoftheTihangeNPPmakingpersonneldecontaminationimpossibleonsite;after theirworkandbeforegoinghome,themembersofshiftcrewandresponseteamsmustreturn totheCARAcentrefordebriefing; • there is an infrastructure for the reception of the families of injured personnel; information intendedonlyforthesefamiliesisgivenattheCARAcentre. Doel NPP AtDoel,themanagementofanemergencyisperformedfromfourseparateplaces: • intheunitcontrolroom,shiftcrewoperatorsareworkinginnormalandaccidentalconditions; • the unitannex control room (“BK”),located in the same place as the control room, is the nervecentreofthesevereaccidentmanagement(“SAM”);fromthiscentre,actionsaffecting theinstallationsareperformed; • in the onsite technical support centre (“OTSC”), interventions and operations in the installationsandlongtermactionsareprepared.TheDoel1/2OTSCispartoftheDoel1/2 machineroom;inthisplace,themostimportantoperationalparametersaremonitored.The

Chapter6–SevereAccidentManagement 151 Doel3andDoel4OTSCispartoftheElectricalServicesBuilding(“GEH”)ofDoel4;inthis place,themostimportantcorestatusparametersaremonitored.TheDoel3andDoel4OTSC canfunctionasabackupfortheDoel1/2OTSC; • in the site emergency operations facility (“NPK”), the data are consolidated, the communication with the authorities is coordinated, and the possible dissemination of radioactivityintheenvironmentiscalculated. Forbothsites,thepreparednessofthecompleteemergencyplanninginfrastructureisfollowedupwith maintenanceplans. AmongtheresourcesinvolvedintheinternalemergencyplanaretheNPP’sownpersonnel. ThewholeNPP’spersonnelaregraduallyinvolved: • shiftcrewteams, • oncallmanagers, • oncalltechnicians(mechanics,electricians,radiationprotectionofficers,ICT), • firstresponseteams, • thesecurityguardserviceandthemedicalaidservice, • thewholepersonneloftheNPPonrequest,dependingonindividualskills. Further resources can also bemobilized, including responseunitssentfromtheotherNPP(Doelor Tihange)andmembersoftheElectrabelcorporateemergencyorganisation. ContractoremployeesthatareusuallyworkingonthesiteoftheNPPaswellasotherpeoplethatare not linked with the licensee can also be called upon. In this respect, assistance conventions and cooperationagreementshavebeenconcludedwithsomecompaniesorbodies. Technicalresourcesavailableonthesitesinclude: • firebrigadegaragesequippedwithequipmentandconsumablesforthesuppressionofawide rangeofevents(fire,explosion,flooding,releaseofproductswithdangerouscharacteristics); • logisticequipment:sandbags,compressors… • fullyequippedmonitoringvehiclestoperformradiologicalmeasurementsonsiteandoffsite; • stocksofpackagesofpersonalprotectionequipment; • medicalpostswithequippednursinganddoctors’practiceandtriagezones; • helicopterlandingplaces; • guardsfortheprotectionagainstunauthorizedaccesstothesite.

6.1.1.3. Use of off-site technical support for accident management Whenaninternalemergencyplanisactivated,the oncall management officially informs the public authorities in compliance with the emergency notification process. This information is automatically directedtothecallcentreof: • theGovernmentalcoordinationandcrisismanagementcentre(“CGCCR”), • BelV, • theFederalAgencyforNuclearControl(FANC). Dependingonthenatureoftheevent,otherauthoritiessuchasthelocalmayor,thegovernorofthe Province,thelocalfirebrigadeortheMinistryofEmployment,LabourandSocialDialoguemayalsobe informed. Electrabelcorporateemergencyorganisation In order to bring support to a unit or a NPP in emergency, Electrabel created the emergency managementcentreproductionBelgium(“CMCPB”),locatedinBrusselsandheadedbyamemberof theElectrabelexecutiveboard. Themissionofthisemergencymanagementcentreconsistsin: • supportingtheNPPwithstrategicdecisions;

Chapter6–SevereAccidentManagement 152 • ensuringtheavailabilityofextrafinancial,materialandhumanresources; • ensuring external communication and guaranteeing consistency with communication actions takenbytheNPP; • providing experts in specific fields (insurance, law, human resources management, maintenance,safety,etc.)totheNPP. ThiscentreisinformedbytheNPP’semergencydirectorduringthenotificationprocess.Dependingon thenatureoftheevent,theCMCPBwilldoitsutmosttoprovidethesupportneededbytheNPP.The NPPcanalsosubmitspecificquestionsorrequests (e.g.needforequipmentorskilledstaff)tothe emergencymanagementcentreinordertolightenthemanagementonsite. Agreementswithhospitals TheTihangeNPPsignedagreementswith5hospitals: • regionalhospitalcentreinHuy; • universityhospitalinLiège; • cancerinstituteinBrussels; • burncarecentreinLoverval; • FrenchmilitaryhospitalinParis(Percy). Thoseagreementscoverthemedicalcareofinjuredpeople(contaminatedornot),shouldanincident atTihangeNPPhappen. TheDoelNPPsignedagreementswith2hospitals: • MiddelheimhospitalinAntwerp,inwhich8bedsarepermanentlyavailableandthereisthe possibilitytoevacuatethehospitalsothatitsfullcapacitycanbeused; • FrenchmilitaryhospitalinParis(Percy). TechnicalassistanceconventionwithTractebelEngineering TractebelEngineeringprovidestechnicalsupporttothelicenseeinorderto: • helpachieveadiagnostic; • predicthowtheeventwilldevelop; • giverecommendationsandproposeactions; • answeritsquestions. Aminimumcellissetupwithin4hoursafterthelicensee’scall. Supportbycontractorsandothercompanies ManyexternalcompaniesareworkingeverydayontheNPPsites.Theirpersonnelhavespecificskills andknowledgeofthefacilitiesthatcanproveusefulincaseofanincidentoraccident.Therefore,the emergencymanagementteamreliesfirstlyonthoseprofessionalswhoknowhowtointerveneonthe sitebeforecallinguponcompanieswithoutknowledgeofthefacilities. Moreover,thelicenseehasconcludedcontractswithexternalcompaniesforinterventionorequipment supply, including responsiveness terms for urgent requests from the NPP. Some of these services include: • supplyandinterventiononelectricalwiringwithin24hours; • fuelsupplyfordieselgeneratorswithin25hours; • decontaminationofstructures:18personswithin2hoursand45within48hours; • scaffolding:12persons(per2hourshift)within24hours; • mechanicaltasksandrepairs:about100mechanicsand20millingoperatorsavailablewithin 2hours; • cranessuppliedwithin4hours; • boricacidsupplywithin15workingdays; • instrumentationrepairswithin24hours; • chemicalproductssupplywithin12to48hours(dependingontheproduct); • electricalmotorrepairswithin5hours; • ventilationrepairswithin4hours(1technician);

Chapter6–SevereAccidentManagement 153 • industrialgassupplywithin6to12hours(dependingonthegas); • power generators and cooling groups hiring: standard equipment within 24 hours (less if availableinBenelux),reactorbuildingventilationequipmentwithin3days; • hiringofrapiddeploymentclearanceequipmentparkedclosetotheNPPinordertoguarantee accesstothenecessarymeansinemergencysituation. The licensee and ELIA (the operator of the high and very high voltage networks), are working in effectivecooperationincaseofproblemsaffectingtheexternalelectricalgrid. Supportbypublicinstitutions The Royal Decree of 17 th October 2003 sets forth that the Minister of Internal Affairs, with the licensee’s cooperation, may mobilize and deploy all the civil and military resources to control or mitigateanemergencysituationandtakeactiontofightagainsttheeffectsoftheemergencysituation insidethefacility.Inthisrespect,theinstitutionslistedhereaftercanprovidetechnicalsupporttothe Tihangeand/orDoelNPPs: • theScientificInstituteforPublicHealth(“WIVISP”); • theRoyalMeteorologicalInstitute(“RMI”); • theBelgianNuclearResearchCentre(“SCKCEN”); • theNationalInstituteforRadioelements(“IRE”); • theCivilProtection; • thepolice; • theArmy(theAmaymilitarybarracksare8kmawayfromtheTihangeNPP); • theHydrologyServiceoftheWalloniaPublicServices(forTihangeNPP); • theRoyalObservatoryofBelgium; • theUniversityofLiege(ULg)andtheUniversityofGhent; • theregionalfirebrigadeofHuy(Tihange)andthefirebrigadeofBeveren(Doel),locatedclose totheNPPs;thelicenseehassignedspecificconventionswiththesefirebrigades,definingthe modalities regarding training, communication, commanding of interventions and dosimetric aspects. Otherresources TheTransnubelcompanycancharterabuswithdriverwithinashortperiodoftimeandcanprovide transportationmeansformaterialandstaffmembers. Ifsomeoftheabovementionedexternalservicesareunavailable,theNPPhassomecapabilitieswithin itsstructure,suchasvehiclesandtrailerswithradiationprotectionmeasuringdevicesandfirefighting equipment. An external care/decontamination centre in Wachtebeke (located at 45 km from the Doel NPP) provides the infrastructure for the detection and decontamination of people and vehicles, for food supplyandforsleepingplaces.

6.1.1.4. Procedures, training and exercises Internalemergencyplanprocedures The internal emergency plan procedure describes the structure and organisation of the internal emergencyplanforeachNPP. FortheTihangeNPP,thisprocedureandits58associated procedures constitute thewhole internal emergencyplan.TheDoelNPPdisposesof28emergencyplanningproceduresdirectlylinkedtothe emergency plan and supplemented with several other procedures and documents (practical guidelines). Alloftheseproceduresrelatedtonuclearaccidentsareregularlyupdated.

Chapter6–SevereAccidentManagement 154 Internalemergencyplantrainingprogramsandexercises Everypersoninvolvedintheinternalemergencyplanreceivesinitialtrainingandperiodicrefresher trainingdependingonhis/herrole.Trainingproceduresdefineforeachfunctionorrolewhichtraining programmustbeprovidedwithregardtoemergencyresponsiveness. Thistrainingalsoincludesperiodicexercises. NPPoperatingprocedures Shift crew can rely on specific incident and accident management procedures. When an anomaly occursintheinstallations,theoperatingteamfirstappliesasetofincidentmanagementproceduresto respond to the event. If these prove insufficient, accident management procedures are then implemented.Finally,ifsomecriteriaarefulfilled,theseaccidentmanagementproceduresarereplaced bysevereaccidentmanagementguidelines(“SAMG”). NPPoperationtrainingprogramsandexercises Proceduresdescribejobtrainingprogramsforeachdepartment(operationshiftcrew,maintenance). Everystaffmemberinvolvedintheoperationofthefacilities(executives,shiftcrewteams)receives initial training and periodic refresher training depending on his/her role. Exercises are performed annuallyforeachjob. Inparticular,licensedcontrolroomoperators,shiftsupervisorsandexecutivestrainonthesimulatorin thetrainingcentreduringanannualtwoweekperiodforcontrolroomoperatorsandshiftsupervisors and during an annual oneweek period for licensed executives. This simulates virtual incidents or accidentstohelpthemwiththeimplementationoftherelevantprocedures. ForTihangeNPP,atwodaytrainingperioddedicatedtotheSAMGisprovidedtotheoperatingshift crew,licensedexecutivesandoncallexecutives.Arefreshercoursemustbecompletedeverythree years. ForDoelNPP,aonedaytrainingperioddedicatedtotheBKproceduresisprovidedtotheoperating shiftcrew,licensedexecutivesandoncallexecutives.Arefreshercoursemustbecompletedeveryfive years.

6.1.1.5. Plans for strengthening the site organisation for accident management AmongtheresourcesinvolvedintheinternalemergencyplanaretheNPP’sownpersonnel. Asolutioniscurrentlysetuptoensuresufficientsupervisorystaffmanagementincaseofamultiunit event,whichinessencerequiresanongoingmobilizationofmanyengineersonthesite.

6.1.2. Possibility to use existing equipment Intheeventofasevereaccident,thefollowingmeansareessential: • unboratedwaterforinjectionintothesteamgenerators; • boratedwaterforinjectionintotheprimarycircuitofthereactorbuilding; • electricitytosupplythevitalpumps. Alltheexistingequipmentonsitecanbeusedinordertorestorepotentialfailures,throughparticular equipmentconnexionswhererequired.TheSAMGguidesdescribehowtousetheexistingequipment. In case of unavailability or failure of this equipment,nonconventional means canbe implemented. Thesedeviceswerenotconsideredwhendesigningtheunitsbutareavailableonsite.

Chapter6–SevereAccidentManagement 155 6.1.2.1. Provisions to use mobile devices (availability of such devices, time to bring them on site and put them in operation) Existingmobileequipment If a beyonddesign event occurs on the site of Tihange, nonconventional stationary or mobile equipment(CMUequipment),whichisindependentofthedesignbasisequipmentandfacilities,can beusedtofulfilthefollowingfunctions: • watersupplyforspentfuelstoragepoolsinbuildingDatallthreeunitsandinBuildingDEat Tihange3; • lowpressurefeedwatersupplyforsteamgenerators; • emergencylighting; • deploymentofdieselgeneratorstopowerthenecessaryequipment. There are also mobile power generators available on the Doel site in order to feed the rectifiers alternativelyusingadaptedconnectorsandcables.Theywillformabackup380Vnetwork.Thiswaya longerperiodof“stationblackout”canbecoveredwhilethemeasurements,signalizationandcontrol canbemaintained.Theelectricitysupplytothesafetyrelatedcomponents(compressors,valves…) willbeoperatedinthesameway. Doel 1/2 also has power generators to give an alternative power supply to the containment spray pumps. Most of these mobile devices are already available in the installations and require only gas/power/waterconnection–usingflexiblehosesstorednearbytheplaceswheretheyareused–to bestarted. Future(nonconventional)mobileresources IntheaftermathofFukushima,asystematicanalysis was performed to assess the needs for extra equipment.ThisanalysisassumedatotallossofACpowerandconsideredthedifferentpossibleinitial conditionsoftheunits. Asaresult,theequipment/devicesthatcanbeimplementedtomitigatetheconsequencesofsuchan extremesituationhavebeenidentified. Thisanalysisresultedforeachunitinatimeline indicatinginchronologicalorderwhenanessential functionisnotguaranteedanymorewithoutdeployingextraresources.Consideringthistimeline,the licensee defined stopgap measures to compensate for the lost functions. It also determined when these stopgap measures shall be operational and which features are necessary to restore the functions. Foreachdevice,thetimebetweentheoccurrenceoftheeventandthestartofthedevice,aswellas itsnecessarycapacity,determinewhetheritmustbeinstalledpermanentlyandreadytostart,orifan onsitestorageissufficientorevenifanexternalassistancecanbeconsideredtofulfilthisfunction.In thislastassumption,itisconsideredthatanexternalassistanceisonlycredibleafter72hours(period oftimeconsideredassufficienttoarrangeaccesstothesiteandbringheavymachineryifnecessary). Furthermore,nonconventional devicesmustbe able to work, irrespective of the state of the other unitsonthesite.Theanalysisincludedissuessuchaspowersupplyorwaterandfuelstocksneeded toguaranteethisperiodofautonomyandindependence. These non conventional means will be compared to the ones defined in the extensive damage mitigationguidelines(“EDMG”)developedbytheNuclearEnergyInstituteinordertotakeintoaccount situationsthatwouldnothavebeenincludedintheassumptionofatotallossofACpowersources. Some of the devices that have been identified and that are not available on site yet are being implemented. Other devices require a justification/feasibility study. They will be implemented in conditions ensuring optimal robustness against extreme external hazards (natural or not). An appropriatestoringplaceformobiledeviceswillbesought.Stationarydevicesthathavealreadybeen installed will be protected against hazards. If theyarenotsufficientlyprotectedintheplacewhere theyarestoredorinstalled,thedevicesshallbemadeinherentlyresistanttothehazardsconsidered.

Chapter6–SevereAccidentManagement 156 Oncefullyimplemented,thesedeviceswillbeintegratedinaccidentmanagementproceduresandin SAMGguidessothattheycanbeusedcorrectlybytheemergencyresponseteams. FortheDoelNPP,thecurrentemergencylightingunitswillbereplacedbyemergencylightingunits withlongautonomy(LEDs).Extramobilelightingtowerswillalsobebought.

6.1.2.2. Provisions for and management of supplies (fuel for diesel generators, water…) Thetechnicalspecificationsmentiontheminimumsuppliesofgasoilandboricacidrequiredtokeep safetyrelatedequipmentoperationalincaseofanaccident(excludingsevereaccidents).Asfarasthe emergency management related equipment is concerned, minimum supplies and availability requirementsarespecifiedinandverifiedthroughtherelevantprocedures. AttheDoelNPPsite,astudyisperformedinordertoprovidethenecessaryconnectionpointsonthe fuelstoragetanksofthedifferentreactorunits,sothatfuelcanbetransferredbetweenthedifferent tanks.Thereisatankertruckonthesiteintendedforthetransportationoffuelthroughoutthesite.

6.1.2.3. Management of radioactive releases, provisions to limit them Incaseofanuclearaccident,allattentionneedstobefocusedon: • theleaktightnessofthereactorbuilding; • the pressure decrease in thereactorbuilding in casethe reactor buildingis no longerleak tight; • thedepositofiodineandaerosolsbymeansofsufficientspraying; • thewaterinventoryinthereactorbuilding; • thewaterinventoryinthespentfuelpools. Potentialradioactivereleasesintheenvironmentarelimitedby: • thehighestspecificactivityallowedintheprimarysysteminnormaloperation; • theleakratesallowedfortheprimarysystemandthesteamgeneratortubes; • thecontainmentleakrates. Reactorcontainmentdesign If radioactivity is released into the reactor building, the containment and associated systems will ensurethattheradioactivegasesremainwithinthereactorbuilding,sothatnoradioactivematerials are released into the environment. As long as the radioactivity remains within the containment, radioactivedecayplaysanimportantrole.Dependingontheisotopesinvolved,thesourcetermcan alreadybereduceddownto5to25%afterhalfadayofretention. AllreactorunitsatTihangeandDoelhaveadoublecontainmentstructure. ForallthreeTihangeunitsaswellasforDoel3andDoel4units,theinternalcontainmentismadeof prestressedreinforcedconcretetobearpressure,withametallineronitsinnersurfacetoensureleak tightness.ForDoel1/2units,theinternalcontainmentismadeofsteelensuringleaktightness. For all units, an independent outer containment is made of reinforced concrete and is intended to collectandfilterpotentialleaksfromtheinternalcontainment. Thepressurelevelinthecontainmentismonitoredbyseveralsafetyratedinstruments(withbackup) measuringtheabsolutepressure.Someofthemareusedformeasuringpressurelevelscorresponding tonormaloperationlevelswhileotherscanmonitorthepressureevolutionupto10bars. Acontainmentspraysystemisusedtolimitthepressurepeakinthecontainmentresultingfromaloss ofcoolantaccident(“LOCA”)oraleakageintheemergencycoolingsystemand,inturn,tominimize theleakratefromthecontainmentintotheannulusspace. Theinternalventilationwillalsohelpindecreasingthepressureinthereactorbuilding.

Chapter6–SevereAccidentManagement 157 Theleakratefromthecontainmentintotheannulusspaceismeasuredateachrefuellingoutage.The leakrateforallthepenetrationsthroughthecontainmentisverifiedinthesameway. Radioactivitymeasuringsystemsareinstalledinthedifferentbuildings,includingthereactorbuilding, andallowpromptdetectionofanyleakageproblem.Measuringsystemsalsomonitoractivityreleases attheventilationstackofthenuclearauxiliarybuildings.Procedureshavealsobeensetuptoidentify intersystemlossofcoolantaccidents(“ISLOCA”). Apotentialleakfromthereactorbuildingwouldflowintotheannulusspace.Theannulusiskeptunder negative pressure (compared to the atmosphere) by ventilation systems equipped with filtration systems (absolute filters and carbon filters). Heating elements fitted on the exhaust branch of the ventilationkeepgashumiditybelowaspecificlevelinordertoguaranteetheefficiencyofthefilter banks. Inaddition,Doel1/2unitsdisposeofcompressorsintheannulusspacedesignedtoforcethereturnof thegasesbacktotheinternalcontainment,and,bydoingso,tokeeptheinventory–intheshortterm –asmuchaspossibleinsidethereactorbuilding. Containmentisolation Eachpenetrationthroughthecontainmentisequippedwithtwoleaktightisolationsystemsinseries thatcanbeoperatedfromthecontrolroom.Theyshutautomaticallyifananomalyisdetectedwhich requires the containment to be isolatedfrom the outsideenvironment.Incaseofafailureofthese isolationsystems,proceduresrequirecorrectiveactionstorestorethesituation. Reductionofairbornecontaminationinsidethereactorbuilding Thefiltrationsystemofthereactorbuildingconsistsoffiltersandcarbonfiltersandislocatedinside theinternalcontainment.Itisintendedtocaptureairborneradioactiveproductsandiodinereleasedin thecontainmentbuildingincaseofanaccident. Bysprayinginsidethecontainmentbuilding,theradioactiveparticlesandtheiodinearealsocaptured inthewater. ForallthreeTihangeunitsaswellasforDoel3andDoel4units,itispossibletoaddasodasolution tothesprayfluidinordertotransferairborneiodineintosolutionmoreefficiently,andthenkeepitin thereactorbuildingsumpwater.In24hours,thecontainmentspraysystemcandissolveandcapture upto99%ofiodineproductsthatarepresentintheprimarysystemandcouldbereleasedinthe containment. Internalcontainmentleakagemonitoring Thecontainment’stightnessismonitoredperiodicallybypressuretests.Thesetestsareperformedat reducedpressureduringeachrefuellingoutageandatdesignpressureeverytenyears. Otherprovisions If any release of activity resulting from a fuel handling accident during core refuelling/unloading operationsisdetectedbytheradiationprotectionmeasuringsystemsinstalledinthereactorbuilding orattheventilationstack,theexhaustventilationsystemofthepoolbuildingisswitchedintopost accidentalconfigurationandthecontainmentventilationsystemisisolated.

Incaseofanaccidentinthenuclearfuelpools–witha10mwaterlayer–thereleaseofiodineand aerosolscanbelimitedto0.2%ofthesourceterm. The nuclear auxiliary buildings’ basements dispose of a large storage capacity for potential liquid effluentssothatapossiblereleasetotheenvironmentcanbepostponedasmuchaspossible. Furthermore,allunitsareequippedwithtanksforcollectingandstoringeffluentsandwithprocessing systemsintendedtolimittheirvolumesandactivity.

