Extensive Genetic Diversity and Host Range of Rodent-Borne
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Incidence of Japanese Encephalitis, Southern China
LETTERS High Incidence of Biologic Products, Chengdu, China) were tested for antibodies against JE has been included in the national virus, mumps virus, echoviruses, and Japanese Expanded Program on Immunization coxsackieviruses (3,4,7). A case of JE Encephalitis, at no charge. The recommendation for was defined as illness in a person with Southern China children is vaccination at 8 months IgM against JEV in CSF or serum. and 2 years of age (5,6). Clinical information was collected by To the Editor: Japanese To estimate JE incidence in using a standardized chart abstraction encephalitis virus (JEV) remains a Dehong Prefecture during January form. Linkages to personal identifiers major source of illness and death in Asia 1–December 31, 2010, we conducted were destroyed. (1). An estimated 67,900 cases occur an anonymous, unlinked study of A total of 189 eligible patients each year in Asia; ≈33,900 cases— all cases of encephalitis at the only were enrolled, 150 from Mangshi half the cases in the world—probably 2 major children’s hospitals in the and 39 from Ruili. Of these, 110 occur in the People’s Republic of region, Dehong Prefecture Hospital (58%) were male and 78 (41%) were China (2). However, because reporting in Mangshi and Ruili City Hospital in <4 years of age. Enrollment peaked is incomplete in most countries where Ruili. All eligible patients admitted to during summer (Figure). All patients JE incidence is high, these estimates these hospitals were included in the were hospitalized within 6 days after are based on scarce data. In China, a study. -
BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry. -
Evolutionary Biology of the Genus Rattus: Profile of an Archetypal Rodent Pest
Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. Heiberg, A.C.; Leirs, H.; Siegismund, Hans Redlef Published in: <em>Rats, Mice and People: Rodent Biology and Management</em> Publication date: 2003 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Heiberg, A. C., Leirs, H., & Siegismund, H. R. (2003). Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. In G. R. Singleton, L. A. Hinds, C. J. Krebs, & D. M. Spratt (Eds.), Rats, Mice and People: Rodent Biology and Management (Vol. 96, pp. 461-464). Download date: 27. Sep. 2021 SYMPOSIUM 7: MANAGEMENT—URBAN RODENTS AND RODENTICIDE RESISTANCE This file forms part of ACIAR Monograph 96, Rats, mice and people: rodent biology and management. The other parts of Monograph 96 can be downloaded from <www.aciar.gov.au>. © Australian Centre for International Agricultural Research 2003 Grant R. Singleton, Lyn A. Hinds, Charles J. Krebs and Dave M. Spratt, 2003. Rats, mice and people: rodent biology and management. ACIAR Monograph No. 96, 564p. ISBN 1 86320 357 5 [electronic version] ISSN 1447-090X [electronic version] Technical editing and production by Clarus Design, Canberra 431 Ecological perspectives on the management of commensal rodents David P. Cowan, Roger J. Quy* and Mark S. Lambert Central Science Laboratory, Sand Hutton, York YO41 1LZ, UNITED KINGDOM *Corresponding author, email: [email protected] Abstract. The need to control Norway rats in the United Kingdom has led to heavy reliance on rodenticides, particu- larly because alternative methods do not reduce rat numbers as quickly or as efficiently. -
Checklist of