Chapter6–SevereAccidentManagement 158 Releasecalculationandassessmentprograms Aspecificprogramcanbeusedtocalculateandpredictthedispersionofpotentialradioactivereleases intheenvironment.ThecorrectmanagementofpotentialreleasesisdescribedinSAMGprocedures.

6.1.2.4. Communication and information systems (internal and external) Thereisawholerangeofvariousandindependentcommunicationequipmentandsystemsavailable atbothsitestoensureminimumcommunicationrequiredinemergencysituations. Tihange NPP Internalcommunication a)ThephonenetworkincludesnormalphonelinesconnectedtotheTihangeNPPtelephoneexchange (4hourautonomy,batterysupplied)aswellasaninternalpagingsystemvianormalphonenetwork. 16emergency“genephones”–whichdonotrequireelectricity–arealsoinstalledinthemainstaff gatheringplaces,intheCOSandineveryCOT.Theyareusedintheeventofafailureoftheother communicationmedia,inparticularthetelephoneexchange. b)Avideolineconnectingtheoperationcentreofeachunit(COT)withtheonsiteoperationcentre (COS).Thislineisnotconnectedtothetelephoneexchange. c)TheNPPisalsoequippedwithanetworkofloudspeakersandanemergencysiren,bothwithbacked uppowersupply. Externalcommunication a)Thephonenetworkincludes: • normal phone network: a telephone exchange with 2 x 30 external lines towards Huy and Amay; • 2 Electrabel private lines connecting the NPP with both Electrabel centres in Linkebeek and Schaerbeek.Theselinesareconnectedtothetelephoneexchange. • directlinesconnectingeachofthethreecontrolroomswiththeregionalfirebrigade.These linesarenotconnectedtothetelephoneexchange. • 17Belgacomdirectlinesforemergencysituations:14fortheCOS/COTsand3forthecontrol rooms.Theselinesarenotconnectedtothetelephoneexchange. • Some extra lines, connected to the Belgacom network without being connected to the telephone exchange. The NPP’s Manager, each of the Department Heads, and the shift supervisorsoneachunitdisposeofoneofthesephonelines. Possibilitiesfortheemergencymanagementteamtomakecallstotheoutsideworldinclude: • automaticrecallsystemforoncallmanagers(emergencycalloutsystem“ECOS”); • theseoncallmanagerscanbecalledinviatworedundantsystemsthatarenotconnectedto thetelephoneexchange:through ASTRIDpagers (messagescanbesentviaanAstridradio usingagovernmentalsecurednetwork)andindividualmobilephones(Proximusnetwork). TheinstallationoftheREGETELprioritycommunicationsystemconnectingtheexternalorganisations involvedintheemergencyplaniscurrentlyinprogressinTihange(COS). Furthermore, other wireless phones and radios are also available on site for internal and external communication.13wirelessphonesonanothermobileoperator(currentlyMobistar)areavailablein theCOS(4)andineachCOT(3perCOT).7AstridradiosareinstalledintheCOS(1),intheradiation protectionvehicles(2),intheroomsofthefirstresponseteams(3)andintheCARAcentre(1).Astrid mobilephonesarecompatiblewiththeregionalfirebrigadecommunicationnetworkandwithAstrid pagers.

Chapter6–SevereAccidentManagement 159 Lastly, the Tihange NPP can also make use of 5 satellite phones in ultimate circumstances (unavailabilityofalltheabovementionedcommunicationmedia). b)Thevideonetworkincludes: • anormallinelocatedintheCOSandconnectedtothetelephoneexchange; • a channel connecting the COS to the Governmental coordination and crisis management centre(CGCCR). Doel NPP Internalcommunication a)DoelNPPhasitsowntelephonenetworkwhichiscompletelyseparatefromthepublicBelgacom network.Thenetworkpartsituatedonthenuclearpowerplantisfullybatterysuppliedandhassix hourautonomy. Fortheinformationofthesiteworkers,thefollowingdevicesareavailable: • importantmessagesfromtheemergencyoperationsfacility(“NPK”)canbeprojectedontothe tvscreensofthemeetingrooms; • emergency planning interphones can also be used to connect the emergency operations facilityandmeetingrooms,operatingroomsandradiationprotectionroomsonallfourunits, and the access building and guard’s locations. There is also a connection with the medical services.Thepowersupplyofthissystemisguaranteed; • publicaddressisaninternalspeakerbroadcastingsystemequippedwithasiren. In the Doel 3 and Doel 4 technical buildings, there is an autonomous telephone system (“genephones” which don’t rely on electrical power supply or batteries). In the Doel 1/2 technical buildings,aGNStelephonesystemisavailable. b)Intheemergencyoperationsfacilityandinthe monitoringvehicles,cellphonesareavailablefor certainspecificguarddutyrolemembersandfortheemergencyservices. c)Therearealsohighpoweredwalkietalkies. Externalcommunication a) Thereareseveralpublicanddirecttelephonelines–usingtheBelgacomnetwork–forcontactwith theoutsideworld.Inordertoguaranteetheavailabilityofbothinternalandexternaltelephonelines, the emergency response facility system (“ERF”) is used. This system will block all unnecessary outgoingphonecallsinordertokeepthelinesavailable. Thephonenetworkalsoincludes: • aREGETELphone(independentoftheBelgacomnetwork)forcontactwiththeauthorities; • cell phones; the cell phone coverage in the emergency operations facility and the onsite technicalsupportcentresisguaranteed; • anASTRIDdevicefordirectcontactwiththemunicipalfirebrigadeofBeveren; • 5satellitephonesthatcanbeusedincasethecommunicationinfrastructureisunavailable. Theoncallmemberswhoarenotpresentonthesitecanbecalledinviathreeindependentsystems: publicphones,semaphones(ASTRIDpagers)andpersontopersonpagers(beepers). ThecallisautomaticallyoperatedviatheECOSsystem.Incasetheregularcommunicationdevicesare unavailable,theemergencyplanningorganizationwillusethepublicradiobroadcastingsystemtocall themin. TherearealsoBelgacomfaxlineswithbackeduppowersupplyintheemergencyoperationsfacility andtheonsitetechnicalsupportcentres. b)Thevideonetworkincludesavideoconferencedevicelocatedintheemergencyoperationsfacility, forthecommunicationwiththeNationalcrisiscentreandElectrabelcorporateservicesinBrussels.The videoconferencesystemcanalsobeusedforthecommunicationwiththemunicipalcrisiscentrein

Chapter6–SevereAccidentManagement 160 Beveren,withtheCOSinTihangeNPP,andwiththecrisiscentresoftheprovincesofEastFlanders andAntwerp. c)Theemergency plantransmitting systemisaradiotransmitterreceivernetwork,intended,inthe firstplace,forthecommunicationwiththeradiationmonitoringvehicles.

6.1.3. Evaluation of factors that may impede accident management and respective contingencies

6.1.3.1. Extensive destruction of infrastructure or flooding around the installation that hinders access to the site, including communication systems Theinternalmanagementofdamagetotheinstallationsiscoveredbytheemergencyorganisationin place. A number of buildings on the sites are bunkerised and can be used in case other buildings are destroyed. Theclearingoftheinternalinfrastructureintheeventualityofmajorobstacles(collapsedpylons,holes in the roads, etc.) depends on the availability, in the immediate vicinity of the site, of suitable equipment(removalequipment,heavyhandlingdevices)whichcanbeusedbyinhousepersonnelas wellasexternaloperatives.Thesemeansareavailableviacontractsorcorporatesupport. Theinfrastructureoutsidethesiteisnottheresponsibilityoftheplantlicensee.However,theinternal emergencyplanincludescoordinationwiththerelevantauthorities(ministries,provincialgovernment, andarmy)thatwillundertaketherequiredmeasuresneededtoreestablishappropriateaccesstothe powerplantsite. ShouldtheTihangeareabeaffectedbyfloods,accesswillalwaysbepossiblethroughthemainpublic roads.Inparticular,theroadnetworkatTihangeisatahigheraltitudethanthemaximumfloodlevel. Thepowerplantislocatedatanaltitudeof71.50mwhilethesurroundingsreachmorethan200m. Thelocationofthepowerplantintheimmediatevicinity of the town of Huy means that the road networkisdenseandwillalwaysallowaccesstothesite.

6.1.3.2. Impairment of work performance due to high local dose rates, radioactive contamination and destruction of some facilities on site Tihange NPP Currentsituation In order to perform the operations necessary to manage a severe accident, the intervention is concentrated in the following locations: main control room, emergency control room, unit operation centre(“COT”),siteoperationcentre(“COS”),otherzones(e.g.electricalroomsinthe“BAE”building orsamplingroomsincaseoflocalactions). a)Habitablezoneofeachunit(controlrooms,COTandrelatedrooms) Inthepresenceofcontaminationonthesite,existingproceduresdefineasingleaccessroutetothe "habitable zone" of each unit. This access consists of an airlock, equipped with a changing room, contamination measurement equipment, basic decontamination means and a stock of protective equipment.Thepurposeoftheseitemsistopreventthetransferofcontaminationtothe"habitable

Chapter6–SevereAccidentManagement 161 zone"andtoallowpersonnelleavingthezonetoequipthemselvesaccordingtotheinstructionsissued bytheradiationprotectionofficers. Concerningtheotherzones,theactionsthatmaybe called for in the first hours of a deteriorated situationwillfirstbesubjecttoanalysis/evaluationintermsofdoseintake/justification,depending onthecircumstancesoftheaccident. Anyoperationinvolvingequipmentrepairandsamplingwillonlybeinitiatedafterafullassessmentof theinterventionconditions.Thisaspectwillbemanagedbythecrisisteam,ifnecessarymakinguseof themeansandresourcesoftheoffsitefallbackcentre(CARA). b)Siteoperationcentre(COS) TheCOSislocatedinthesiteadministrationbuilding,outsidethefloodpronearea,andits"habitable zone" is fitted with external air filtering equipment. In the presence of contamination on the site, existingproceduresdefineasingleaccessroutetotheCOS"habitablezone".Thisaccessisequipped with a changing room, contamination measurement equipment and basic decontamination means designedtopreventthetransferofcontaminationtothe"habitablezone".Asingleexitrouteisalso definedwithastockofprotectiveequipmentallowingpersonnelleavingtheCOStowearaccordingto theinstructionsissuedbytheradiationprotectionofficers. c)Offsitefallbackcentre(CARA) As soon as the site contamination is confirmed by the radiation protection section, instructions are issued to the security officers to deny access to the site. Only individuals authorised by the crisis management team will be granted access to the site according to the instructions issued by the radiationprotectionofficers. Inaccordancewiththeinternalemergencyplan,allpeoplenotrequiredonsitebythecrisiscentreare evacuated,accordingtoexistingprocedures,toa"fallbackbase"knownas“CARA”. Analysisoftherobustnessoftheexistingsituationinrelationtotheinitiatingeventsandthescenarios studied a)Habitablezoneofeachunit(controlrooms,COTandrelatedrooms) Thehabitablezoneofeachunitislocatedinabuildingthatisresistanttodegradedexternalconditions (particularlyearthquakeandflooding),buttheventilationsystemswillnolongerbeoperationalincase ofstationblackout.Therepoweringbymeansofanautonomousdieselgeneratorisunderstudy. b)Siteoperationcentre(COS) The location and current structure of the building housing the COS are not sufficient to guarantee perfect operating conditions when facing extreme external events (mainly earthquake).The COT of each unit is equipped to serve as a backup COS if the main COS is lost. The new access control building,currentlyunderconstruction,willincorporateanewCOS.Safefromflooding,resistanttothe design basis earthquake, fitted with decontamination infrastructure, powered by a standalone generator and equipped with external air filtrationdevices,thisnewCOSwillbeperfectlysuitedto performitsexpectedfunctions. IncaseoflossorinaccessibilityoftheCOS,afallbackroomisprovidedattheoffsitecentre(CARA). c)Offsitefallbackcentre(CARA) ThecurrentCARAfallbackbaseishousedinbuildingsthatarenotresistanttoamajorearthquake. Moreover, it is located in a zone that can potentially be flooded in case of a 10 000yearly flood. Furthermore, it is aligned under the prevailing winds at 12 km from the nuclear site. As a result, alternativesolutionsforanotherfallbackbasewillbeanalysed. d)Adequacyofradiologicalmonitoringincaseofaseriousaccident TheCOTsandCOSareequippedwithindicatorsandrecordersassociatedtothemonitoringchannels oftheliquidandgaseouseffluentsexhaustsofthe3units.Basicequipmentformeasuringradioactivity

Chapter6–SevereAccidentManagement 162 is also provided in these rooms. Two vans, parked close to the COS, are also fitted to measure radioactivityonthefield. Incaseofradioactivecontaminationorexcessivedoserate,theradioactivitymonitorsattheexitof the nuclear zone of a unit may become inoperative. As a result, control may be transferred to the monitors of the access building at the site entrance. However, no radioactivity monitoring will be operationaliftheelectricityiscutoff. Amoredetailed analysis ofthe additional means required for radioactivity monitoring in case of a severeaccidentaffectingseveralunitswillbeinitiated. e)Interventioncapabilityincaseofdestructionofsomeonsiteinstallations Apartfromthefactthatsomeofthebuildingsare"bunkerised"andcouldactasanonsitemeeting anddispatchingpointifsomeinstallationsaredestroyed,somedevicesthatcanbeusedtoclearthe roads are available. However, the use of heavy equipment is planned only via contracts with companiesinthevicinityofthepowerplant. Doel NPP Currentsituation In order to perform the operations necessary to manage a severe accident, the intervention is concentrated inthe following locations:maincontrol room, emergency control room, annex control room,onsitetechnicalsupportcentres(“OTSC”),andsiteemergencyoperationsfacility. a)Habitablezoneofeachunit(controlrooms,annexcontrolrooms) Inthepresenceofcontaminationonthesite,existingproceduresdefineasingleaccessroutetothe "habitable zone" of each unit. This access consists of an airlock, equipped with a changing room, contamination measurement equipment, basic decontamination means and a stock of protective equipment.Thepurposeoftheseitemsistopreventthetransferofcontaminationtothe"habitable zone"andtoallowpersonnelleavingthezonetoequipthemselvesaccordingtotheinstructionsissued bytheradiationprotectionofficers.Theselivingareasareequippedforalongstay,withakitchenwith afoodsupplyandsanitaryequipment(showersandtoiletunits). b)Onsitetechnicalsupportcentres(OTSC)andsiteemergencyoperationsfacility The OSTC and the site emergency operations facility are equipped with a changing room, contamination measurement equipment, basic decontamination means and a stock of protective equipment.Thepurposeoftheseitemsistopreventthetransferofcontaminationtothe"habitable zone"andtoallowpersonnelleavingthezonetoequipthemselvesaccordingtotheinstructionsissued bytheradiationprotectionofficers.Theselivingareasareequippedforalongstay,withakitchenwith afoodsupplyandsanitaryequipment(showersandtoiletunits). c)Externalcarecentre ThereisalocationinthemunicipalityofWachtebeke,situatedat45kmfromthesiteequippedasan externalcarecentreforsiteworkers.Thedomaindisposesofthenecessaryinterventionmaterialfor themonitoringofapossiblecontaminationandthedecontaminationofvehiclesandpersons. Analysisoftherobustnessoftheexistingsituationinrelationtotheinitiatingeventsandthescenarios studied a)Habitablezoneofeachunit(controlrooms,annexcontrolrooms) Theselocationsarehousedinbuildingsresistingtoextremecircumstances,buttheventilationsystems willnolongerbeoperationalincaseofastationblackout. b)OTSCandsiteemergencyoperationsfacility

Chapter6–SevereAccidentManagement 163 Theemergencyoperationsfacilityoffersagoodshielding,aprotectionagainstinternalcontamination andhasaguaranteedpowersupply.Thebuildinginwhichtheemergencyoperationsfacilityishoused, isnotseismicallydesigned.TheDoel3andDoel4 OTSC functions as a backup for the emergency operationsfacility.TheDoel3andDoel4OTSChasthesamemeasuringequipmentandfacilitiesas theemergencyplandispatchingroom,butitsshieldingislessperformant. c)Offsitefallbackcentre A location needs to be found to function as an offsite fallback centre during “high mode” emergencies(seelateron).ThetrainingcenterScaldisinKallocouldbeusedforthispurpose. d)Adequacyofradiologicalmonitoringincaseofaseriousaccident The control rooms,annex controlrooms, OTSC and site emergency operationsfacility are equipped withindicatorsandrecordersassociatedtothemonitoringchannelsoftheliquidandgaseouseffluents exhausts.Basicequipmentformeasuringradioactivity and contaminationlevels in theselocations is alsoprovidedintheserooms.Onemonitoringvanisavailableonsitetomeasureradioactivityonthe field. Incaseofradioactivecontaminationorexcessivedoserate,theradioactivitymonitorsattheexitof the nuclear zone of a unit may become inoperative. As a result, control may be transferred to the monitors of the access building at the site entrance. The monitors are provided with an alternate powersupplyincaseoflossofelectricalpower Amoredetailed analysis ofthe additional means required for radioactivity monitoring in case of a severeaccidentaffectingseveralunitswillbeinitiated.

6.1.3.3. Feasibility and effectiveness of accident management measures under the conditions of external hazards (earthquakes, floods) External aggressions associated with exceptional natural phenomena may simultaneously affect all unitsonthesamesite.Incaseofanaccidentaffectingseveralunitsonthesamesite,asuitablecrisis organisationmustbesetuprapidly.Beforethismultiunitorganisationisinplace,theoncallstaffwill bedistributedaccordingtotheneedsofthecoordinationcentres,andthecrisisteamwillbemadeup asthepersonnelisavailable. Intheorganisationoftheinternalemergencyplan,threeoperationallevelsaredefined: • "standard" mode, with a single unit involved; in this case, the current organisation of the internalemergencyplanremainsapplicable; • "alert"mode,whenapredictablecrisissituationislikelytoaffectseveralunits(e.g.alarge scale flood); in this case, oncall managers and some technical officers will always be on standbyonthesite; • "high" mode: when a non predictable crisis situation suddenly affects several units simultaneouslyonthesamesite(e.g.earthquake). The organisation of the internal emergency plan of the site in "High" mode will be analysed and definedprecisely. Forthefirst24hoursfollowingtheappearanceofsuchasuddenevent(“Highmode”): • thefirststageinthemanagementoftheaccidentwillbehandledbytheshiftcrewplusthe oncallstaff.Thecrisisteamwillbeactivatedtomanagethesituation.Itmaycallonotheron callofficers(notyetcalledonintheframeworkof theinternal emergency plan). They will comeintoactionasquicklyaspossible; • thetechnicalmanagementoftheaccidentisperformedfromtheCOT(TihangeNPP)andfrom the annexcontrol room(Doel NPP) ofeach affected unit. With this in mind, the plan is to strengthentheoncallteamstoensurethatthesamecrisisfunctionsareactivatedasifthe accidentwasaffectingthatunitalone;

Chapter6–SevereAccidentManagement 164 • crisisorganisationwithintheCOS(TihangeNPP)andsiteemergencyoperationsfacility(Doel NPP) focuses on communication, the management of transverse problems on the site and logisticscoordination; • the structureof the Corporateemergency planwill beextended withthe addition of a new safety role, the "liaison officer" who will take onsite responsibility for the communication betweenthecrisisteamandtheCorporateteam; • theorganisationandtheavailableresourcesshouldbesuitedtothemanagementofthistype ofsuddeneventofconsiderabledimensions,includingtheimplementationofnonconventional meanswhichmaybecalledforinthefirst72hours. Afterthefirst24hoursfollowingsuchasuddenevent(“Highmode”),theemergencyorganisationat site level will be able to rely on extended support from the Corporate structure (“CMCPB” – Crisis Management Centre Production Belgium) within 24 hours at latest after being activated. Via the CMCPB,anorganisationstructurewillbesetupdependingontheprecisesituationonsiteandasa functionoftheeventstakingplace.Inthissituation,thesafety"liaisonofficer"willberesponsiblefor thecommunicationbetweenthesiteinquestionandtheCorporatestructure. The organisation structure that will be set up to undertake the crisis management after the first 24hourswillcomplywiththefollowingprinciples: • a single crisis manager located on site at the COS (Tihange NPP) and site emergency operationsfacility(DoelNPP); • thetechnicalmanagementofeachunitwilloperatefromtheCOT(TihangeNPP)andannex controlroom(DoelNPP)withthesupportoftheoncallstaffprovided; • supportfunctionswillbesuppliedbytheCorporatestructure; • shouldreinforcementsberequiredatthesite,theywillbesuppliedviatheCorporatestructure accordingtotheneeds(e.g.experts). The support functions that the Corporate structure can provide will be, among others, logistics, radiologicalsupport,humanfactors,longtermplanning,communicationmatters… AnanalysisoftheexactorganisationoftheCorporatestructureaswellastheassociatedhumanand technicalresourcesisplanned. InordertoallowtheCorporatestructuretoperformitsdutiesasefficientlyaspossibleunderthose circumstances,thefollowingreassessmentswillbeinitiated: • theadequacyofthecurrentinfrastructure,particularlytheoffsitefallbackbase; • theperformanceofthecommunicationmedia,particularlyexternalcommunication; • thesoftwareforcalculatingradiologicalconsequences.

6.1.3.4. Unavailability of power supply Thedesignbasisoftheunitstakesaccountofthe complete loss of external and internal electrical power supplies. The procedures for managing accidentsandsevereaccidentsareplannedsoasto incorporatethisfactorintheoperationofthefacilities.

6.1.3.5. Potential failure of instrumentation Theaccidentandsevereaccidentproceduresarebasedonalimitednumberofparameterswhichare monitoredbysafetyratedinstrumentation.Duringtheimplementationofaccidentandsevereaccident procedures,apermanentconnectionbetweentheshiftcrewandtheemergencymanagementteamis established.The physical parametersmeasuredrepresent an important part of this interchange. An assessmentofthevalidityoftheparameterssuppliedisperformedtoensurethereisnomalfunction. Inthehighlyunlikelyhypothesisthatallinstrumentationisdown,necessaryactionswillbeassessed andcarriedoutonthebasisofcalculationtoolsand graphsimplementedbythecrisismanagement team.Aproceduredesignedtorestorepowerfromoneprotectivesystemtoanother,inthecaseofa

Chapter6–SevereAccidentManagement 165 failurelikelytoaffecttheinstrumentation,willbedrawnup.Itwilltakeaccountofthevariousvoltage levelsof6and6.6kV,380V,115VDC,220VAC. In the case of lossof allinternalpowersources (highly unlikely given the considerable amount of backupsources),proceduresexistineachunitwhere,bymeansofportablestandalongdevices,the signals from each instrumentation channel can be detected and measured. This ensures that the measurementsnecessaryforthemanagementofthecrisisremainavailableunderallcircumstances. The non conventional means available at Tihange 2 and Tihange 3 units allow a restoration of instrumentationpowerbymeansofastandaloneelectricitygenerator.

6.1.3.6. Potential effects from the other neighbouring installations at site, including considerations of restricted availability of trained staff to deal with multi-unit, extended accidents Thepossibleexternalaggressionswereconsideredinthedesignoftheunits.Onetopicoftheperiodic safetyreviewexaminedtherisksforaunitrelatedtothepresenceoftheotherunitsonthesiteand thedangersrelatedtotoxicsubstances;alltheassessedsituationsarecoveredinthedesignbasis.

Chapter6–SevereAccidentManagement 166 6.2. Loss of core cooling: accident management measures in place at the various stages of a scenario of loss of core cooling function Above all, the management of a severe accident consists in restoring fuel cooling by all available means,whilemonitoringtheriskassociatedtohydrogen.Iftheextentand/orthecombinationofthe aggressionsstillleadtoapartialortotalmeltdownofthefuel,theactionsundertakenareintendedto maintain(ortoreestablish)theintegrityofthesafetyfunctions.Theaimsarethentoavoidorlimit potentialreleasesofradioacivityintotheenvironment,andtostabilisethecontainmentandthecore.

6.2.1. Before occurrence of fuel damage in the reactor pressure vessel Tihange NPP Strategyoftheaccidentmanagementproceduresbeforeswitchingtothesevereaccidentmanagement guidelines For Tihange 1, the response strategy to a loss of cooling of the primary circuit is based on the approach developed by Framatome (designer of the primary system of the unit), via a set of proceduresdevelopedduringthe1980sandreviewedonaregularbasis.Theupdatingoftheoriginal proceduresiscurrentlyhandledbythe“FROG”(FRamatomeOwnerGroup). Dependingontheinitialstateoftheunitatthetimetheproblemoccurs,asuitableresponseismade. Theseinitialstatesaregroupedintotwocategories.Thefirstcategoryincludesthestatesfromthefull power operation down to intermediate shutdown (shutdown cooling system not connected). The second category covers the other states: temperature of the primary system lower than 177 °C, shutdowncoolingsystemconnectedandprimarycircuitclosedandvented. ForTihange2andTihange3,thestrategyisbasedontheapproachdevelopedbyWestinghousevia the“ERG”(EmergencyResponseGuidelines)proceduresdevelopedduringthe1980sandreviewedon aregularbasis.Theoriginalproceduresarenowupdatedbythe“WOG”(WestinghouseOwnerGroup). Strategyforpreventingcoredamage Inordertobeabletocoolthenuclearfuelatalltimes,thepresenceofaprimarycoolantandaheat sinkarerequired: • the primary coolant can be supplied via the safety injection injection paths (high and low pressure); • the heat sink can be ensured as follows: making use of the steam generators to blow off steamintotheatmosphereviasteamreleasetothecondenserortotheauxiliaryfeedwater turbopump. Strategyfordepressurizingtheprimarycircuit AtTihange1,excesspressureintheprimarycircuitreducesthepossibilityofmakeuptotheprimary circuitinthefirststageoftheaccidentandcomplicatesthemanagementoftheaccidentingeneral.It ispossibletoreducethispressurebythefollowingmeans,dependingontheiravailability:coolingof theprimarycircuitbythesteamgenerators,normalsprayingofthepressurizeriftheprimarycircuit pumps are operational, auxiliary spraying using the charging pumps, opening one of the SEBIM assistedreliefvalvesonthepressurizer. AtTihange2andTihange3,itispossibletoreducethepressurebythefollowingmeans,depending ontheiravailability:coolingoftheprimarycircuit by the steam generators, normal spraying of the pressurizeriftheprimarycircuitpumpsareoperational,auxiliarysprayingusingthechargingpumps, opening one of the pressurizer relief valves, second level spraying using the emergency injection circuit(“CIU”)pumps.

Chapter6–SevereAccidentManagement 167 Doel NPP Strategyoftheaccidentmanagementproceduresbeforeswitchingtothesevereaccidentmanagement guidelines FortheDoelunits,thestrategyisbasedontheapproachdevelopedbyWestinghouseviathe“ERG” (EmergencyResponseGuidelines)proceduresdevelopedduringthe1980sandreviewedonaregular basis.Theoriginalproceduresarenowupdatedbythe“WOG”(WestinghouseOwnerGroup). Strategyforpreventingcoredamage Inordertobeabletocoolthenuclearfuelatalltimes,thepresenceofaprimarycoolantandaheat sinkarerequired: • the primary coolant can be supplied via the safety injection injection paths (high and low pressure); • the heat sink can be ensured as follows: making use of the steam generators to blow off steamintotheatmosphereviasteamreleasetothecondenserortotheauxiliaryfeedwater turbopump. Strategyfordepressurizingtheprimarycircuit Excesspressureintheprimarycircuitreducesthepossibilityofmakeuptotheprimarycircuitinthe firststageoftheaccidentandcomplicatesthemanagementoftheaccidentingeneral.Itispossibleto reducethispressurebythefollowingmeans,dependingontheiravailability:coolingoftheprimary circuit by thesteam generators,normal spraying of thepressurizer if the primary circuit pumps are operational,auxiliarysprayingusingthechargingpumps,openingoneofthepressurizerreliefvalves, secondlevelsprayingusingtheemergencyinjectioncircuitpumps(RJorEAsystems).

6.2.2. After occurrence of fuel damage in the reactor vessel Tihange NPP Iftheaccidentproceduresintendedtopreventdamagetothecoredescribedaboveareinsufficientto face the event, and once the core exit temperature suggests core damage, the use of the severe accidentmanagementguidelines(“SAMG”)isdecided. The SAMG are based on an approach focusing on the symptoms of the state of the power plant (symptombased)andarethereforevalidforallscenariosthatmayleadtooneoftheentrycriteriafor the severe accident management guidelines (high core exit temperature or radioactivity within the containmentbuilding). ThedifferentstrategiesdevelopedintheSAMGallpursuethesamegoals(inorderofpriority): • tostopthereleasesoffissionproductsintotheenvironment; • tomaintainthecontainmentbuildinginastableandcontrolledstate,orbringitbacktothat state; • tobringthecorebacktoastableandcontrolledstate. Ifcorecoolingislostandthecoreisdamaged,thestrategiesdevelopedintheTihangeguidelinesto restorecoolingbeforetheruptureofthereactorvessel,andtoreachastableandcontrolledstatein thecore,arethefollowing: • injectingwaterintothesteamgeneratorstoevacuateresidualpower; • depressurizing the primary circuit to maximise the number of systems capable of injecting waterintoit; • injectingwaterintotheprimarycircuit; • injecting water into the containment building to guarantee an adequate NPSH to start the recirculationphase.

Chapter6–SevereAccidentManagement 168

Doel NPP

Iftheaccidentproceduresintendedtopreventdamagetothecoredescribedaboveareinsufficientto face the event, and once the core exit temperature suggests core damage, the use of the “BK procedures”isdecided(BKproceduresaretheequivalentofSAMGattheDoelNPP). TheBKproceduresaresymptombased;inotherwords,theyaredrawnupaccordingtothestateof theunit.TheyapplytoallscenariosattainingtheentrancecriteriaoftheBK0procedure:highcore exittemperatureandaspecificcriterionincasethe thermocouplesat the core exit areunavailable duringanoutage. ThedifferentstrategiesdevelopedintheBKproceduresallpursuethesamegoals(inpriorityorder): • tostopthereleasesoffissionproductsintotheenvironment; • tomaintainthecontainmentbuildinginastableandcontrolledstate,orbringitbacktothat state; • tobringthecorebacktoastableandcontrolledstate.

If core cooling is lost and the coreisdamaged,the strategies developed in the BKprocedures to restorecoolingbeforetheruptureofthereactorvessel,andtoreachastableandcontrolledstatein thecore,arethefollowing: • injectingwaterintothesteamgeneratorstoevacuateresidualpower; • depressurizing the primary circuit to maximise the number of systems capable of injecting waterintoit; • injectingwaterintotheprimarycircuit; • injecting water into the containment building to guarantee an adequate NPSH to start the recirculationphaseandtofloodthereactorpitbeneaththereactorvessel.

6.2.3. After failure of the reactor vessel Tihange NPP Incaseofalossofcorecoolingwithdamagetothe core,the strategiesdeveloped in the Tihange guidelines to restore core cooling after the rupture of the reactor vessel, and reach a stable and controlledcorestate,arethefollowing: • injecting water into the containment building to guarantee a sufficient NPSH to start the recirculationphase; • injectingwaterintothereactorpit,tocooldownthecoredebrispresentinthereactorpitand thoseremaininginthereactorvessel. Doel NPP

Ifthereactorvesselisperforated,itispossiblethatpartofthenuclearfuelisstillpresentinthe reactorvessel,inthecoreand/oronitswaytothebottomofthereactorvessel.Therefore,theBK procedureswillalwaysspecifyinjectionintotheprimarycircuitsothatthefragmentswhicharenot relocalisedinthereactorpitcanbecooled,butalsothatwaterisbroughttothereactorpitviathe perforationofthereactorvessel. Waterneedstobesuppliedtothereactorbuilding,inthefirstplaceinordertoimmersethereactor pit,increasingthepossibilityofcoolingthecorematerialand,secondly,toincreasethewaterlevel which,inturn,willenablerecirculation.

Chapter6–SevereAccidentManagement 169 6.2.4. Cliff-edge effects and timing

Toidentifyanypossiblecliffedgeeffectfollowingthelossofcorecooling,twoinitialsituations are considered:inthefirstcase,theprimarycircuitisclosed,andtheresidualheatisthenevacuatedby the steamgenerators. In the second case,the primary circuit is open to the containment building (shutdownstates).Theconsequencesofthelossofelectricalsourcesand/orheatsinksarecoveredby the hypothesis of a complete station blackout (SBO) in themost unfavourable configuration of the unit. Tihange NPP Primarycircuitclosed Thisfirstcaseiscoveredbythefullpoweroperationstateoftheunit(mostunfavourablesituation). Followingthecompletelossofelectricalpower,onlytheturbopumpofthesafety/auxiliaryfeedwater system(respectively“EAS”atTihange1,and“EAA”atTihange2andTihange3)remainsavailablein theshorttermtofeedwaterintothesteamgenerators. Thisconfigurationischaracterisedbyhigh pressuresandtemperaturesintheprimaryandsecondarycircuits,bytheevacuationofthesecondary steamviatheatmospheredischargevalves(“VDA”)orthesafetyvalvesofthesteamgenerators,and byinsufficientcoolingofthesealsoftheprimarycircuitpumpsthatcouldlead,intheshortterm,to limitedprimaryleakages. Themainlimitationencounteredisthedepletionofthewaterinthe“EAS”/“EAA”tanks.AtTihange1, thevolumeof120m 3onlyallowscoolingoftheprimarysystembythesteamgeneratorsfor3hours (untilthesteamgeneratorsarecompletelyempty)ifthestationblackoutoccurssuddenly,andonly for7hoursiftheaccidentisprogressiveandthetotallossofelectricalsupplyhappensonehourafter the reactor emergency shutdown. Nonconventional means are available to resupply water in the “EAS”tankviathefireprotectioncircuit.Thedieselpoweredpumpofthefireprotectioncircuitand thefittingofhosesallow thistanktoberefilledin ashortperiodoftime(30minutes).Feasibility studies will be initiated to examine the possibilities of increasing the capacity of the EAS tank at Tihange1.Afeasibilitystudyfortheadditionofasafetywatersupplypumptothesteamgenerators willalsobeundertaken. At Tihange 2, the “EAA” tank is 680 m 3 and allows the feeding of the steam generators during 17hours.AtTihange 3,the“EAA”tankis800m 3,whichissufficienttofeedthesteamgenerators during23hours. Topreventdamagetothesealsoftheprimarycircuitpumps,itisrecommendedtodepressurisethe primarycircuitduringthefirsthoursfollowingtheaccident.However,forTihange2andTihange3 thisisnotclearlystatedintheprocedures.Amodificationtotheprocedurestoclarifythisisongoing. Afterthemanualopeningoftheatmospheredischargevalves(VDA)andthedepressurizationofthe primary circuit, the operator must manage the risk of injecting nitrogen from the safety injection system (“CIS”) accumulators into the primary circuit by the manual actuation of these valves (the installationofmanualcontrolsonthesevalvesshouldeasetheirsetting–thefeasibilitystudywillbe undertaken). In order to avoid deterioration of the heat transfer from the primary circuit to the secondary circuit, the pressure in the primary circuit must be kept above the threshold of nitrogen injectionofthe CISaccumulators.Secondarypressuremustalsobemaintainedcompatiblewiththe satisfactoryoperationofthefeedwaterturbopump. When the batteries of the command and instrumentation panels are low (around 7 hours after the startoftheaccidentforTihange1),theturbopumpstopsandwatermakeupatthesteamgenerators is lost. Alternative means to recover control of the turbopump are required to prevent loss of core cooling.Ifthisdoesnotoccur,thesteamgeneratorsareexpectedtodryoutwithinaround12hours afterthelossofpower. ForTihange2,thebatteriesgetlowbetween6and12hoursaftertheaccident,whileittakesfrom 7to14hoursforTihange3.Whenthishappens,theturbopumpvelocityandthewaterflowratesto thesteamgeneratorsmustbesetmanually.Atthistime,thereadingsofthewaterlevelinsidethe

Chapter6–SevereAccidentManagement 170 steamgeneratorsarelost,andhencetheoperatormusthavesetacorrectflowratebeforehandorthis couldeventuallyleadtothedryingoroverfillingofthesteamgenerators. However,thiscompletelossofelectricalpowerisextremelyunlikely,sinceitwouldimplythat: • allexternalelectricalpowersourceshavebeenlost; • all(firstandsecondlevel)internalelectricalpowersourceshavealsobeenlost. Intheunlikelycaseofthelossofcoolingbythesteamgenerators,theprimarycircuitbeginstoboil anditspressurerisestotheopeningthresholdofthepressurizerreliefvalvesortheVDAdischarge valves.Theprimarycircuitsteadilylosesitswatercontentwhichthenleadstotheuncoveringandthen tothemeltdownofthefuel,therelocationofthecoriumtowardsthebottomofthereactorvesseland finallythepiercingofthebottomofthereactorvessel.Intheabsenceofanyactionfromtheoperator, thisprocesstakesbetween2and3hours. TheoperatorisinstructedbytheaccidentproceduresortheSAMGguidesatthemomentofthelossof coolingbythesteamgeneratorstodepressurizetheprimarycircuitandtherebytofacilitateinjection into the primary circuit and initiate primary circuit "feed and bleed". The opening of the SEBIM pressurizer relief valves (“PORV” and “MORV” valves at Tihange 2 and Tihange 3) results in the depressurizationoftheprimarycircuit,whichallowstheinventoryoftheaccumulatorstobepassively injected.Thisactionmayslowdowntheprogressoftheaccidentbyseveralhours.Duringthistime,it is necessary to recover the active equipment or to deploy mobile equipment allowing for water injectionintotheprimarycircuit. InordertoincreasethereliabilityoftheSEBIM/PORVMORVvalves,analternativeelectricitysupply fortheirinstrumentationandcontrolwillbestudied. The nonconventional means (“CMU” circuit)are also availableto feed thesteam generators when theyareatlowpressure. Primarycircuitopen This case covers a wide number of configurations of the primary circuit which differ considerably accordingtotheamountofresidualheatandthewaterinventoryoftheprimarycircuit(includingthe volume of the reactor building pools). The least favourable situation is the first stage of a unit shutdownknownas“midloop”or“reducedinventory”.Thisconfigurationappearsonaverage5days forTihange1and3daysforTihange2andTihange3afterthebeginningoftheshutdownoperations. Itcombinesareducedwaterinventoryintheprimarycircuitwithstillrelativelyhighlevelsofresidual heatinthecore.Afterthetotallossofelectricalpower,theprimarycircuitwaterheatstoboilingpoint in a period of less than half an hour followed by the release of the produced steam into the containmentbuilding.Thissteamreleaseislikelytohavethepotentialeffectofcausingasteadyrise ofpressureinthecontainmentbuilding,ultimatelypreventingthegravityfedmakeuptotheprimary circuitifnothingisdonetodepressurizethecontainmentbuilding. AtTihange1,thegravityfedmakeupfromtank“B01Bi”isefficientandmaydelaytheuncoveringof thecoreforoneday.Ifnoactionistaken,coremeltdownmayhappenafteroneday. AtTihange2,thegravityfedmakeupof“CTP”tanksmaydelaytheuncoveringofthecorefor8hours. At Tihange 3, the gravityfed makeup to the depressurized primary system is not possible via the “CTP” tanks because they are located at a lower level than the primary loops. This peculiarity of Tihange3meansthatthedeteriorationofthecore coolingisfasterthaninotherunits:unlessthe primarysystemisactivelyrefilled,coremeltdownwouldoccurwithin3hoursafterthebeginningof theaccident(althoughthesituationisstillhighlyunlikely).Afeasibilitystudyisinitiatedtosetupa primarysystemrefillingsysteminthisconfiguration. RefillingB01BiorCTPtanksfromvariouswatersources(partialdrainageofthepools,“CAB”or“CEI” reservoirs) will extend the autonomous functioning of B01Bi or CTP tanks until recovery of a conventionalcoolingsource.

Chapter6–SevereAccidentManagement 171 By means of the CMU circuit fitted with hose connections, it is also possible to establish a water makeupsystemtotheB01BiandCTPtanks. Thesteadypressurizationofthecontainmentbuildingcouldbeavoidedbythecreationofanoutlet. ForTihange1,theventilationsystem(“VBP”)alsolimitsthepressurizationbydischargingthesteam outsidethecontainmentbuidling. Intheconfigurationwherethereactorbuildingpoolsarefull,thetimebeforeuncoveringofthefuel assembliesisestimatedatfivedaysforTihange1,andatleastthreedaysforTihange2andTihange 3intheleastfavourablecase(thatis,intheabsenceofaconnectionbetweenthereactorbuilding pools and the one of the nuclear auxiliary building). This period of time is enough to deploy an alternativecooling/makeupstrategy. Doel NPP Primarycircuitclosed Thisfirstcaseiscoveredbythefullpoweroperationstateoftheunit(mostunfavourablesituation). Followingthecompletelossofelectricalpower,onlytheturbopumpofthesafety/auxiliaryfeedwater system(AFWforDoel1/2,AFforDoel3andDoel4)remainsavailableintheshorttermtofeedwater intothesteamgenerators.Thisconfigurationischaracterisedbyhighpressuresandtemperaturesin the primary and secondary circuits, by the evacuation of the secondary steam via the atmosphere dischargevalvesorthesafetyvalvesofthesteamgenerators,andbyinsufficientcoolingoftheseals oftheprimarycircuitpumpsthatcouldlead,intheshortterm,tolimitedprimaryleakages. Inthesecircumstances,theaccidentprocedureprescribesthecoolingoftheprimarycircuitasfastas possibleinordertolimitthepressureonthesealsoftheprimarycircuitpumps.Thecoolingofthe primarycircuitandtheevacuationoftheresidualheatleadstoaconsiderablewaterconsumptionby theAFW/AFcircuit. For Doel 1/2, after one and a half hour the first cliff edge effect appears: the emptying of the AFWreservoirs(2x90m³),afterwhichthesteamgeneratorscanstillcontinuecoolingtheprimary circuitforseveralhours. Afterthis,alternativewatersupplytothesteamgeneratorsisavailable: • adieselfuelpumpandtemporarypipelinesarepresenttofilltheAFWtankfromthelarge MWtank; • astudyisongoingtoprovidenozzlesforthesupplyofwaterfromthefireextinguishingcircuit (FE)totheAFWturbopump’sintake; • astudyisongoingtoseismicallyqualifythepipingrequiredforconveyingtheFEwatertothe AFWpump. For Doel 3 and Doel 4, the large content of the AF reservoirs (minimum 700 m³) allows a supply during 8 hours, after which the steam generators can still continue cooling the primary circuit for severalhours. Furthermore,alternativewatersupplytosteamgeneratorsisavailable: • theAFWturbopumpscanperformthedirectintakefromtheLUpond; • a study is ongoing to provide nozzles are installed for the supply of FE water to the AFW turbopumps’intake; • astudyisongoingtoseismicallyqualifythepipesrequiredforthepurposeofconveyingtheFE watertotheAFWpump. AssoonastheAFW/AFtank’ssupplyproblemsaresolved,thepressureonthesealsoftheprimary circuitpumpswillbethenextpriority.Theprescribedprimarycircuit’scoolingandpressuredecrease upto12barsreducesthepressureonthesealsconsiderably. As soon as this pressure is reached (afterseveralhours),manualinterventionisneededtostopthecoolingattheleveloftheatmospheric relief valves in order to prevent nitrogen injection into the primary circuit by the safety injection accumulators and loss of the feedwater turbopump. In the steam generators’ cooling procedures, attentionwillbedrawntothepossibilityofmanuallyopeningthesteamgenerators’reliefvalves.

Chapter6–SevereAccidentManagement 172 Thelossofdirectcurrenttotheinstrumentationandcontroldevices(duetoemptybatteries)willnot leadtothelossofthefeedwaterturbopumpfunction,sincetheflowratecanbeadjustedmanually, but,itwillleadtothelossofanoverviewoftheaccident’sprogress. The first concern will then be the emptyboiling or overfilling of the steam generators due to the absence of information about the level. This scenario can occur 10 hours (Doel 1/2) or from 4 to 6hours (Doel 3 andDoel 4) after a station blackout. A backup 380 V network will be providedin ordertofeedthebatteries’rectifiersalternatively. Intheunlikelycaseofalossofcoolingbythesteamgenerators,theprimarycircuitbeginstoboiland itspressurerisestotheopeningthresholdofthepressurizerreliefvalvesortheVDAdischargevalves. Theprimarycircuitsteadilylosesitswatercontentwhichthenleadstotheuncoveringandthentothe meltdownofthefuel,therelocationofthecoriumtowardsthebottomofthereactorvesselandfinally thepiercingofthebottomofthereactorvessel.Intheabsenceofanyactionfromtheoperator,this processtakesbetween2and3hours. TheoperatorisinstructedbytheERGandBKproceduresatthemomentofthelossofcoolingbythe steamgenerators,todepressurizetheprimarycircuitandtherebyfacilitateinjectionintotheprimary circuitandinitiateprimarycircuit"feedandbleed".Theopeningofthepressurizerreliefvalvesresults in the depressurization of the primary circuit, which allows the inventory of the accumulators to be passivelyinjected.Thisactionmayslowdowntheprogressoftheaccidentbyseveralhours.During thistime,itisnecessarytorecovertheactiveequipmentortodeploymobileequipmentallowingfor waterinjectionintotheprimarycircuit. InordertoincreasethereliabilityoftheSEBIM/PORVMORVpressurizerreliefvalves,analternative electricitysupplyfortheirinstrumentationandcontrolwillbestudied. ForDoel1/2,electricalcablesareprovidedforthealternativesupplyofthecontainmentspraypumps (SP)byusingpowergenerators.Thisway,inthecaseofanopenprimarycircuit,thepossibilitywill existtoconveywatertotheshutdowncoolingsystem(SC)viatheSISPconnectionbyusingtheSP sprayinthereactorbuilding.Inordertobeabletoperformthisactionwithaclosedprimarycircuit,a manualisolationvalvewillbeinstalledonthesprayline(studyongoing). ForDoel3andDoel4,astudyisbeingconductedtoinstallexternalnozzlesontheSPpumpsenabling amobilepumptoachieveanalternativeSPflowwhichcanbealignedtotheprimarycircuit. Primarycircuitopen This case covers a wide number of configurations of the primary circuit which differ considerably accordingtotheamountofresidualheatandthewaterinventoryoftheprimarycircuit(includingthe volume of the reactor building pools). The least favourable situation is the first stage of a unit shutdownknownas“midloop”or“reducedinventory”.Itcombinesareducedwaterinventoryinthe primary circuit with still relatively high levels of residual heat in the core. After the total loss of electricalpower,theprimarycircuitwaterheatstoboilingpointinaperiodoflessthanhalfanhour followed bythe release of theproduced steam into thecontainmentbuilding. Thissteamreleaseis likelytohavethepotentialeffectofcausingasteadyrisein pressure inthe containmentbuilding, ultimatelypreventingthegravityfedmakeuptotheprimarycircuitifnothingisdonetodepressurize thecontainmentbuilding. AtDoel1/2,thegravityfedmakeupfromtank“R11”maydelaytheuncoveringofthecoreforseveral hours. At the start of an outage, when the reactor is stopped for only 1 to 3 days, this delay is between12and18hours. ForDoel1/2,electricalcablesareprovidedforthealternativesupplyoftheSPpumpsbyusingpower generators.Thisway,inthecaseofanopenprimarycircuit,thepossibilitywillexisttoconveywater totheSCcircuitviatheSISPconnectionbyusingtheSPsprayinthereactorbuilding. At Doel 3 and Doel 4, the gravityfed makeup from the RWST is efficient and may delay the uncoveringofthecoreforseveralhours.Atthestartofanoutage,whenthereactorisstoppedfor only1to3days,thisdelayisbetween10and18hours. ForDoel3andDoel4,astudyisbeingconductedtoinstallexternalnozzlesontheSPpumpsenabling amobilepumptoachieveanalternativeSPflowwhichcanbealignedtotheprimarycircuit.

Chapter6–SevereAccidentManagement 173 6.2.5. Adequacy of current accident management and possible additional measures

6.2.5.1. Severe accident management procedures Tihange NPP The mitigation measures currently in place to cope with a loss of core cooling and to protect the integrity of the containment are described in the accidentprocedures aswell as the SAMGguides. Thesetextscoverthevariousstagesoftheaccidentandtakeaccountofthevariouspossibleinitial statesoftheunits. The Tihange emergency operationsprocedures (“EOP”)are based on the standardprocedures from FramatomeEDForfromtheWOG.Thesedocumentsweresubjectedtoanindependentassessmentby thedesignerbeforetheywereputintoapplication. Likewise,thespecificproceduresofsecondlevelsystemsforTihange2andTihange3wereassessed byWestinghouse,beforebeingputintoapplicationduringthecommissioningofTihange3,orduring thechange(FROGapproachtoWOGapproach)forTihange2attheendofthe1980s. Eachprocedureislinkedtoanoperatingrule(Tihange1unit)oranoperatingbasis(Tihange2and Tihange3).Thisoperatingbasis/ruleconnectsthegenericdocumentationtotheproceduresthatare specific to the unit, and details the basic principles which led to the procedure (evolution of the parametersandjustificationofthephilosophy). TheTihangeSAMGguidesconsistofanadaptationforeachunitofthegenericWestinghouseOwners Group(WOG)guidesissuedin1994,whichwerevalidatedwhenpublished.

In the framework of the periodic safety review, the first Tihange SAMG guides and the strategies developedthereinwerevalidatedthroughvarioussevereaccidentscenarios.Theguidesrevealedtobe freestandingwithnoneedofanyadditionaltooltohelpdecisionmaking.Someminorcorrectionsand improvementswerealsosuggested. Inaddition,anumberoftopicsweresubjectedtoananalysisthatledtoslightimprovementswhich didnotquestionsevereaccidentsmanagementasplannedinthecurrentSAMGguides. Themultiplicityofmeansavailabletoimplementthevariousstrategiesrepresentsastrongpointofthe TihangeSAMGguides.Inordertofurtherimprovethemanagementofapossiblesevereaccidentand tobettercontroltheriskofalossofintegrityof the containment building by slow overpressure, a decision was taken to initiate a feasibility study for filtered vents on the reactor building of every Tihangeunit. Asacomplementtotheworkalreadycarriedoutintheframeworkoftheperiodicsafetyreview,the decision was taken to continue monitoring international research and development about basemat alterationduetocoriumconcreteinteraction.ThisR&Discurrently,andwillcontinuetobe,actively monitored.Inparallel,afeasibilitystudyabouttheuseofanadditionalmethodofinjectingwater(in addition to all the methods already existing) will be initiated. The international feedback from the Fukushima accident, and all new revisions of the WOG SAMGs, will be considered and applied if necessary,accordingtotheinternationalrecommendationsofthosefromtheWOG. Theintroductionofnewnonconventionalmeansimpliesindeedthattheseresourceswillhavetobe integratedintotheaccidentproceduresandthesevereaccidentmanagementguides.

Doel NPP The mitigation measures currently in place to cope with a loss of core cooling and to protect the integrity of the containment are described in the ERG procedures and BK procedures. These texts coverthevariousstagesoftheaccidentandtakeaccountofthevariouspossibleinitialstatesofthe units.

Chapter6–SevereAccidentManagement 174 EachERGprocedureforaDoelunitisaccompaniedbyabackgrounddocument.Thisdocumentlinks thegenericERGproceduresoftheWOGwiththespecificERGproceduresperunit.Thisway,insightis gained into the similarities and differences with regard to the generic ERG procedures and, where necessary,explanatoryremarkscanbegiven. The Doel BK procedures are inspired by the philosophy of the Westinghouse Owners Group (WOG) Severe Accident Management Guidelines (SAMG), further completed with specific procedures. The Doel3 and Doel 4 BK0 and BK1procedures have been verified by the regulatory body. These proceduresaresimilarforDoel3andDoel4andDoel1/2,whichimpliesthattheregulatorybody’s remarksandanswersapplytoallfourunits. TheBKprocedures(andthestrategiesdevelopedinthem)werevalidatedduringtheperiodicsafety reviewsofDoel1/2andDoel3andDoel4. Theintroductionofnewnonconventionalmeansimpliesindeedthattheseresourceswillhavetobe integratedintotheaccidentproceduresandtheBKprocedures.Thenecessaryinstructionsfortheuse ofthesenonconventionalmeanswillbeintegratedintotheprocedures.

6.2.5.2. Availability and adequacy of the instrumentation According to the emergency procedures (EOP for Tihange, ERG for Doel), the postaccidental monitoring systems (“PAMS”) are used to manage the accident. These monitoring systems were validatedtoresistdesignbasisaccidentsconditions.Theysupplyinformationthatmaybeconfirmed byallothervalidsystems. TheSAMGguides(Tihange)andBKprocedures(Doel)includediagnosticguideswhichcallfortheuse of a limited number of key parameters representing the different strategies and whereby severe accidentscanbemanaged.Theyareasfollows: • coreexittemperature; • pressureintheprimarycircuit; • waterlevelinthesteamgenerators; • pressureinthecontainmentbuilding; • waterlevelinthecontainmentbuildingsumps; • doseratesonthesite; • hydrogenconcentrationinthecontainmentbuilding(DoelNPP). ThereisnoprovisionformonitoringhydrogenconcentrationinthecontainmentintheTihangeSAMG guides, as passive autocatalytic recombiners limit the average concentration in the containment buildingatlessthan5%. TheimplementationstrategyintheSAMGguidesandBKproceduresisintended,amongotherthings, to minimise the risk of damage to the equipment and instrumentation under severe accident conditions. Attheinternationallevel,theWOGgenericSAMGsapproachisseenasadequatewithrespecttothe needsandcapacitiesoftheinstrumentation.Indeed: • the analyses carried out have shown that instrumentation that has been conservatively qualified for design accidents can remain operational under severe accident conditions, as accuracyrequirementsarereduced; • the redundancy and the existence of alternative measurements for obtaining the necessary informationonthekeyparametersreinforcesthecapacitiesoftheexistinginstrumentation; • ithasbeenshownthatitisnotnecessarytohaveanexactpictureoftheaccidentandtheway itisprogressing,andthatalimitednumberofkeyparametersissufficienttocorrectlymanage asevereaccident.

Chapter6–SevereAccidentManagement 175 Thisadequacywasestablishedbyaworkcarriedoutduringthe1990sbytheCSNI(Committeeonthe SafetyofNuclearInstallations)concerningtheuseoftheinstrumentationtomanagesevereaccidents. ThisworkquotesasanexampletheapproachadoptedintheTihangeSAMGguides. ThisapproachwasalsovalidatedattheBelgianlevelduringtheperiodicsafetyreview. The international feedback following Fukushima accident with respect to instrumentation, and any reviewoftheWOGSAMGsapproachonthismatter,willbeexaminedandimplementedifnecessary,in linewithWOGandinternationalrecommendations. MonitoringhydrogenconcentrationinthereactorbuildingswillbeimplementedintheTihangeSAMG guides,toensurethatnoriskduetothepresenceofhydrogeninthenextbuildingsexists.

6.2.5.3. Availability and habitability of the control room Tihange NPP For all three units, the ventilation and airconditioning of the main control room and the COT are controlled by the CSC system (two backed up redundant trains). Specifically, this ventilation / air conditioningcircuitcoversthecontrolrooms,aswellassomeroomsintheelectricalauxiliarybuilding (BAE). Thepurposeofthissystemisto: • keepambientconditionswithinthelimitsdefinedandensurethecomfortoftheoccupantsand theproperfunctioningoftheequipment; • ensurethehabitabilityofthecontrolroomandtheCOTzonesbyisolatingtheminthecaseof accidentssuchasaradioactivecontaminationofthesite,orthereleaseoffumesortoxic/ explosivesgasesonthesite. Thesystemmainlyconsistsoftworedundantairconditioningunits,withmutualbackup:onecanbe used asan emergencyunitifthe other onefails. Absolute filters and activated charcoal filters are fittedinsidetheventilationductsontheexternalairintake.Identicalbatteriesarealsofittedforthe internalfilteringofthecontrolroomandtheCOT. Incaseofradioactivecontaminationonthesite,thetransitiontothe"isolatedcontrolroomandCOT" configurationistriggeredeitherbythesafetyinjectionsignal(forTihange2andTihange3)orbythe "high radioactivity at external air intake plenum" signal (for all three units). In this case, the atmosphereofthesezonesswitchesto"recirculation"mode,withnointakeofunfilteredexternalair. Atemporarymakeupoffilteredairensuresthepressurizationandairrenewalofthecontrolroomand theCOT. The design of the various filter banks allows uninterrupted operation for 720 hours under the conditionsofthedesignbasisaccident(lossofcoolantaccidentwithsealedcontainmentbuilding).In caseofacompleteSBO,theventilationisshutdownandtheequipementswitchestothesafeposition (isolation of the control room and COT). The operators can manage the subsequent operations by usingfiltermasksifnecessary.Maskswithappropriatefiltercartridges(dust,iodine),aswellasstand alonecompressedairrespirators,areavailableintheunits.Theavailablequantitiesareadequateto meetneedsincaseofanaccidentwithradiologicalconsequences. Inadditiontothemaincontrolroom,Tihange2andTihange3unitsareequippedwithanemergency controlroom(BUS)wheretheventilation/airconditioningcircuitsarecomposedofthreestandalone systems. In case of an offsite accident causing a leakage of radioactive products on the site or the contamination of the site by gases, explosives, fumes or vapours, this system should ensure the habitabilityofthecontrolroomandisolateoneormoreairintakes. Incaseofanexplosionoutsidethebuilding,itwillprotecttheequipmentfromtheblastwave.Incase offire,itwillrestrictthespreadofthefireandsmoke.

Chapter6–SevereAccidentManagement 176 Toprotecttheoperatorsfromradioactiveiodine,stableiodinetabletsareprovidedatvariouslocations throughoutthesite(assemblypoints,unitoperationscentres,firstaidteamrooms,medicalsection). Incaseofasevereaccidentwithcoredamagecombinedwithastationblackout,theventilationof the control room will be lost. Habitability conditions will be monitored by the emergency team to ensurethestrictcompliancewithdosimetrylimitsandthesuitabilityofthesystemsimplementedto limitthedoseintakes.Therotationoftheoperatorswillhelplimittheindividualdoses.Reinstatingthe ventilationofthecontrolroomisaprioritytaskinordertolimitthedosestotheoperators. Doel NPP Theventilationsystem(VP)intheDoel1/2maincontrolroomconsistsofoneortwoventilators,each witha100%capacity.TheairiscooledwithCFandrefreshedbyaninjectionventilator.Thecontrol roomalsodisposesoffourseparateandautonomousaircoolersets(4x50%). Inthecaseofaninternalaccident,theventilationwillisolateautomatically.Thesafetyventilators(2x 100%) with their filter banks (prefilter, absolute filter, activated charcoal filter) will become operational at that moment. Theyare suppliedby the safety diesel generators. The filter batteries havea720hourstandbycapacity. Incasethereareproblemsataneighboringinstallation,theventilationwillisolateautomaticallywhen detecting ionizing radiation. The access doors are kept closed so as to prevent contamination. The operatorscanalsomanuallysealtheventilationfromtheoutsideair. ThepersonneloftheDoel1/2controlroomhasthepossibilitytomovetoanemergencycontrolroom incasethehabitabilityofthemaincontrolroommakesitnecessary.Theinternalventilationofthis emergencycontrolroomissuppliedbytheGNSsystem.Whentoxicgasesaredetected,theairintake iscutoff.Therearenofilterspresenttocaptureradioactiveparticlesorradioactiveiodine. TheventilationsystemoftheDoel3andDoel4maincontrolroomconsistsofoneortwoventilators (each 100 %). In case of an internal accident, the ventilation will isolate automatically. At that moment,theairintakewillbecutoff,aswellasthenormalinternalrecirculation.Safetyventilators (2x 100 %) with their filter banks (prefilter, absolute filter, activated charcoal filter) will at that moment become operational, together with the heat removal system CD/CF. The circuit is set up redundantlyandissuppliedbysafetydieselgenerators. The personnel of the Doel 3and Doel 4 control roomhasthepossibilitytomovetoanemergency control room in case the habitability of the main control room makes it necessary. The internal ventilationissuppliedbytheBKRsystem.Whentoxicgasesaredetected,theairintakeiscutoff. Therearenofilterspresenttocaptureradioactiveparticlesorradioactiveiodine. There are sufficient filter masks with their appropriate cartridges (for classical pollutants, dust and iodine) and sufficient oxygen masks available at various places on the site. A specific procedure describestheoxygencylinders’refillingmethod.Accordingtowhethertheambientairisradioactively contaminated or not, a shuttle service will take the oxygen cylinders to Kieldrecht or Kallo to be refilled. Inthemaincontrolrooms,intheemergencycontrolrooms,attheentranceofthecontrolledzones,in theemergencyoperationsfacilityandtheinterventionvehiclesaresufficientpotassiumiodinetablets presenttoeffectivelyprotectthepersonnel. Thedosetowhichthepersonnelisexposed,issubjecttoafollowup.Thelegaldoselimitsarenot exceeded.Staffrotationisforeseen. Personalprotectiveequipmentisalsoavailablefortheprotectionagainstotherformsofcontamination. Flashlightsandhelmetlightscanbeusedincasetheemergencylightingbatteriesareempty.

Chapter6–SevereAccidentManagement 177 6.3. Accident management measures to maintain the containment integrity after core damage

6.3.1. Management of hydrogen risks inside the containment Asaresultofthezirconiumcladdingoxidationinthereactorcoreorthecoriumconcreteinteraction afterfailureofthereactorvessel,significantamountsofhydrogencanbeproducedandfindtheirway intothecontainment. ThereactorbuildingsofallDoeland Tihangeunitsarefittedwithpassiveautocatalyticrecombiners (PAR)invariouscompartmentsofthecontainmentbuilding.Thesedevicesaredesignedtokeepthe average hydrogen volume concentration below 5 %, so as to prevent a detonation which could threatentheintegrityofthecontainment.Inaddition,theactiveareaoftheautocatalyticsurfaceis greaterthannecessaryandprovidesasafetymarginof20%.Furthermore,theuseofthethermal recombiner available on the site allows limiting further the quantity of hydrogen present in the containment. Hydrogenmaytransferfromthecontainmenttoanadjacentbuildingviaavarietyofleakagepaths: • abypassofthecontainmentresultingfromanaccidentsequence(ruptureofsteamgenerator tubes,interfacingsystemslossofcoolantaccident(ISLOCA)); • thenormalleakagerate(designleak)ofthecontainment; • afailureofthecontainmentbuildingisolation; • abreachorastructuralleakfromthecontainmentduetoasevereaccidentphenomenon. Theimpactofapotentialaccumulationofhydrogenintheadjacentbuildingsontheadequacyofthe existingsevereaccidentmanagementmeasuresislimitedthanksto: • some measures adopted at the design phase, the use of accident procedures and severe accidentmanagementguides,whichguaranteeaminimumimpactofthesehydrogenleakson thefurtherdevelopmentofasevereaccident; • theavailabilityofPARsthatlimittheconcentrationofhydrogeninthecontainmentbuilding, andhencetheamountofhydrogenabletospreadintotheadjacentbuildings. TheactionsrecommendedintheaccidentproceduresconsistinidentifyingapotentialISLOCAandin isolatingitinordertopreventtransfersintothenuclearauxiliarybuildingortheannulusspace.The SAMGs insist on the importance of the actions aimed at isolating the containment building and considerthoseactionsasapriority. Theexistingproceduresandspecificdesignmeasures,includingtheinstallationofthePARswhichlimit the quantity of hydrogen inside the containment, represent a sound basis for minimising the accumulation of hydrogen in a building connected to the containment. In the framework of the periodicsafetyreview,measureshavebeentakentocompletetheSAMGs,especiallywithrespectto the detection of radioactive products (and hence hydrogen) via potential leakage paths. The implementationofthesemeasuresisinprogress. In case the quenching of the corium does not lead to a coolable geometry of the corium, a core concreteinteractioncanoccur.Insuchascenario,theaccumulationofhydrogenintheannulusspace (Doel 1/2), or in the nuclear services building GNH (Doel 3 and Doel 4) – after performing the unfilteredcontainmentventing–and,eventhoughveryunlikely,cannotbeexcluded.Theinstallation ofafilteredcontainmentventingoffersapossiblesolutioninthiscase.

6.3.2. Prevention of overpressure of the containment To prevent excess pressure in the containment, the primary circuit must be depressurized in order firstly to facilitate safety injection at low pressure, and secondly, to mitigate or even prevent the phenomena of the direct containment heating following the dispersal of the corium, and sudden

Chapter6–SevereAccidentManagement 178 pressurization following the release of significant quantities of the high pressure water and steam presentintheprimarycircuit.Thesetwophenomenamayleadtoexcesspressureinthecontainment building. Thestrategyconsistsindepressurizingtheprimarycircuitbyusingthefollowingmethods: • coolinganddepressurizingthesecondarycircuitbyabypasstothecondenserorbypasstothe atmosphere; • direct depressurizing of the primary circuit by the auxiliary / emergency spraying of the pressurizerorbytheopeningofthepressurizerreliefvalves. Whenthepressureinthecontainmentnolongercorrespondstoastableandcontrolledstateoverthe long term, the main strategy consists in lowering the containment pressure by cooling with the followingmeans: • thecontainmentspraypumps; • thelowpressuresafetyinjectionpumps,afterconnectionofthelowpressureinjectionlines withthecontainmentspraysystemlines. FortheTihangeunitsandDoel3andDoel4,inordertoincreasediversificationofthecontainment buildingsprayingfunction,afeasibilitystudywillbeinitiatedtoaddanexternalflangedconnectionon the containment spray pumps in order to achieve an alternative spraying flow rate with a mobile sprayingpump. For Doel 1/2,electrical cablesare installedfor the alternative power supply of the SP pumps with powergenerators. Following a reactor vessel rupture and the potential subsequent coriumconcrete interactions, non condensablegasescouldbeproducedandwouldthenaddtothepressurizationofthecontainment building. The methods listed above do not work with noncondensable gases. However, carbon monoxideisrecombinedbythehydrogenrecombiners. Afeasibilitystudywillbecarriedouttofitafilteredvent,intendedtodealmoreefficientlywiththe overpressureissueinsidethecontainmentbuilding.Thisfilteredventwillbetheultimatecontainment building depressurization measure, which shall only be usedto prevent damage to the containment building,shouldalltheotherpreventivemeasuresfailtoreducethepressure.

6.3.3. Prevention of re-criticality Tihange NPP Thesitehassignificantprovisionsofboricacid,sothatrecoursetounderboratedorevennonborated watercanbeavoided. Whentheboratedwaterinventoryavailableinthe“B01Bi”or“CTP”tanksis gettinglow,thesetanksarethenrefilledwithwaterhavingsatisfactorycharacteristics. However, the return to criticality following the use of underborated or nonborated water in the primarycircuithasbeenstudiedinagenericandconservativeway.Onthisbasis,thegenericSAMG guides issued by the WOG ultimately authorisethe injection of underborated or nonborated water into the primary circuit. Such use of nonborated water is subjected to a prior assessment by the emergency management team and to severe usage restrictions. In the framework of a variety of studies initiated by the WOG in the wake of the Fukushima accident, analysis of makeups using boratedwater/nonboratedwaterwillbetackled.Theconclusionswillbeincorporatedintothefuture developmentsoftheSAMGguides. Theboratedwaterresourcesareinjectedwithaminimumflowrate,sufficienttoachievethecorrect coolingofthecoreandtoensureaminimumconsumptionofboricacid.

Doel NPP Beforethereactorvesselisperforated,onlyboratedwatermaybeinjectedintothereactorvessel.

Chapter6–SevereAccidentManagement 179 After the perforation of the reactor vessel, preventing the nuclear reactor to return to criticality is important.Topreventthisfromhappening–incaseofboratedwatershortage–cleanwater(without boricacid)willonlybeinjectedtoalimitedextentintothereactorbuilding.

6.3.4. Prevention of basemat melt through Asapreventiveapproach, theglobalstrategyconsistsinavoidingtheruptureofthereactorvessel. Thisimpliesinjectingwaterinsidetheprimarycircuitbyusingthefollowingmethods: • thehighpressuresafetyinjectionpumps, • thelowpressuresafetyinjectionpumps, • theemergencyinjectionpumps, • thespraypumpsofthecontainmentbuilding,afterconnectionofthelowpressureinjection lineswiththecontainmentspraysystemlines, • thealternativeinjectionsystems:theboricacidpumpsanddeaeratedwaterfromthechemical andvolumecontrolsystem,theprimarypumps. Tihange NPP FortheTihangeunits,topreventthebreachinthebasemataftertheruptureofthereactorvessel,the main strategy consists, initially, in keeping the reactor pit dry to allow the corium to sprawl on the basematandpreventingtheriskofasteamexplosion,andthen,ininjectingwaterinthereactorpit usingthemethodsdescribedpreviously.Actually,thewaterinjectedintheprimarycircuitwillfinally reachthereactorpitduetotheruptureofthereactorvessel. A feasibility study about the use of an additional method for injecting water in the reactor pit (in additiontothosealreadyexisting)willbeinitiated. Doel NPP FortheDoelunits,topreventthebreachinthebasemataftertheruptureofthereactorvessel,the reactorpitisfloodedasapreventivemeasure(beforetheruptureofthereactorvessel)bymeansofa gravityfillingfromtheRWSTandtheopeningoftherecirculationvalves. Afterthereactorvesselisperforated,therearetwowaysofinjectingintothereactorpit: • injectingintotheprimarycircuitbymeansoftheabovementionedinjectionequipmentviathe perforationofthereactorvessel; • spraying into the reactor building; the injected water will reach the reactor pit via the connectionsbetweenthereactorsumpsandthereactorpits. Theinsightsregardingthecoriumconcreteinteractionwillbefollowedupclosely.

6.3.5. Need for and supply of electrical AC and DC power and compressed air to equipment used for protecting containment integrity

Tihange NPP Tihange1 Amongst the means identified for the implementation of the aforementioned strategies, the pumps relatedtothefollowingcircuitswillbepoweredbysafetydieselgenerators:safetyfeedwatersystem, safety injection system, containment spraying system, chemical and volume control system, groundwatersystemandcompressedairsystem.

Chapter6–SevereAccidentManagement 180 Theinstrumentationandcontrolisbackedupbybatteriesandbytheemergencydieselgeneratorsvia rectifiers. The operation of the valves of the pressurizer auxiliary spray line and those of the bypass to the condenserandtotheatmosphere,aswellasthebleedoffofthechemicalandvolumecontrolsystem, do not require alternating current and their control is backed up by batteries and the safety diesel generatorsviarectifiers.TheSEBIMvalvetandemsofthepressurizerusedirectcurrentbackedupby batteriesandthesafetydieselgeneratorsviarectifiers. Tihange2andTihange3 Amongst the means identified for the implementation of the aforementioned strategies, the pumps related to the following circuits will be powered by the first level safety diesel generators: safety feedwater system, safetyinjectionsystem, containment spray system, chemical and volume control system,boricacidsystemandcompressedairsystem. Theultimateemergencypumpsarepoweredbythesecondlevelemergencydieselgenerators. The instrumentation and control is backed up by batteries and by the safety diesel generators via rectifiers. The bleedoff of the chemical and volume control system is backed up by two levels of protection. Theoperationofthedischargevalves,theauxiliaryandemergencysprayline ofthepressurizer,as wellasthebypasstothecondenserandtotheatmosphere, do not require alternating power, and theircontrolisbackedupbybatteriesandthesafetydieselgeneratorsviarectifiers.Theemergency sprayvalvesofthepressurizerarebackedupbythesecondlevel.ThePORVsrequireresupplyingwith compressedair. The electricity supplies of the two levels of protection of the units may be connected to perform mutualbackupincaseofafailure.Aprocedurewillbedrawnuptointegratethismanipulation.Itwill includethestorageofcablestorealiseconnectionsbetweenthedifferentelectricalpanels. In order to obtain the most reliable power supply for the instrumentation, a repowering alternative usingautonomousdieselgeneratorswillbestudiedforallthreeunits. Doel NPP TheBKprocedureBK3describestheelectricalpowersupplyoftheequipmentnecessarytoprotect theintegrityofthecontainment.Inthissameprocedure,alternativeelectricalpowersupplysystems areproposed. Inthefollowingsystemsthepumpsarepoweredbythesafetyoremergencydiesels: • theauxiliaryfeedwatersystem; • theemergencyfeedwatersystem; • thesafetyinjectionsystem; • theprimarycircuit’semergencymakeupwatersystem(Doel3andDoel4); • theprimarypumps’seals’emergencycoolingsystem; • thechargingsystem; • thecontainmentspraysystem. Batteriesandemergencydieselgeneratorswillperformthecontroloperationofthepumps.Thesteam generators’reliefvalves–tothecondenserandtotheatmosphere–donotneedalternatingpower. Theultimatesprayofthepressurizer,thecoolingoftheventilationbatteriesandtheventilatorsare suppliedbythesafetyoremergencydieselgenerators. Thepressurizer’sSEBIMs(Doel1/2)needdirectcurrent,suppliedbybatteries,withdieselgenerators as emergency power supply. The PORVs (Doel 3 and Doel 4) need direct current, as well as compressedair.TheMORVs(Doel3andDoel4)needdirectcurrent,aswellas380V.

Chapter6–SevereAccidentManagement 181 AnalternativepowersupplyoftheIAKcompressorswillbeprovidedbythebackup380Vnetwork. ThepowersupplyforPORVs/MORVsandSEBIMswillalsobeprovidedbythebackup380Vnetwork.

6.3.6. Cliff-edge effects and timing The reactor buildings at Doel and Tihange belong to the “large dry containment” type. The large volume available for the expansion of gases allows, in the first instance, to limit pressurization followingadischargeofwater,steamandnoncondensablegasinthereactorbuiding. TheprimarycontainmentbuildingoftheTihangeunitsiscomposedofaprestressedconcretecylinder withaninnerairtightmetallicliner.TheDoel1/2steelsphericalprimarycontainmentischaracterized by a considerable mechanical strength. The Doel 3 and Doel 4 primary containment consists of a prestressedconcretecylinderwithaninnerairtightmetallicliner. The following table shows the characteristics of the reactor buildings taken into account for the integritystudiesofthecontainmentbuildingintheeventofabeyonddesignaccident.The“ultimate pressures” are those for which significant leaks become probable at the equipment hatch. Nevertheless, exceeding the ultimate pressure does not result in the total loss of the containment building. Table 15: Characteristics of the Tihange reactor buildings

Tihange 1 Tihange 2 Tihange 3

Design pressure [bar abs] 4.1 4.5 4.5

Ultimate pressure [bar abs] >6 >6 >6

Free Volume [m 3] 68446 67856 71812

Basemat thickness [m] 2.15 2.64 2.64

Number of PARs [-] 37 38 40

Surface area of PARs [m 2] 376 329 396

Table 16: Characteristics of the Doel reactor buildings

Doel 1/2 Doel 3 Doel 4

Design pressure [bar abs] 3.86 4.5 4.7

Ultimate pressure [bar abs] 8 >6 >6

Free Volume [m 3] 42828 60758 60302

Basemat thickness [m] 2.45+1.4 3.25 3.45

Number of PARs [-] 24 40 37

Surface area of PARs [m 2] 227 306 336

The cooling / depressurization system of the reactor building includes multiple containment spray pumps–allowingtoworkindirectspraymodeorinrecirculationmode–towhichthelowpressure safetyinjectionpumpsareaddedtofulfilthiscoolingfunctionincaseofmultiplefailures.

Chapter6–SevereAccidentManagement 182 The possible failure modes of the reactor building uptothebreachinthereactorvesselarelisted below. a)Bypassofthereactorbuildingatthelevelofapenetration Thiswouldbetheresultofabeyonddesigninitiatingevent.Allpenetrationsinthereactorbuildingare equippedwithtworedundantisolatingdevices,ofwhichthevalvesautomaticallycloseincaseofloss ofcontrol.Inmostcases,theoperatormay,afterhavingidentifiedtheleak,operateadditionalvalves toisolatethelineinquestion.Suchleaks,althoughunlikely,aredifficulttoexcludebutcanbeeasily isolated. b)Inducedruptureofasteamgeneratortube Sucharupturemayconstituteabypassingpathofthecontainmentbuildingduringtheinitialhoursof acoremeltdownaccident,beforethebreachinthereactorvessel.Thistypeoffailuremaygenerally beavoidedasthebreachintheprimarycircuitduetocreepingismorelikelyatthehotleg. Abreachmayariseatthesteamgeneratortubesifahighpressureintheprimarycircuitiscombined with depressurized and dry steam generators on the secondary circuit side. The SAMGs identify numerous methods to remedy this phenomenon: reduce the pressure in the primary circuit, isolate and/orrefillthesteamgenerators. c)Hydrogenexplosion The oxidation of the fuel cladding, in a scenario of a core meltdown, produces hydrogen. The accumulationofthisgasinthecontainmentbuildingcouldresultinariskofexplosion. Topreventthisrisk,thereactorbuildingsareequippedwithpassiveautocatalyticrecombiners(PARs) in the different compartments of the containment building. Once the concentration of hydrogen reaches2%involumeinthecontainmentbuilding(i.e.wellbeforetheexplosivethreshold),these recombinersbecomeoperationalandreducetheconcentrationofhydrogenandcarbonmonoxide.The PARs also cover the risk of a hydrogen explosion in the longterm,i.e.afterbreachof the reactor vessel. Thethermalrecombineralsohelpstolimittheamountofhydrogenpresentinthereactorbuildingsin thelongterm. d)Otherfailuremodes Inthehighlyhypotheticalcasewhereallmeansofwaterinjectioninsidetheprimaryandsecondary circuitsfail,thecoremeltdownwouldoccurinthefirsthoursandthebreachinthereactorvesselafter severalhours. Thefollowingphenomenacouldquestiontheintegrityofthecontainmentbuildinginthisphase: • the dispersion of corium in the reactor building (“high pressure melt ejection”), causing suddenheatingoftheairinsidethereactorbuilding(“directcontainmentheating”); • thepressurizationduetothereleaseinthereactor building of significant amountsof water andsteampresentintheprimarycircuit; • the pressurizationdueto an explosion of steamdue to the contact of the corium and the waterpresentinthereactorpit. The first two phenomena may be lessened, or even avoided, through the depressurization of the primarycircuitbeforethebreachinthereactorvesseloccurs,principallythroughthepressurizerrelief valves. Inthehypotheticaleventofacompletefloodingofthereactorpit(e.g.asaresultoftheleakage/ breachintheprimarycircuitendinginthereactorpit),asteamexplosionmightoccurfollowingthe rapid fragmentation of corium in water, causing damagetothecontainmentbuilding.Yet,asteam explosionisunlikelyaccordingtoexperimentscarriedoutaspartofdiverseresearchprogramsthat wereunabletocreatethisphenomenon. Inthelongterm,twofailuremodesofthecontainmentbuildingmayexistatDoelandTihange.Onthe onehandthebasematmeltthrough,andontheotherhandthepressurizationofthereactorbuilding bytheproductionofsteamresultingfromtheremovalofresidualheat,and/ortheproductionofnon condensablegasesproducedbycorium/concreteinteractions.

Chapter6–SevereAccidentManagement 183 FortheTihangeunits,whenthebreachinthereactorvesseloccurs,thereactorpitisdryinmost cases (as recommended in the SAMGs). Without additional water via the primary circuit, corium/concrete interactions are unavoidable. Based on conservative estimates, the breach in the basematindryconditionswouldoccurseveraldaysafterthebreachinthereactorvessel. Nevertheless,prototypeexperimentsofcoriumininteractionwithlimestonetypeconcrete(aspresent atTihange)showthatitispossibletocoolthecoriumwithwateraftertheattackontheconcretehas begun.Thesteamreleasedwillthencauseaslowpressurizationofthecontainmentbuilding.Evenin extremelydeterioratedconfigurations,theavailabletimebeforethebreachinthebasemathappens,is more than sufficient to set up the appropriate connections to bring water into the reactor pit by injectionintotheprimarycircuit.Afeasibilitystudyfortheimplementationofadditionalwaterinjection tothereactorpitoftheTihangeunitswillbeinitiated. BecausefortheDoelunitsthereactorpitwillprobablybefloodedatthemomentthereactorvessel fails,thecoriumwilllikelybequenchedandbrokenintopieces,and,asaresultthesurroundingwater willbeabletocoolitmorequickly.Ifthisisonlypartiallythecaseor,incasetheamountofcooling waterthatcanbeaddedistoolittle,itisnotexcludedthattheconcretefloorofthereactorpitwould be affected by the coriumconcrete interactions. This process will however be slower than the pressurizationofthereactorbuildingcausedbythedevelopmentofsteamduetotheremovalofthe residualheat.Withoutaddingcoolingwatertothereactorpit,thebasematisestimatedtofailafter morethan5days(valueforDoel3). Theresidualheatreleasedinthereactorbuildingintheformofsteamcanbedealtwithbyspraying coldwaterinthemediumtermand/orthroughacoolingcircuitwithaheatexchangerinthelongterm (containmentspraysystemand/orsafetyinjectioncircuitinrecirculationmode).Ifsuchcoolingisnot achieved, the design pressure of the reactor buildings could, in this case, be reached within 40 to 48hoursfollowingthelossofallheatsinks.Thesameestimatesrefertoanultimatecollapsepressure reachedafteraperiodof3to4days. Afeasibilitystudywillbecarriedoutontheinstallationofafilteredvent,inordertobettercopewith theoverpressureissueinthecontainmentbuildingandtopreventthelossofcontainmentduetoa failureofthecontainmentbuildingifallotherpreventivemeasureshavefailedtoreducethepressure. FortheTihangeunitsandDoel3andDoel4,inordertoincreasediversificationofthecontainment buildingsprayingfunction,afeasibilitystudywillbeinitiatedtoaddanexternalflangedconnectionon the containment spray pumps in order to achieve an alternative spraying flow rate with a mobile sprayingpump. For Doel 1/2,electrical cablesare installedfor the alternative power supply of the SP pumps with powergenerators.

6.3.7. Current accident management measures for a return to a stable and controlled state Theextentandcombinationoftheexternalagressionsconsideredinthiscontextlead,inanumberof cases,tobeyonddesignaccidentsduringwhichessentialsafetyfunctionscanbelost.Thefirstaimof theaccidentmanagementstrategiesdescribedpreviouslyistoavoidthelossofsafetyfunctionsand, whenthisisnotpossible,tominimisetheconsequencesofsuchlosses.Ifsafetyfunctionsarelost,the strategytargetstherestorationofastableandcontrolledstate,byensuringthat: • thereleasesintotheenvironmentarenegligible; • thepressureandtemperatureinthereactorbuildingarenormalizedandstable; • thecoreiscooledandanyresidualenergyisevacuated. The core cooling configuration can vary depending on the initial state of the plant unit, the developmentoftheaccidentandtheavailabilityof the equipment used for the removal of residual heat.Heatremovalbyboilingintheprimarysystem,orinthereactorpitifthereactorvesselhas ruptured, is possibleinthe short and medium terms, provided that there isa guaranteed supply of waterthatissufficienttocompensateforevaporationandcondensation,andforthesteamreleasedin thereactorbuilding.

Chapter6–SevereAccidentManagement 184 Inthelongterm,itisnecessarytomovetowardsaclosedloopcoolingconfigurationinordertostop watermakeuptothesump.Otherwisethecontainmentsprayinthereactorand/ortheinjectioninto the primary circuit will cause the water level in the sump to rise, resulting in the loss of safety equipmentandeventuallythelossofintegrityofthereactorbuilding. 6.3.8. Overview of the accident management strategies and means

Table 17: Strategy for the management of severe accidents and means involved at Tihange NPP

Strategy Objectives Means Power supplies

Normalfeedwaterpumps ACpowersupplyisnot backedup Waterextractionpumps

Rawwaterpumps Injectionofwater Removetheresidualheat ACpowersupplyisbacked intothesteam andpreventtherupture Safetyfeedwaterpumps(Tihange1) upbythe“GDS”firstlevel generators ofthereactorvessel dieselgenerators Auxiliaryfeedwaterpumps (Tihange2and3) ACpowersupplyisbacked Emergencyfeedwaterpumps upbythe“GDU”second (Tihange2andTihange3) leveldieselgenerators Steamgeneratorsreliefvalves(bypass)to thecondenser Steamgeneratorsreliefvalves(bypass)to ACpowersupplyisnot theatmosphere required

Auxiliarysprayofthepressurizer

DCpowersupplyisrequired atTihange1andisbacked SEBIMvalves(Tihange1) upbybatteriesandGDS dieselgenerators Reliefvalvesofthepressurizer Depressurization Maximisethenumberof (Tihange2andTihange3) ACpowersupplyisnot oftheprimary watersourcesableto requiredforthereliefvalves circuit supplytheprimarycircuit atTihange2andTihange3

Powersupplyisnotrequired atTihange1 Bleedoffofthechemicalandvolume Powersupplyisbackedup controlcircuit(“CCV”) bythefirstandsecond levelsatTihange2and Tihange3

Emergencysprayofthepressurizerat ACpowersupplyisbacked Tihange2andTihange3throughthe upbythe“GDU”diesel emergencyinjectioncircuit generators Injectionofwater ACpowersupplyisbacked Removetheenergy intotheprimary Lowpressuresafetyinjectionpumps upbythe“GDS”diesel accumulatedinthecore circuit generators Provideameansof Highpressuresafetyinjectionpumps coolingdownthecore Preventordelaythe Containmentspraypumpsconnectedto breachinthereactor thesafetyinjectionsystem vessel Chargingpumpsofthe“CCV”circuit

Chapter6–SevereAccidentManagement 185 Boricacidpumps

Deaerateddemineralizedwaterpumps

ACpowersupplyisbacked Emergencyinjectionpumps upbythe“GDU”diesel (Tihange2andTihange3units) generators

ACpowersupplyisnot Primarypumps backedup

Injectionofwater Containmentspraypumps Guaranteesufficient ACpowersupplyisbacked intothe NPSHtoenable upbythe“GDS”diesel containment recirculation Lowpressuresafetyinjectionpumps generators building connectedtothecontainmentsraysystem

Cooldownthedebrisof thecorepresentinthe Lowpressuresafetyinjectionpumps reactorpit

Highpressuresafetyinjectionpumps ACpowersupplyisbacked Injectionofwater upbythe“GDS”diesel inthereactorpit Containmentspraypumpsconnectedto Cooldownthedebrisof thesafetyinjectionsystem generators thecoreremainedinthe reactorvessel Boricacidpumps

Deaerateddemineralizedwaterpumps

Keepthecontainment Containmentspraypumps buildingintegrity ACpowersupplyisbacked Reductionofthe upbythe“GDS”diesel Lowpressuresafetyinjectionpumps pressureinside Facilitatelowpressure generators connectedtothecontainmentspray thecontainment injection system building Preventhydrogen Autocatalyticrecombiners Passive explosion

Table 18: Strategy for the management of severe accidents and means involved at Doel NPP

Strategy Objectives Means Power supplies

Steamgeneratorsreliefvalvestothe condenser ACpowersupplyisnot Steamgeneratorsreliefvalvestothe required atmosphere ACpowersupplyisbacked Auxiliarysprayofthepressurizer upbysafetydiesel generators Preventahighpressure ACpowersupplyisbacked ruptureofthereactor Emergencysprayofthepressurizer upbysafetyoremergency Depressurization vessel dieselgenerators oftheprimary circuit Allowlowpressure DCpowersupplyisrequired injection andisbackedupby SEBIMvalves(Doel1/2) batteriesandemergency dieselgenerators

Besidesthedirectcurrent, PORVvalves(Doel3andDoel4) compressedairisalso required

MORVvalves(Doel3andDoel4) 380ACpowerisneeded

Chapter6–SevereAccidentManagement 186 ACpowersupplyisbacked Highpressuresafetyinjectionpumps upbysafetyoremergency dieselgenerators Preventordelaythe ACpowersupplyisbacked breachinthereactor Lowpressuresafetyinjectionpumps upbysafetyoremergency vessel dieselgenerators Injectionofwater Emergencymakeupwaterpumpsofthe ACpowersupplyisbacked intotheprimary primarycircuit upbysafetyoremergency circuit (Doel3andDoel4) dieselgenerators Mitigatethe ACpowersupplyisbacked Containmentspraypumps consequencesofthe upbysafetyoremergency (Doel3andDoel4) coriumconcrete dieselgenerators interactionsinthereactor pit ACpowersupplyisbacked Chargingpumps upbysafetyoremergency dieselgenerators

Mitigatingthe consequencesofthe Injectionofwater coriumconcrete GravityfillingfromtheRWST Passive inthereactorpit interactionsinthereactor pit

ACpowersupplyisbacked Containmentspraypumps upbythesafetyor emergencydieselgenerators

ACpowersupplyisbacked Lowpressuresafetyinjectionpumps upbythesafetyor Keepthecontainment emergencydieselgenerators Reductionofthe buildingintegrity pressureinside ACpowersupplyisbacked Ventilationcoolingbatteriesofthereactor thecontainment upbythesafetyor building building emergencydieselgenerators

Ventingofthereactorbuilding(ifnoother possiblesolutionsleft)

Preventhydrogen Autocatalyticrecombiners Passive explosion

Chapter6–SevereAccidentManagement 187 6.4. Accident management measures to restrict the radioactive releases Before applying the guides recommending the following strategies, the shift crew must check all potential release paths of fission products. The use of these strategies also involves longterm monitoringoftherisksthatcanresultfromtheirimplementation.

6.4.1. Mitigation of fission products releases This strategy comes into effect when the amount of radioactive materials inside the containment building reaches a level at which atmospheric releases can reasonably be expected and require protectivemeasuresforthepopulationoutsidethesite.Themitigativemeasuresidentifieddependon theoriginoftherelease: • forthereleasesfromthecontainmentbuilding,themeasuresidentifiedare: o thesprayinginsidethereactorbuilding o theventilation/filtrationoftheannulusspace, o andtheadditionofsodatothewaterinthesumpsof the containmentbuilding (to trapiodine); • forthereleasesfromthesteamgenerators,themeasuresidentifiedare: o thefillingofthesteamgeneratorwithwater, o theisolationandthereleaseofthesteamfromtheaffectedsteamgeneratortothe condenserratherthantotheatmosphere, o andotheralternativemeasures(suchassprayingthereleasedsteamwithfirehoses); • forthereleasesfromthenuclearauxiliarybuilding,themeasuresidentifiedare: o theoperationofventilation/filtrationsystems, o in the event of containment penetration failure, the isolation of the containment penetrationcausingtherelease, o and in the event of a leak in one of the recirculation loops, the reduction of the flowrate in the loop in question, the isolation of the loop, and the use of other recirculationloops. 6.4.2. Injection of water into the steam generators to trap the fission products leaking from damaged steam generator tubes Thisstrategycomesintoeffectwhenthereisaninadequatelevelofwaterinthesteamgenerators. The measures identified are, when the pressure in the steam generators is high: the auxiliary feedwaterpumps,theemergencyfeedwaterpumpsandthenormalfeedwaterpumps. Whenthesteamgeneratorsareatlowpressure,thepumpsofthewaterextractionsystemandthose oftherawwatersystemareused.

6.4.3. Injection of water into the primary system to trap fission products released from the core debris This strategy comes into effect when the core exit temperature indicates an uncovered core. The measuresidentifiedare • thepumpsofthehighpressureandlowpressuresafetyinjectionsystems, • thepumpsofthecontainmentspraysystem, • thepumpsoftheemergencyinjectionsystem • thepumpsofthechemicalandvolumecontrolsystem, • thewaterandboronmakeuppumps, • theprimarypumpsandthespecialmeansinshutdownstate.

Chapter6–SevereAccidentManagement 188 6.4.4. Injection of water into the containment building TheaimofthisstrategyistoguaranteeasufficientNPSHtoallowrecirculationphaseandtoensure, asapreventivemeasure,thatthereisasufficientquantityofwaterinthecontainmentbuildingtotrap thefissionproductsresultingfromthedebrislocatedoutsidethereactorpit.Itcomesintoeffectwhen thewaterlevelinthecontainmentsumpsistoolow. The measures identified are the containment spray pumps, thelow pressuresafety injection pumps andtheadditionofsodatothewaterinthecontainmentbuildingsumps.

6.4.5. Monitoring containment building conditions The aim of this strategy is to reduce the concentration of fission products and to trap the fission productsreleasedfromthecontainmentbuilding.Itcomesintoeffectwhenthecontainmentbuilding pressurenolongercorrespondstoastableandcontrolledstateinthelongterm. The measures identified are the containment spray pumps, thelow pressuresafety injection pumps andtheadditionofsodatothewaterinthecontainmentbuildingsumps.

6.4.6. Injection of water in the reactor pit Theaimofthisstrategyistotrapthefissionproductsreleasedbythedebrislocatedinthereactorpit and in the reactor vessel. Thisstrategy comes intoeffectwhenthe coreexittemperatureindicates thatthecoreisstilldeteriorating. The measures identified are the high pressure and low pressure safety injection pumps, the emergencyinjectionpumps,thecontainmentspraypumps,thewaterandboronfeedpumpsandthe pumpsofthechemicalandvolumecontrolsystem.

Chapter6–SevereAccidentManagement 189 6.5. Accident management measures for loss of cooling of spent fuel pools Themainaimhereistoavoiduncoveringthefuelstoredinthestoragepools,eitherbyreestablishing activecoolingofthepoolsorbyensuringawatersupplybyanyavailablemeans(conventionalornot). Evenwithoutasupplyofwater,thetimebeforethefuelisuncoveredcanbecalculatedindaysfor spentfuelpoolsattheDoelandTihangeunitsandinweeksfortheDEtemporarystoragefacilityat Tihange. That leaves sufficient time to install or bring an alternative water supply, if all traditional methodsareunavailable.

6.5.1. Current accident management measures Tihange NPP Thecoolingofthespentfuelpoolsofthereactorunitsisensuredbyapoolloopsystem(CTP)with twopumpsandtwoheatexchangers. ThespentfuelpoolsofDEbuildingarecooledbyapoolloopsystem(STP)withtwopumpsandtwo heatexchangers. Fourmajortypesoffailurescanaffectthespentfuelpoolscoolingsystem:thelossofanindividual pieceofequipment(apumporaheatexchanger),thelossofpowersupplytothepumps,thelossof theultimateheatsinkandthelossofwaterinventory. Intheeventofanindividualpieceofequipmentbeinglost(pumporexchanger),thecoolingfunction isrecoveredbyswitchingmanuallytothebackupequipment. Intheeventofacompletelossofoffsitepower(LOOP)atTihange1,agravityfedmakeupwouldbe availablefromawaterreservoir. IntheeventofacompleteLOOPatTihange2and/orTihange3,thecoolingpumpsCTPandSTPare resuppliedfromthe380Vbackedupelectricalboardsofthe“BUS”,subjecttoanadequateconnection (switching in the electrical panels). Procedures for operation in accidental conditions automatically requirethisresupply.Inbothcases,thepowersupplyfortheCTP(andSTP)pumpsisswitchedtothe secondlevel380Vbackedupswitchboards. IntheeventofacompletelossoftheprimaryultimateheatsinkatTihange1,theheatexchangers cooling the pools are supplied from ground water in accordance with the operation procedures in accidentalconditions. IntheeventofacompletelossoftheprimaryultimateheatsinkatTihange2and/orTihange3,a fixedconnectionresuppliestheCTPexchangerswithcoolingwaterfromthe“CRU”system(emergency coolingsystem).AnyofthethreeCRUtrainscanthensupplytheCTPexchangers.Theswitchtothe alternate ultimate heat sink (CRU/CEU) is required systematically when the abovementioned proceduresareapplied. IntheeventofacompletelossoftheprimaryultimateheatsinkofthepoolsinbuildingDE,Tihange3 is supplied by CEU system (second levelemergency water supply) via hosepipes. If the CEU supply from Tihange 3 fails, the wells on Tihange 2 can be connected by hosepipe to supply the STP exchangers. Allofthesefactorsfacilitatethecoolingofthe storage pools and prevent themfrom boiling, hence avoidingtheassociatedlossofwaterinventory. Intheeventofacompletelossofallheatsinks,andbeforeanysignificantlossofwater,acontinuous makeupcanbeprovidedbymobilesupplyresourcesviathefireextinctionwatersystem(“CEI”).This supply can also be provided in case of station blackout or flooding. In addition, at Tihange 1, an additionalpumpisavailableforsupplyingthespentfuelpoolsandprovidinganadequatesupplyof coolingwater(CTP).Thispump,poweredbythenormalelectricalnetwork,canbebackedupbythe

Chapter6–SevereAccidentManagement 190 emergency diesel generator (“DUR”). In case of loss of water inventory in the pool, the potential sources of resupply are the other unaffected compartments of thepool, the B01Bi tankor the CTP reservoirs,theboricacidanddeaeratedwaterpumpsandreservoirs,theCEIcircuitviathehosereels inbuildingDorthenonconventionalsupplymeans(“CMU”). Doel NPP

Doel1/2 ThePLcircuit(PoolLoop)ofthespentfuelpoolofDoel1/2consistsoftwoparts: • apurificationpartwithtwopumps,withafirstlevelpowersupply; • acoolingpartwiththreepumpsandthreeheatexchangers. ThenormalwatersupplysourcespossibilitiesforthePLpoolsaretheMWandPLsystemsoftheWAB. Inemergencysituations,thewatersupply/reservoirfromtheRWSTscanbeused.AlsosupplywithFE waterisapossibility.

Incaseofanearthquake,theFEcircuitintheGNSistheguaranteedwatersupplysystem.Thesupply isoperatedfromtheDoel3LUpond.Ifnecessary,afirehosecanbeconnectedfromtheFEcircuitin theGNStothePLpools.Foraflowrateof13tonsperhour,onefirehoseissufficient.

Doel3andDoel4 ThePLcircuit(PoolLoop)ofthespentfuelpoolsofDoel3andDoel4consistsoftwoloops.Eachloop consistsofapumpandaheatexchanger. Thereisanincidentprocedureinwhichonesingle pumpcanguaranteethePLcoolingincasethe otherpumpceasestofunctionforwhateverreason(electricalormechanical).Thereisareservepump present together with the necessary coupling equipment. The incident procedure also presents alternativecoolingpossibilitiesincasethenormalcoolingviatheheatexchangerisnotavailable.In casetheFEnetworkisintact,theprocedureprescribestheuseofFEhoses.IncasetheFEnetworkis isolatedasaconsequenceofthesafetysignals,analternativeconnectionpointisproposed. A specific incident procedure prescribes the actions to be taken in case of an uncontrolled level decreaseinthespentfuelpools.Infirstinstance,thepumpsthatareintendedforthepurificationof thecircuitwillbeshutdown.Thisway,possibleleakscanbelocalized.SupplypossibilitiesareSI(from the RWST), MW and FE. A water supply of 13 m³ per hour is sufficient to compensate for the evaporation. Astudyisconductedinordertobeabletoprovideafixedpipingforthealternativesupplyofthe spentfuelpoolsofDoel1/2,Doel3andDoel4.

6.5.2. Cliff-edge effects and timing SpentfuelpoolsofDoelandTihangeunits Thelossofactivecoolingofaspentfuelpoolisaslowandprogressiveincident.Thelargequantities ofwater,mainlythereforshielding,andthelowresidualheat(bycomparisonwiththecore)resultin considerableinertia. The stages successively reached in the event of the loss of cooling of a spent fuel pool are the following: • the water heatsup to the boiling point. After thisstage,thesteamaroundthepoolandin someadjacentroomsimpedesaccessforanyonsite intervention (for example, providing a watermakeuptothepoolorrecoveringcoolingthroughforcedconvection); • shieldingislostaftertheevaporationofseveralmetresofwaterabovethefuelassemblies. Thismakestheareaevenlessaccessiblefordosimetricreasons.Inaddition,theconfiguration ofthewaterintakesforforcedconvectionnolongerallowsactivecoolingbelowthislevel;

Chapter6–SevereAccidentManagement 191 • theassembliesareuncovered.Fromthispointon,thetemperatureofthecladsbeginstorise, which eventually leads to the loss of their integrity and potentially to the meltdown of the assemblies. Theactionsrequiredtoavoidthissequenceofeventsconsistinprovidingawatersupplytothepools and restoring forced convection. These actions must be carried out while bearing in mind the restrictions imposed by the different stages, for which the timing is set out in the following table. Threeinitialconfigurationsareconsideredfortheconcernedunit:duringnormalpoweroperation,at the end ofcomplete unloadingof the core when the reactor buildingpool and the nuclear auxiliary buildingpoolarenotconnected(themostdisadvantageoussituationforthespentfuelpools),andat theendofacompleteunloadingwhenthereactorbuildingpoolandthenuclearauxiliarybuildingpool areconnected.

Table 19: Timing of the different stages during loss of pools cooling in Tihange units Unloading without Unloading with connection Unit Stage Power connection to the reactor building to the reactor building

Boiling [hours] 40.7 10.2 10.2

Tihange 1 Loss of shielding [days] 13.0 3.7 5.8

Uncovering [days] 16.5 4.7 9.3

Boiling [hours] 24.6 7.8 7.8

Tihange 2 Loss of shielding [days] 4.2 1.5 3.6

Uncovering [days] 6.6 2.4 6.8

Boiling [hours] 30.8 9.2 9.2

Tihange 3 Loss of shielding [days] 6.7 2.3 4.3

Uncovering [days] 9.9 3.4 6.6 At Tihange 2, a high “residual heat / water volume” ratio results in the uncovering of the fuel assembliesafter2.4dayswithoutwatermakeup,intheworstcasescenario.Formostsituations,there ismoretime(aboutaweekorevenmore)forallthreeunits.

Table 20: Timing of the different stages during loss of pools cooling in Doel units Unloading without Unloading with connection Unit Stage Power connection to the reactor building to the reactor building

Boiling [hours] 43 15 15

Doel 1/2 Loss of shielding [days] 7 3 5

Uncovering [days] 11 4 9

Boiling [hours] 26 8 8

Doel 3 Loss of shielding [days] 5 2 3

Uncovering [days] 8 3 5

Boiling [hours] 34 10 10

Doel 4 Loss of shielding [days] 7 3 3

Uncovering [days] 11 3 6

Chapter6–SevereAccidentManagement 192 The strongestcorrelationbetweentheresidualheatandthewatervolumeinthepoolsisfoundin Doel3.Thismeansthataftera3dayperiod–inthemostpenalizingconfiguration–waterhastobe addedinordertopreventtheuncoveringofthespentfuelassemblies. BuildingDE(Tihange) ThelossofactivecoolingofthespentfuelpoolsinbuildingDEisaslowandprogressiveprocess.The largequantitiesofwater,mainlythereforshielding,andthelowresidualheat(bycomparisonwiththe core)resultinconsiderableinertia. Thetimingshowninthefollowingtablerepresentstheconservativecaseofallfuelassemblieshaving themaximumallowedresidualheat.

Table 21: Timing of the different stages during loss of pools cooling in building DE

Unit Stage Time

Boiling [hours] 102

Building DE Shielding [days] 16.6

Uncovering [days] 24.1 Thesignificantinertia(atleast3weeks)allowstheimplementationofthemeasuresrequiredtoavoid thelossofcoolingoftheassembliesstoredinbuildingDE.

Spentfuelcontainerbuilding(Doel) The spent fuel in the spent fuel container building (SCG) is stored in transport containers that are resistantagainstextreme conditions.Togetherwiththe storagebuilding,the containers provide the necessarybiologicalshieldingand,innormalcircumstances,animprovedheatremoval. The cliff edge effects that may lead to nuclear fuel damage and beyond design radiological consequences,arearesultoftheoverheatingofthenuclearfuelduetoinsufficientcoolingand/orthe failureoftheleaktightnessofthecontainerattheleveloftheprimarylid’sdoubleseal.Thelossof the neutron absorbing resin of the containers and/or the shielding of the building will not lead to nuclearfueldamage.Theradiologicalconsequencesareneverunacceptable. Thespentfuelcontainerscanresista60minutefire,e.g.asaresultofaplanecrash.Inthedesign basisaccident,thefirewillburnoutspontaneouslybecauseitisexcludedthatthemetalcontainers would burn.In case a beyonddesign firewould break out, considerable margins are built in at the leveloftheweakestlink,beingtheprimaryseals.

6.5.3. Instrumentation needed to monitor the spent fuel and to manage the accident Tihange NPP Allthespentfuelpoolsarefittedwithlevelsensors,soundinganalarminthecontrolroomifthereisa change from the nominal level. In addition, any change in the level is detected by pressure measurementsattheintakeofthepoolskimmingpumps. Thetemperatureofthepoolsisalsomeasuredcontinuously,andanyincreasesetsoffanalarminthe control room. The temperatures in DE building at Tihange 3 are measured and an alarm is also triggeredinthecontrolroom.

Chapter6–SevereAccidentManagement 193 Withregardtothepowersupply,thesemeasuresarenormallypoweredbynonsafetyratedboards butarebackedupbythefirstleveldieselgeneratorsandfittedwithbatteriescapableofcompensating forpowerfailuresofuptothreehours. Intheframeworkoftheperiodicsafetyreviews,additionallevelmeasuringinstrumentation,resisting accidentalambientconditions,hasbeenproposedforthepools. Doel NPP

Doel1/2 In the GNH there are two pools with nuclear fuel elements and both are equipped with two temperatureandtwolevelmeasurements.Oneofbothmeasurementsissuppliedbythefirstleveland theotheronebythesecondlevelpowersupplysystem. Thereareambientradioactivitymeasurementequipmentpresentinthevicinityofthepoolsbutthey have no safety function. The radioactivity instrumentation on the chimney of the GNH does have a safety function. The radioactivity measurements on the chimney ofthe GNHtriggerthe filtering of radioactivereleases. Thereisalocalventilationontopofthepoolsbutithasnosafetyfunction.Theventilationofthe GNH,thebuildinghousingthepools,isthesafetyrelatedpoolventilation. Doel3andDoel4 IntheSPGtherearetwospentfuelpools.Bothare equipped with two temperature and two level measurements.Eachmeasurementisperformedviathesecondlevelpowersupplyfromthebunker. Theventilationofthenuclearfuelpoolsbuildingisasafetyrelatedcircuitconsistingoftworedundant trains. In case the presence of radioactive noble gases is detected by redundant qualified measurementequipment,thefiltersareputintooperation.InthevicinityofthepoolsintheSPG,two ambientradioactivitymeasurementdevicescanbeconsultedfromthecontrolrooms.

6.5.4. Hydrogen accumulation To assess the risk of hydrogen accumulation in the spent fuel pool buildings, it is necessary to estimatetheproductionrateofthisgas.Twosourcesofhydrogenproductionhavebeenidentified: • theoxidationofthezirconiumfuel claddingbythewatervapour,aftertheassemblieshave beenuncovered; • theradiolysisofthewaterinthepoolsduetotheradiationemittedbythefuelassemblies. Thishydrogenproductionalsooccursinnormalconditions.Inaccidentalcircumstances,such productioncanresultinthelongterminsignificantaccumulationifthebuilding’sventilation systemisunavailable. Threemainconclusionscanbedrawn: • firstofall,theuncoveringofthefuelassemblies,resultingintheoxidationofthezirconium clad,canbeavoidedbyensuringawatermakeuptothepools.Thisismadepossiblebythe time before the assemblies become uncovered (a few days) and the considerable diversification of makeup means. A water makeup of 14 m³/h is always sufficient to compensatefortheevaporationfromthepoolsofallthreeTihangeunits.ForbuildingDE,a makeup of 5.1 m³/h is sufficient. A water makeup of 13 m³/h is always sufficient to compensatefortheevaporationfromthepoolsofalltheDoelunits. • the ventilation system mustensurethe permanent renewalof the air in thespent fuel pool buildings.Ifthissystemisunavailable,thehydrogenproducedbyradiolysiscanaccumulate, sothattheriskofanexplosioncannotberuledout.Intheworstcasescenario,wherethe entirecorehasjustbeenunloadedintothespentfuelpool,theflammabilitythresholdcanbe reachedafterafewdays;

Chapter6–SevereAccidentManagement 194 • given the very low residual heat present in building DE, the eventuality of hydrogen accumulationcanberuledout.Indeed,hydrogenproductionbyradiolysisisnegligibleandthe fuelassembliesonlybecomeuncoveredabouttwentydaysafterthetotallossofcooling. Theimpactofpotentialhydrogenproductioninthespentfuelpoolbuildingsafteranaccidentcausing atotallossofpoolcoolingislimited.Therecoveryoftheventilationsystemsandtheavailablemeans ofsupplyingthepoolswithwaterallowtoavoidtheriskofhydrogenaccumulation. However, an additional study will be initiated in order to assess the residual risk of hydrogen accumulation.

6.5.5. Adequacy of current management measures and possible additional arrangements Tihange NPP Withoutactivepoolcooling,theheatisevacuatedbytheventilationsystemofthepoolsareaviathe filtrationsystemfittedontheextractionofthepoolshalls. Awatermakeupof14m 3/hisalwaysenoughtocompensatefortheevaporationofwaterfromthe spentfuelpoolsofthethreeunits. Theambientconditionsaremonitoredbyradioactivitymeasuringequipmentlocatedinthepoolshalls andontheventilationsystemattheexhauststack. The instructions in the event of a loss of water in the pools are included in the fuel handling procedure.Therearealsoinstructionsincaseofproblemsduringthehandlingoffuelassemblies. Doel NPP

Doel1/2 Themeasuresinasevereaccidentsituationarenotdifferentfromthemeasuresbeforetheaccident. Theyarealwaysaimedatpreventingnuclearfueldamagebyensuringthesupplyandcoolingofthe pools.NuclearfuelpoolcoolingintheGNHcanbeperformedindifferentways. Ventilationispresentabovethespentfuelpools,butithasnosafetyfunction.Thebuildingventilation oftheGNH,leadingtotheGNH’schimneyisthesafetyrelated ventilation for the pools. There are filtersbuttheycanonlycapturetheradioactivityifthehumidityofthesuppliedaircanbelimited. Thereisalsoaspecificprocedurewithguidelinesregardinganuncontrolledleveldecreaseinaspent fuelpool.Theproceduredescribeshowthepersonnelmemberscanbringthemselvestosafetyand howthepreparationforapossibleinterventioninthepoolswillproceed. Inthewallsofthepoolsarefunctionalholesforthedetectionofcracksintheliner.Theseholescan bepreventivelysealed. Doel3andDoel4 ThespentfuelpoolsareaisventilatedbythesafetypartoftheVF,consistingoftworedundanttrains whichareequippedwithfilterstobeusedafterradioactivityhasbeendetectedbymeasurements. In order to make the filters function effectively, the humidity degree has to be managed. The air exhaustionisconductedtoachimneywheremeasurementequipmentregisterthedischarge.

6.5.6. Returning to a stable and controlled state Returning toastable and controlled state after the prolonged loss of pool cooling consists firstlyin restoring the normal level in the pools. Without active cooling, the cooling configuration is characterised by a water supply that compensates for the evaporation of the boiling pools and by passiveevacuationofthesteamtotheenvironment. A closed loop cooling system must be introduced in order to stop the release of steam into the environmentinthelongterm.

Chapter6–SevereAccidentManagement 195 6.6. Synthesis of the main results presented by the licensee Basedontheinformationinthelicensee’sstresstestreportsandtheadditionalinformationprovided by the licensee during technical meetings and onsite inspections, the main results for the topic “severeaccidentmanagement”areasfollows. A large number of severe accident management strategies and measures (means and procedures) have beenaddressed by the licensee,withadescription of their current status and a proposal for potentialadditionalmeasures. Theresultsoftheassessmentsreaffirmedtheneedforpowersuppliesandwatersourcesavailableat alltimeandinallcircumstancestoguaranteethecoolingofthenuclearfuel.Tothisend,thelicensee reliesontheintroductionofnewsafetymeans(“nonconventionalmeans”)andthereinforcementof itsemergencyorganization. Thenewemergencymeansplannedbythelicenseeinclude,amongothers,mobiledieselgenerators, mobilepumps,electricalcables,andhosesforconnectiontodiversewatersourcesandsystems.The licensee emphasizes that a numberof thesenon conventional means were supplied soon after the Fukushimaaccidentandarealreadyavailableonthefield. Furthermore,someselectedloopsonthefireextinctionnetworkswillbereinforcedtoimprovetheir resistancetoanearthquake,soastousethemtoresupplywatertosomesafetysystemsifnecessary. With respect to the emergency organization, the licensee defined three operational levels to better managemultiunitsevents: • the"standard"mode,withasingleunitinvolved;inthiscase,thecurrentorganisationofthe internalemergencyplanremainsapplicable; • the"alert"mode,whenapredictablecrisissituationislikelytoaffectseveralunits(e.g.alarge scale flood); in this case, oncall managers and some technical officers will always be on standbyonthesite;thedetailedorganizationofthe“alert”modeisongoing; • the "high" mode: when a non predictable crisis situation suddenly affects several units simultaneously on the same site (e.g. earthquake); the detailed organization of the “high” modeisongoing. Thefullimplementationofthenewemergencyorganizationwillbeeffectivein2013. Meanwhile,thecurrentonsiteoperationcentre(“COS”)atTihangewillmovetoaseismicallyqualified building,equippedwithabackeduppowersupplyandwithaventilationsystemfittedwithcharcoal filterstoprotectthepersonnelagainstiodine. Inparallel,thelicenseeplanstolaunchcomplementarystudiesonthefollowingtopics: • theinstallationoffilteredventsonthecontainmentbuildingofeachunitonbothsites:these deviceswouldallowtofilterefficientlytheatmosphericreleasesincaseadecompression of thereactorbuildingisnecessaryafterasevereaccident; • theassessmentoftheresidualriskofhydrogenaccumulationinthespentfuelpoolsbuildings: theaimistoevaluate,inthedifferentaccidentalscenariosconsidered,thepossibilitythatthe hydrogenproducedinthespentfuelpoolscouldreachadangerousconcentration. Finally, the licensee will continue to follow the international research and development on the limitationofthecoriumconcreteinteractionsinthereactorpit.

Chapter6–SevereAccidentManagement 196 6.7. Assessment and conclusions of the regulatory body Theapproachadoptedbythelicenseetoreevaluatethemanagementofsevereaccidentscomplies withthemethodologyprovidedbythelicenseeandapprovedbytheregulatorybody. Theimprovementsproposedbythelicensee,particularlyintermsofsupplementarysafetymeansand emergencyorganization,willenhancetheresponsecapacityoftheplantsandwillfurtherincreasethe abilitytomitigatethepotentialconsequencesofasevereaccident. Basedontheassessmentofthelicensee’sreportsandthesubsequenttechnicalmeetingsandonsite inspections, the regulatory body identified additional demands and recommendations in order to furtherimprovethemanagementofemergencysituations. 1. The adequacy of the procedural guidelines (BK procedures for Doel and severe accident managementguidelinesforTihange)tocopewithasevereaccidenthasbeenassessedbythe licensee,relyingmainlyonthefactthatthoseproceduresareinspiredfromtheWestinghouse ownersgroupsevereaccidentmanagementguidelines(“WOGSAMG”),areregularlyupdated, andarevalidatedintheframeworkofthetenyearlyperiodicsafetyreviews. Yet,thoseproceduresstillneedtobeimprovedwithrespecttothefollowingaspects: • theDoelBKproceduresshouldbesupplementedwithlongtermmonitoringandexit guidelines,suchasthosealreadyexistingforTihange(SAEG1andSAEG2); • insomeDoelBKprocedures,referenceismadeto(thedistinct)FRGproceduresfor theexplanationofrecommendedmethods.Thisconstantswitchingbetweendifferent proceduresshouldbeavoided,andthereforetheBKproceduresshouldbemoreself supportingandcontainallinformationneededfortheirapplication; • anincontainmentpHcalculationtoolshouldbeaddedtotheBK/SAMGproceduresto determinethesumpwateracidityfromthevolumesandwaterquantitiesusedduring themanagementoftheaccident,takingintoaccountallotherphysicalandchemical pHinfluencingprocesses;thistoolwouldalsobeusedasacheckandbackupfora dedicatedsamplingsystem; • adecisionsupporttool(table/flowchart)shouldbeaddedtotheBK/SAMGprocedures toquicklypinpointthe(mostprobable)locationofacontainmentleakpathbasedon the readings of certain detectors and to determine the most appropriate actions to limit the spread of fission products. This approach might involve the deployment of mobiledetectorsatspecifiedlocations; • theBKproceduresshouldprovidequantitativecriteriaforselectedkeyparametersto quickly arbitrate between the evacuation of the residualheatandtheisolation ofa leakinrecirculationlines; • a decision support tool should be added to the BK procedures to arbitrate between injectingintotheprimarycircuitandsprayinginsidethecontainmentbuilding. 2. As much as possible, the licensee should consider to increase the consistency between the TihangeNPPandtheDoelNPPwithrespecttotheemergencytrainingandrefreshertraining programs(differentindurationandfrequency). 3. FortheDoelNPP,thelicenseestatesthattheprobabilityofasteamexplosionwhencorium fallsoutofthereactorvesselintoafloodedreactorpitisverylowandcanthusbeneglected, basedonvariousexperimentscarriedoutaspartofinternationalresearchprogramsthatwere unabletocreatethisphenomenon. FortheTihangeNPP(wherethereactorpitisnotfloodedpriortothereactorvesselbreach), thelicenseestatesthatafeasibilitystudyofasystemallowingwaterinjectionintothereactor pitwillbelaunched. However,the licenseeshould followup the ongoing steamexplosionexperimentsclosely.If needed,thecurrentstrategiesforfloodingofthereactorpitbeforetheruptureofthereactor vesselshouldbeadapted. 4. Thelicenseeshouldalsoassesstheneedoffittingnewdevicesthatwouldbeusefulforsevere accident management (pH measurement in the sumps, temperature measurement at the

Chapter6–SevereAccidentManagement 197 bottomofthereactorvesseltomonitorapotentialcoremelt). The associated hardware modifications to improve those aspects should be sought where appropriate. 5. The licensee should identify the effective means to control the pH inside the containment buildingafterasevereaccident.Thisrequirementappliesintheearlystagesoftheaccident, andalsoduringthelongtermphase. Forthemanagementofthelongtermphaseofasevere accident, thelicensee should take intoconsiderationtheimpactofothersevereaccidentmanagementactionsonthepossibility of refilling the NaOH tank and the possibility for nonNaOH injection related measures to influencethesumpwaterpHinthealkalinedirection. 6. Asafurtherdiversificationofthestrategiesavailabletomanageasevereaccident,anoptimal battery load shedding strategy (in order to extent as long as possible the lifetime of the batteries and thus the period of availability of vital equipment for the management of the severe accident), should be developed and added to the ERG procedures (severe accident prevention)andtotheBK/SAMGprocedures(severeaccidentmitigation). Acalculationanddecisionsupporttoolshouldbestudied in parallel to determine the loads thatcanbeshed,theextrabatteryautonomygainedbysheddingaspecificload,thesevere accident management functions that will be lost by shedding a specific load, and the alternatives that could be considered to (partly) compensate for the loss of each particular severeaccidentmanagementfunction. 7. Thelicenseeshouldreviewtheplantstechnicalspecificationsinordertofurtherimprovethe availability of the second level emergency equipment. In particular, the maximum allowed downtimesandthetimelimitsforreturntoserviceshouldbereevaluatedandjustified,given therisksinvolved. 8. Thelicenseeshouldregardtheadditionalmeans(includingnonconventionalmeans)assafety relatedequipmentaslongastheyplayakeyroleintheprevention,thedetectionand/orthe mitigationofasevereaccident(defenceindepth).Inthiscontext,thelicenseeshalldetermine the specific provisions applicable to this equipment where appropriate (introduction in the technicalspecifications,inspectionsandtesting,preventivemaintenance…).

Chapter6–SevereAccidentManagement 198 7. General conclusions 7.1. Mains results and safety improvements proposed by the licensee Theassessmentresultsaredetailedinthepreviouschaptersofthisreport.Theyarenowhighlighted intheupcomingparagraphs.Therearedifferenttypesofactionsconsistingin: • adjustingoracceleratingongoingmodificationsorstudies; • newtechnicalmodificationsoradaptations; • additionalstudiesorR&Dprograms; • organisationalmodifications(resources,emergencymanagement,externalsupport); • adjustingorcreatingnewprocedures. Globally,thestresstestassessmentsrevealedthatthefacilitiesoftheTihangeandDoelnuclearpower plantsarecapableofmaintainingtheiressentialsafetyfunctions, either relying upon the redundant and diversified equipment and systems that were considered in the design phase or using mobile devicesdeployedonthesites.Insomecases,extra improvementshave been proposed in order to further enhance the robustness of the facilities against situations that are unlikely to occur when consideringthediversityofthewaterandelectricpowersourcesalreadyavailableatbothsites. Theassessmentsshowthatthefacilitiesarerobustenoughtofaceextremeconditions,consideringthe numerous lines of defence and the additional mobile devices that were deployed and implemented soonaftertheaccidentinFukushima. Theseassessmentsalsoshowthatprovidingexternalresourcesisnotnecessaryintheearlydaysafter theoccurrenceoftheconsideredsituations,sincethetechnicalequipmentneededareallavailableon thesites.

7.1.1. Earthquakes Concerningtheadequacy ofthedesignbasisearthquake(DBE),afirstseismicriskassessmentwas performedbytheRoyalObservatoryofBelgium. FortheDoelNPP,theresultsobtainedarestillinconformitywiththevaluesusedinthedesignbasisof thefourunits. FortheTihangeNPP,theassessmentresultedinaslight increase of the peak ground acceleration (“PGA”)incomparisonwiththevalueconsideredwhendesigningthefacilities.Theassessmentmust stillbecompletedandconsolidatedandthereforeallowsnodefinitiveconclusionontheadequacyof the DBE. Nevertheless, the safety margin assessment performed during the stress tests has demonstratedthattheequipmenthavemuchmorerobustnessthanrequiredbytheDBE. ThesafetymarginassessmentfortheDoelandTihangeunitswasperformedonthebasisofareview levelearthquake(“RLE”)beingashighas1.7timethepeakgroundacceleration(PGA)ofthecurrent designbasisearthquake.Itshowedthatallsystems,structuresandcomponents(“SSC”)requiredfor achievingandmaintainingsafeshutdownstatearerobustenough,exceptforafewmechanicaland electrical elements whose justification or improvement through easytoimplement modifications is currently in progress. The assessment whether the Tihange 1 electrical building should be strengthenedisongoing. Finally, a potential break in a water tank or a water line located on the sites, resulting from an earthquake,wouldnothaveanyconsequenceonsafety.

Chapter7:Generalconclusions 199/210 7.1.2. Flooding Tihange NPP Theinitialdesignbasisflood(“DBF”)(thefloodof1926+20%,correspondingtoariverflowrateof 2200m3/s)wasreevaluatedduringthelastperiodicsafetyreview. Withanaltitudeof71.5mabovesealevel,thesiteofTihangeisprotectedagainstthenewdesign basisflood(2645m 3/s),whichcorrespondstoareturnperiodofabout200years,sincethemaximum heightoftheriveris71.30m. Thechangesinnuclearregulationresultedinanewmethodologytodeterminethewaterlevelofthe Meuse river: the river level is now calculated taking into account a flood with a return period of 10000years. The new assessment revealed that even though the Meuse river wouldprogressively overflowitsbanks,theexistingsystemsshallmaintainfuelcoolinguptoafloodlevelcorrespondingto areturnperiodofabout400yearsforTihange1unit,1600yearsforTihange2unit,and900years for Tihange 3 unit. However, additional means and resources, combined with a preventive flooding managementprocess (alargescaleflood isaslow and predictable phenomenon with a sufficiently longwarningperiod),arealreadyavailableonthesitetoensuresafetyfunctionsinallcircumstances. Theimplementationoftheactionplanthathasbeendrawnupasaresultofthelastperiodicsafety reviewinordertoguaranteea“drysite”forthis10000yearlyfloodhasbeenspeededup.Itconsists of peripheral (volumetric) protection of the site, local perimeter protection of some buildings and strengthenednonconventionaldevices. Moreover, a potential rupture of the upstream dam on the Meuse river and the failure of the downstreamdamwereconsideredinthedesignphaseandcouldnotresultinawaterinflowontothe site. Doel NPP InthedesignbasisoftheDoelNPP,thedesignbasisfloodwassetat9.13mTAW(“tweedealgemene waterpassing” or “second general waterlevel measurement”). TAW is the reference height used for measuring topological height measurements in Belgium. A TAWheight of 0 metre is equal to the averagesealevelatlowtideinOstende. This design basis flood has a return period of once every 10000 years. Recently, as part of the periodicsafetyreviews,thisdesignbasisvaluewasreevaluatedandslightlyadjustedto9.35mTAW. ItshouldbementionedthatthehighestleveloftheScheldtrivereverregisteredinBelgiumissituated at8.10mTAW. InthedesignbasistwoimportantprotectionmeasuresaretakenagainstfloodingoftheDoelNPPsite. ThefirstonerelatestotheScheldtembankmentatthesite,whichinitiallywasraisedto12.08mTAW andisalwaysrequiredtobehigherthan11.08mTAW.Thesecondmeasurereferstotheraisingof thesiteplatformlevelwithregardtothesurroundingpolders:inthedesignbasis,thesite’splatform wassituatedat8.86mTAW,whichisafewmetreshigherthanthesurroundingpolders. Thesemeasuresensurethattheunitsandtheirsafetysystemsareprotectedagainsta10000yearly flood. Aspartoftheperiodicsafetyreviews,varioustheoreticalstormscenarioswerecombinedwithvarious floodlevelswhichmightleadtoawaveovertoppingovertheScheldtembankmentforreturnperiods between1000and10000years. Additionally,abeyonddesignsituationwasexaminedinwhichtheScheldtriverlevelwasoncemore raised by 85 cm above the design basis flood, and this, in combination with a hypothetical embankmentbreachingatthemostpenalizinglocation.Theonsitewaterfloodingresultingfromthis theoreticalexercise,aswellasfromthewaveovertoppingphenomenon,canberemediedbyinstalling aperimetricprotectionofafewtensofcentimetresinheightattheentrancesoftherespectivesafety buildings. Moreover, the early warning system for flooding always enables the Doel NPP to take preventive measuresgiventheslownessofthesetypesofnaturalphenomena.

Chapter7:Generalconclusions 200/210 7.1.3. Extreme weather conditions Thevariousextremeweatherconditions(heavyrainfalls,strongwinds,tornadoes,lightning,snowfalls hailandextremetemperatures)thatwereconsideredwhendesigningthefacilitiesandverifiedduring periodicsafetyreviews,havenoimpactonthesafeoperationoftheunits.

7.1.4. Loss of electrical power supply or heat sink Tihange NPP Consideringthenumerousandredundantpowersupplysourcesandheatsinksavailableeveryreactor unitinTihangehasahighlevelofrobustnessinthisrespect.Indeed,everyunitdisposesof: • threeexternalpowersupplysources; • twoindependentultimateheatsinks(riverwaterandalluvialgroundwater),andanadditional accesstolimestonewaterthatisindependentofthealluvialgroundwater; • at least two levels of technically and geographically independent internal sources of power supply(intotal,16dieselgeneratorsandaturbinedrivenalternator),withafuelautonomyof severalweeks; • aturbinedrivensafetyfeedwaterpumpforeachunit; • andvariouscoolingwatercapacities. Furthermore,mobiledevices(powergenerators,flexiblehoses,pumps,valves,etc.someofwhichare totallypreinstalled)canalsoensurepowersupplyoftheessentialequipmentandwatersupplyofthe steamgeneratorsandtheprimarysystem.Theircapacity andconnection time havebeendesigned accordingtothedynamicsofthesituationsthatwereassessed. Consequently,reactorcoreandspentfuelpoolscoolingaresecuredwithahighdegreeofcertainty eveninveryunlikelycasessuchasthelossofpowersupplysourcesorheatsinks.Asaresult,therisk ofsignificantactivityreleaseshouldtheseextremescenariosoccurisnegligible.Inconclusion,theNPP has emergencyequipment and sufficient autonomy tomanage thiskind of hazardsfor a long time. Thistimeperiodissufficienttorestoreoffsitepowersupplyortobringinoffsiteresources. Doel NPP The Doel 1/2 units can make use of three independent heat sinks, which are all capable of independentlykeepingtheunitscooled: • theScheldtriver; • theatmosphericforceddraughtcoolingtowers; • theheatexchangerscooledbytheambientair. Likewise,theDoel3andDoel4unitscanmakeuseofindependentheatsinkswhichareallcapableof independentlykeepingtheunitscooled: • theatmosphericforceddraughtcoolingtowers,withsupplyfromtheScheldtriverandfrom coolingponds; • 3coolingpondsof30000m 3each. Ineveryunitare2internalelectricalpowersupplylevels.These2levelsfunctionindependentlyfrom oneanotherandaremainlyphysicallyseparated.Forthepowersupplyofthesafetyequipment,there are19dieselgeneratorswith–intotal–afewweeksfuelsupply. Moreover,mostdieselgeneratorsareaircooled,thusmakingthemindependentfromanexternalheat sink. Finally,everyunitdisposesofapump,poweredbyasteamturbine,inordertobeabletocontinue supplyingcoolingwatertothesteamgenerators.Thiscoolingwaterisavailableinvarioustanksandin thecoolingponds. On both sites

Chapter7:Generalconclusions 201/210

Nonetheless,somemeasuresareconsideredtostillenhancetherobustnessofthefacilitiesonboth sites,inparticularbystrengtheningpowerandwatersuppliesthroughthefollowingactions: • feasibilitystudiesforenhancingtheautonomyoftheEASreservoir,foraddinganemergency feedwaterpumpandforsecuringpowersupplyoftheCTPandRRApumpsfortheTihange1 unit; • study for implementing extra instruments to monitor the water level in storage pools at Tihangesite; • strengthening nonconventional devices used to recharge batteries and repower some equipment(pumps,compressors,valves); • new or adjusted procedures (power supply for equipment through nonconventional means, spentfuelpoolmanagement,minimizationofthefuelconsumptionbythedieselgeneratorsin caseofanextendedlossoftheexternalpowersupply…). • installation of the necessary nozzles on the intake and discharge of the spraying pumps in ordertoachieveanalternativesprayingflowwithamobilesprayingpumpatDoel3andDoel 4units.

7.1.5. Emergency organisation and severe accident management So far, the licensee’s organisation in emergency situations has been designed to overcome events affectingasingleunitoftheNPPandtomanagedesign basis external events. Thisorganisation is periodically tested and improved through exercises. The organisation also relies upon external resources and skills provided by Electrabel corporate services, Tractebel Engineering, and public authorities. AsaresultoftheFukushimaaccident,thelicenseereassessedthisorganisationsothatitcouldface situationsthatarefarbeyondthedesignbasis,whichcouldaffectsimultaneouslyseveralunitsand couldleadtotheunavailabilityofsomepartsoftheemergencymanagementinfrastructureoraffect theaccessconditionsandtheenvironment. Inthisrespect,manyactionshavebeendecidedorarebeingconsidered: • theTihangesiteoperationcentre(“COS”)willbemovedtoanundergroundroominthenew DBEresistantentrancebuilding,thatisequippedwithalltherequiredinfrastructure; • a study on modifying and strengthening the emergency management organisation will be launchedinordertobeabletoworkaccordingtothreewarninglevels: o a“standardlevel”(currentlyinforce), o an“alertlevel”(preventivemeasuresincaseofpredictable events such as flooding affectingthewholesite), o and a “high level” (unpredictable event affecting more than one unit). With this warning level, oncall teams would be reinforced so that the incident could be technicallymanagedatthelevelofeachaffectedunit. Thecurrentemergencymanagementorganisationatthecorporatelevelwillalsobereviewed andstrengthenedsoastoensure–within24hoursatmost–theimplementationoflogistic andtechnicaltasksandtoprovidehumanresourcestoassistthesiteteams. • astudyaimedatoptimisingmobilemeansandtheirstoringinfrastructurewillbeconducted takingintoaccounttheanalysisoftheextensivedamagemitigatingguidelines(“EDMG”); • fortheDoelNPP,anoffsiteoperatingbasewillbedefinedfromwhereonsiteinterventions willbeorganisedifsiteaccessisdifficult. Inthesameway,thescenariosinvolvingsevereaccidentshavebeenreassessedfroma“defensein depth”perspective–thoughpreventionstillprevails–inordertoidentifytheactionsthatcouldfurther reducetheriskofpotentialreleasesintotheenvironmentresultingfromanextremesituation. Inthisrespect,thefollowingactionswillbeinitiatedorcontinued: • feasibilitystudyforinstallingafilteredventsystemonthecontainmentsofeachunit; • assessment ofthe residual risk of hydrogen productionand accumulation in spent fuel pool buildings; • followupofR&Dactivitiesrelatedtothe“coriumconcrete”interactionissue.

Chapter7:Generalconclusions 202/210 7.1.6. Action plan Theplanningforimplementingtheidentifiedstudiesandproposedadjustmentsmustbefinalisedafter detailedevaluationofitscontentandpotentialimplications,asitinteractswithotherprojects,internal andexternalresourcesortimeconstraintsrelatedtosupplyandimplementationonthesites. The table below lists all the major actions defined by the licensee with deadlines for their implementation.Someactionswillbecompletedin2012(shorttermactions). Table 22: Action plan summary

Indicative Objective Applicability Actions deadline

SSC upgrade from “low” to “medium” via calculation or Tihange+Doel 20122013 modification

Assessment of the opportunity of strengthening the Tihange 2012 electricalbuilding(“BAE”)ofTihange1unit

Seismic qualification of the refuelling water storage tanks Doel 2014 (“RWSTs”)ofDoel1/2units

Increaseofthereliabilityofthewatersupplytothesteam Enhanced Doel generators of Doel 1/2 units in case of an earthquake LTOproject protection (automaticstartoftheemergencyfeedwaterpumps) against external hazards 1 ReviewofthedesignbasisfloodforTihangesiteasaresult (earthquake, Tihange 2012 oftheperiodicsafetyreview flooding, weather Acceleration of actions resulting from the periodic safety conditions) review: Tihange 1. peripheralprotectionofthesite 2014 2. localperimeterprotection 20122013 3. strengtheningnonconventionaldevices/resources 20112012

Perimetricprotectionoftherelevantsafetybuildingsagainst Doel 20122013 flooding

Doel Additionalembankmentreinforcement 2012

Alternative power supply (380 V) for non conventional meansorsafetyequipment(compressors,pumps,valves…) Tihange+Doel 2012 using suitable connectors and cables or via the existing electricalboards

FeasibilitystudyforrepoweringthepumpsoftheCTPand Tihange RRA cooling systems from the SUR system on Tihange 1 LTOproject unit Enhanced 2 power supply Alternativepowersupply(380V)forrectifiersusingsuitable Tihange+Doel 20112012 connectorsandcablesorviatheexistingelectricalboards

Introduction of a procedure for minimising the diesel Tihange+Doel generators fuel consumption by stopping nonessential 2012 equipment

Purchaseofafueltankertruckfortheonsitetransportation Doel 2012 ofdieselfuelandidentificationoftherequirednozzles

Enhanced Feasibility study for enhancing the autonomy of the EAS 3 Tihange LTOproject water supply auxiliaryfeedwaterreservoironTihange1unit

Feasibilitystudyforaddinganauxiliaryfeedwaterpumpon Tihange LTOproject Tihange1unit

Study of alternative supplies of the safetyrelated water Doel reservoirs (RW and RN cooling towers, AFW) including 20122013 supplementarynozzles,ifrequired

Chapter7:Generalconclusions 203/210 Indicative Objective Applicability Actions deadline

InstallationofvalvesontheSPspraylinesofDoel1/2units Doel to allowinjecting into the SC circuit with the SPpumpsin 2014 casetheRCpressureincreases

InstallationofnozzlesontheintakeanddischargeoftheSP Doel pumpsandpurchaseofamobilepumpinordertoachieve 2014 analternativeSPflowrateforDoel3andDoel4units

Study of alternative water supply for the spent fuel pools Doel 20122013 (PL)withsupplementarynozzles,ifrequired

Seismic qualification of further parts of the FE circuit on Doel 1/2 units andinstallationof FE nozzles on theintake LTOproject Doel (directlyor via AFW tank)of the auxiliary feedwater turbo pump

Modification of “earthquake procedure” intended to speed Tihange 2012 upthedetectionofinducedfloodingonthesite

Acceleratedimplementationoftheproceduresrelatedtothe Tihange actions resulting from the periodic safety review about 20122013 flooding

Enhanced Introductionofaproceduredescribingtheactionstotakein operation caseof: 4 Tihange+Doel 20122013 management 1. atotallossofinternalorexternalpowersupplies (procedures) 2. atotallossofheatsinks

Introduction of a procedure for the connection and the Tihange+Doel 20122013 commissioningofalternativepowersupplies

Completionoftheproceduresfortheconnectionanduseof Doel 20122013 thealternativewatersupplies

Enhance the organisation and logistics of the internal emergencyplantoinclude“multiunit”events: Enhanced Tihange+Doel 1. descriptionoftheneworganization Mid2012 emergency 5 2. implementationoftheneworganisation 2013 management (PIU) Transfer of the site operation centre (“COS”) in the new Tihange 2013 entrancebuilding

Preliminary study for installing a filtered vent system on Tihange+Doel eachunit(alreadyincludedintheLTOprojectforTihange1 2012 andDoel1/2units)

Evaluation of the need to extend the non conventional Tihange+Doel means based on the analysis of the extensive damage 2013 Enhanced mitigationguidelines(“EDMG”) protection Assessmentoftheresidualriskofhydrogenproductionand 6 against severe Tihange+Doel 2012 accumulationinspentfuelpoolbuildings accidents (SAM) Feasibilitystudyfortheimplementationofadditionalwater Tihange 2013 injectionintothereactorpit

Followup of R&D activities related to the coriumconcrete Tihange+Doel Continuously interactionissue

Study for improving water level monitoring in the pool of Tihange 2012 everyunit

Non Feasibility study to provide a technical solution for water conventional makeup to the primary system of Tihange 3 unit in “CRP 7 Tihange 2012 means open”configuration(motordrivenpumppoweredbyanon (“NCM”) conventionaldieselgenerator)

Chapter7:Generalconclusions 204/210 7.2. Synthesis of the assessment and additional improvements required by the regulatory body The approach adopted by the licensee to reevaluate the safety of its facilities complies with the methodologyprovidedbythelicenseeandapprovedbytheregulatorybody. ThelicenseereassessedtheeventsandcombinationsofeventsincludedinthefieldoftheEuropean stress tests program, namely earthquake, flooding, extreme weather conditions, loss of electrical powerandlossofultimateheatsink,andsevereaccidentmanagement. Theassessmentsconsiderscenariosinvolvingasingleunitbutalsoseveralunitssimultaneouslyonthe samesite.Thetimelineofeventsisdescribedandthepotentialcliffedgeeffectsareanalyzed. Overall,therobustnessofthefacilitiesissatisfactory. Thebasicsafetyprinciples,suchasdefenceindepth,redundancyofimportantsafetyequipment,their physicalorgeographicseparation,aswellastheirdiversification,wereappliedfromthedesignphase, and upgrades were performed on the earliest units to enhance their robustness when faced with scenarios not considered originally. Some structural reinforcements were also carried out where appropriate. ThereassessmentsperformedinthewakeoftheFukushimaaccidentthusshowthatinallconsidered scenarios,theessentialsafetyfunctionsarepreserved. Yet,thelicenseehasproposedaseriesoftechnical,organizationalandhumanimprovementsinorder to further increase the safety of its facilities and better cope with specific accidental conditions, particularlyfortheearliestunits. Basedontheassessmentofthelicensee’sreportsandthesubsequenttechnicalmeetingsandonsite inspections,theregulatorybodyhascomplementedthelicensee’sproposalswithadditionaldemands and recommendations that will extend the improvement opportunities within the scope of the Europeanstresstests. Theactionsproposedbythelicenseeandtheadditionalimprovementsrequiredbytheregulatorybody shall be implemented in the shortest possible time, considering the complexity of the works to be undertakenandtheirimportanceforthesafetyofthefacilities.Tothisend,thelicenseewillupdatea consolidated action plan, and propose ambitious deadlines that will be approved by the regulatory body. Onthisbasis,theregulatorybodywillsetupadedicatedfollowupoftheactionplanimplementation, including: • regular update by the licensee of the action plan progress, which will be communicated periodicallytotheregulatorybody, • periodicinformationmeetingsbetweentheregulatory bodyand the licensee, to discuss the actionplanstatusandpotentialdifficulties/delays, • onsite inspections by the regulatory body, on a periodic basis and also after the main achievements,tocheckonthefieldthephysicalprogressoftheworkandtheircompliance withtheexpectations. Thisfollowupwill allowthe regulatorybodytocontrol the proper implementation of the licensee’s actionplan,andtoensurethatthelicensee’scommitmentsarefulfilledinduetime. ThededicatedsiteinspectorsfromtheFANCandBelVwillbeinvolvedinthisprocess. Thefollowingparagraphsrecalltheadditionalimprovementsidentifiedbytheregulatorybody.

Chapter7:Generalconclusions 205/210 7.2.1. Earthquake 1. For all weaknesses identified during the walkdowns (SSC assessed as having a “low” probability of preserving their integrity and performing their function in an earthquake exceedingtheRLE),thelicenseereportedthateithercomplementarystudiesareunderwayor simple modifications can be undertaken. The licensee shall provide a detailed action plan containing actions taken and actions planned. This also applies to the feasibility study on reinforcementoftheelectricalbuilding(“BAE”)atTihange1. 2. DuetothestringenttimeframeoftheEuropeanstresstests,thePSHAstudyoftheROBhad tobeconductedinquiteashorttime.AssuggestedbytheROB,thelicenseeshouldcarryout amoreelaboratedstudywithdue consideration of(1)otherelementssuchastheuseofa more recent groundmotion prediction equation or such as a cumulative absolute velocity (“CAV”) filtering, (2) external reviews by international experts and (3) results arising from otherstudiessuchastheECprojectSHARE(seismichazardharmonizationinEurope). 3. The licensee must continue its efforts towards fostering awareness of potential seismic interaction inside the facilities. In particular, thorough attention must be paid to the strict applicationoftherelevantprocedurestoavoidtheinteractionsofscaffoldingswithSSCthat areseismicallyqualified.

7.2.2. Flooding Tihange NPP 1. The licensee shall include a safety margin for the first levelof defensetoadequatelycover uncertaintiesassociatedwitha10,000yearflood(thewalloftheperipheralprotectionshould thusbedesignedhigherthanthefloodlevelassociatedwitha10,000yearflood). 2. For the flooding risk, further improvement of the emergency preparedness strategy and organization,includingcorrespondingprocedures,shouldbeimplementedbymid2012. 3. The robustness of the currently installed nonconventional means (NCM), i.e. the socalled UltimateMeansCircuit(CMU)shouldbefurtherimproved: • SincetheCMUiscurrentlyneededforfloodsexceedingthe“referenceflood”of2615 m³/s(i.e.,floodswithreturnperiodsexceeding100to400years),thelicenseeshould determinespecificprovisionsasapplicabletoequipmentimportantforsafety(tests, maintenance,inspections,…). • ThecurrentlyimplementedalternatepowersourcesforI&Csystemsandemergency lightingshouldbefurtherimproved,whereneeded,andthesufficiencyofavailableor recoveredI&Cequipmenttosafelycontrolthethreeunitsshouldbechecked. • Thetechnicalcharacteristicsofthesenonconventionalmeans (NCM)shouldaccount fortheadverse(weather)conditionstheymaybesubjecttoduringthewholeperiod of operation. If this is not covered by design, an appropriate protection or compensatorystrategyshouldbedeveloped. 4. The robustness of the currently implemented emergency preparedness strategy and organizationshouldbefurtherimprovedforthefollowingaspects: • The flooding alert system, which is based on a direct communication between the regionalservicecompetentforforecastingriverflowratesintheMeusebasin(SETHY, makinguseofadedicatedforecastingsystem)andtheNPP(withTihange2beingthe single point of contact and responsible for warning Tihange 1 and Tihange 3), is a crucialfactor.Therefore,itsrobustnessandefficiencyshouldbefurtherimproved.In particular,  the protocol between the NPP Tihange and SETHY should be formalized as soonaspossible.

Chapter7:Generalconclusions 206/210  The licensee should pursue regular tests of the secured communication channelsandtransmitteddata(i.e.,onlinemeasurementsandpredictionsof riverflowrates).  The licensee should organize emergency preparedness exercises involving boththeNPPandSETHYpersonnel.  Criteria used to launch the internal emergency plan and to start the “alert phase” and associated actions should be unambiguously defined in the applicableemergencyprocedures. • Meansfor onsitetransport ofpersonnelandequipmenttowardstheunits,insidethe units, or from one unit to another, while the site is flooded, should be further implementedandconsideredintheemergencypreparednessstrategy. 5. Internalhazardspotentiallyinducedbytheflooding(fire,explosion)shouldbeexaminedand additional measures should be taken where needed (e.g., because the automatic fire extinction system is lost during a flood exceeding the “reference flood”). The potential deficiencyoftheUltimateMeansCircuit(CMU)incaseofinducedfire,inparticularbecauseof dependencies when the CMU is connected to the fire extinction system (CEI), should be examinedandpotentialweaknessesshouldberesolved. Doel NPP 1. Thetechnicalcharacteristicsofthenonconventionalmeans(NCM)thatcanbeusedincaseof flooding of safetyrelated buildings (for all potential causes) should account for the adverse (weather)conditionstheymaybesubjecttoduringthewholeperiodofoperation.Ifthisisnot coveredbydesign,anappropriateprotectionorcompensatorystrategyshouldbedeveloped. 2. Improvementoftheproceduresafterearthquake(IQM01):afteranearthquake,itshallbe rapidly and visually verified if flooding due to cooling tower basin overflow (e.g. due to obstructionofitsoutletchannel)isongoingorimminent.Inthatcase,theCWpumpsmustbe rapidlystopped. 3. Asrecentinspectionsevidencedlocationswithembankmentheightsapproachingtheminimal requiredheight(TechnicalSpecificationscriterion),embankmentheightinspectionsshouldbe donemoreregularly(e.g.,twoyearly,andatleast5yearly,insteadoftenyearly)inorderto avoidariskofexcessiveembankmentovertoppingbywindwavesforfloodswithinthedesign basis(embankmentovertoppingmayoccurforreturnperiodslargerthan300years).

7.2.3. Extreme weather conditions 1. The reassessment of the capacity of the sewer system (five separate networks at Doel, separatenetworksperunitatTihange),usingadetailedhydrodynamicmodelmustcoverboth shortdurationheavyrainsandlonglastingrains(95 th percentile)forreturnperiodsupto100 years. Moreover, to define such 100yearly rains, observations of rain intensities over a sufficiently long period of time must be used, including the latest observations (e.g. the exceptionalrainof23 rd August2011).Dependingontheresults,potentialimprovementsofthe sewersystemshallbeenvisagedandthelicensee’sactionplanshallbeupdatedaccordingly whereappropriate. 2. Given the fact that tornadoes of high intensities were observed in the past years in the neighbouringcountries(classEF4ontheenhancedFujitascale),therobustnessofthesecond level systems of Doel 1/2 and Tihange 1 should be confirmed in case of a beyonddesign tornadowithwindspeedexceeding70m/s(250km/h).

Chapter7:Generalconclusions 207/210 7.2.4. Loss of electrical power and loss of ultimate heat sink 1. Theoperabilityofthenonconventionalmeansshouldbejustifiedonthebasisoftechnical data(design,operation,alignmentandconnections,periodictesting,preventivemaintenance, etc.). 2. Thetechnicalcharacteristicsofthenonconventionalmeans (NCM)shouldaccountforthe adverse(weather)conditionstheymaybesubjecttoduringthewholeperiodofoperation. 3. Thelicenseeshould,incollaborationwithELIA,managerofthehighvoltagenetwork,makea feasibilitystudytoensureabettergeographicalseparationofthehighvoltagelines(380and 150kV)tofurtherimprovethereliabilityoftheexternalpowersupplytotheNPPs.Inaddition, thelicenseeshould,inagreementwithELIA,ensurethatincaseofLOOPtheNPPshavethe highestpriority for reconstruction of the externalpowersupplytotheNPPs.Theregulatory body shall take the necessary steps, in collaboration with other competent authorities, to ensurethefulfilmentofthisrecommandation.

4. Inrelationtothe“totalSBO”scenario,thepotentialoverfillingordrainingofthesteam generatorsduetothelossofultimatecompressedairshouldbeexamined. 5. Inrelationtothe“totalSBO”scenario,theoperabilityoftheAFWturbinedrivenpumpdueto thelossofventilationintheturbinedrivenpumproomshouldbeexamined. 6. Incaseof(total)stationblackout,thelicenseeshouldassesswhetherallcontainment penetrationscanbeclosedinduetimeandwhethertherelevantcontainmentisolation systemsremainfunctional,inparticularduringoutagesituations.Thefeasibilityofclosingthe personnelandmaterialhatchesshouldbeassessed.Thesetopicsshouldbeaddressedinthe “totalstationblackout”procedure. 7. Thelicenseeshalljustifythatthewatercapacity(quantityandflowofcoolingwaterforthe consumers) of the second levelof protectionis sufficientwhenall the units of the site are affectedbythelossofprimaryUHS.Ifneededastrategytooptimizethewaterconsumption shouldbedeveloped. 8. ForTihange,thelicenseeshouldreinforcetheemergencylightinginthedifferentroomsand placeswheretheoperatorsshouldinterveneduringthedifferentscenarios. 9. Inrelationtothe“lossofprimaryUHS”scenario,thelicenseeshallcarryoutalignmentand operatingtestsoftheemergencydeepwaterintakesfromtheMeuseriverbedin2012(for Tihange2and3). 10. Inrelationtothe“lossofprimaryUHS”scenario,thelicenseeshouldjustifytheavailability (accessibility,operabilityandalignment)oftheemergencywaterintakesofTihange2and3in accordancewiththerequirementsofUSNRCRG1.27. 11. Twoconfigurationsshouldbeevaluatedbythelicenseeforthespentfuelpools: • Configurationwithafuelassemblyhandledinthereactorpoolduringa“TotalSBO”. Thefuelassemblyshouldmanuallybehandledinasafeposition.Thelicenseeshould investigatetheprovisions(hardwareinstallations,procedures,lighting,etc.)tobe implementedforthisconfiguration. • Configurationwiththelossofwaterinventoryinthespentfuelpools.The internationalexperiencefeedbackhasalreadypointedoutpotentialproblemswiththe designofthesiphonbreakersinthespentfuelpools.Incaseofpipingrupture,an insufficientcapacityofthesiphonbreakersmayleadtoafastuncoveringofspentfuel assemblies.Thelicenseeshouldexaminethissafetyconcern.

Chapter7:Generalconclusions 208/210 7.2.5. Severe accident management 1. The adequacy of the procedural guidelines (BK procedures for Doel and severe accident managementguidelinesforTihange)tocopewithasevereaccidenthasbeenassessedbythe licensee,relyingmainlyonthefactthatthoseproceduresareinspiredfromtheWestinghouse ownersgroupsevereaccidentmanagementguidelines(“WOGSAMG”),areregularlyupdated, andarevalidatedintheframeworkofthetenyearlyperiodicsafetyreviews. Yet,thoseproceduresstillneedtobeimprovedwithrespecttothefollowingaspects: • theDoelBKproceduresshouldbesupplementedwithlongtermmonitoringandexit guidelines,suchasthosealreadyexistingforTihange(SAEG1andSAEG2); • insomeDoelBKprocedures,referenceismadeto(thedistinct)FRGproceduresfor theexplanationofrecommendedmethods.Thisconstantswitchingbetweendifferent proceduresshouldbeavoided,andthereforetheBKproceduresshouldbemoreself supportingandcontainallinformationneededfortheirapplication; • anincontainmentpHcalculationtoolshouldbeaddedtotheBK/SAMGproceduresto determinethesumpwateracidityfromthevolumesandwaterquantitiesusedduring themanagementoftheaccident,takingintoaccountallotherphysicalandchemical pHinfluencingprocesses;thistoolwouldalsobeusedasacheckandbackupfora dedicatedsamplingsystem; • adecisionsupporttool(table/flowchart)shouldbeaddedtotheBK/SAMGprocedures toquicklypinpointthe(mostprobable)locationofacontainmentleakpathbasedon the readings of certain detectors and to determine the most appropriate actions to limit the spread of fission products. This approach might involve the deployment of mobiledetectorsatspecifiedlocations; • theBKproceduresshouldprovidequantitativecriteriaforselectedkeyparametersto quickly arbitrate between the evacuation of the residualheatandtheisolation ofa leakinrecirculationlines; • a decision support tool should be added to the BK procedures to arbitrate between injectingintotheprimarycircuitandsprayinginsidethecontainmentbuilding. 2. As much as possible, the licensee should consider to increase the consistency between the TihangeNPPandtheDoelNPPwithrespecttotheemergencytrainingandrefreshertraining programs(differentindurationandfrequency). 3. FortheDoelNPP,thelicenseestatesthattheprobabilityofasteamexplosionwhencorium fallsoutofthereactorvesselintoafloodedreactorpitisverylowandcanthusbeneglected, basedonvariousexperimentscarriedoutaspartofinternationalresearchprogramsthatwere unabletocreatethisphenomenon. FortheTihangeNPP(wherethereactorpitisnotfloodedpriortothereactorvesselbreach), thelicenseestatesthatafeasibilitystudyofasystemallowingwaterinjectionintothereactor pitwillbelaunched. However,the licenseeshould followup the ongoing steamexplosionexperimentsclosely.If needed,thecurrentstrategiesforfloodingofthereactorpitbeforetheruptureofthereactor vesselshouldbeadapted. 4. Thelicenseeshouldalsoassesstheneedoffittingnewdevicesthatwouldbeusefulforsevere accident management (pH measurement in the sumps, temperature measurement at the bottomofthereactorvesseltomonitorapotentialcoremelt). The associated hardware modifications to improve those aspects should be sought where appropriate. 5. The licensee should identify the effective means to control the pH inside the containment buildingafterasevereaccident.Thisrequirementappliesintheearlystagesoftheaccident, andalsoduringthelongtermphase. Forthemanagementofthelongtermphaseofasevere accident, thelicensee should take intoconsiderationtheimpactofothersevereaccidentmanagementactionsonthepossibility of refilling the NaOH tank and the possibility for nonNaOH injection related measures to influencethesumpwaterpHinthealkalinedirection.

Chapter7:Generalconclusions 209/210 6. Asafurtherdiversificationofthestrategiesavailabletomanageasevereaccident,anoptimal battery load shedding strategy (in order to extent as long as possible the lifetime of the batteries and thus the period of availability of vital equipment for the management of the severe accident), should be developed and added to the ERG procedures (severe accident prevention)andtotheBK/SAMGprocedures(severeaccidentmitigation). Acalculationanddecisionsupporttoolshouldbestudied in parallel to determine the loads thatcanbeshed,theextrabatteryautonomygainedbysheddingaspecificload,thesevere accident management functions that will be lost by shedding a specific load, and the alternatives that could be considered to (partly) compensate for the loss of each particular severeaccidentmanagementfunction. 7. Thelicenseeshouldreviewtheplantstechnicalspecificationsinordertofurtherimprovethe availability of the second level emergency equipment. In particular, the maximum allowed downtimesandthetimelimitsforreturntoserviceshouldbereevaluatedandjustified,given therisksinvolved. 8. Thelicenseeshouldregardtheadditionalmeans(includingnonconventionalmeans)assafety relatedequipmentaslongastheyplayakeyroleintheprevention,thedetectionand/orthe mitigationofasevereaccident(defenceindepth).Inthiscontext,thelicenseeshalldetermine the specific provisions applicable to this equipment where appropriate (introduction in the technicalspecifications,inspectionsandtesting,preventivemaintenance…).

Chapter7:Generalconclusions 210/210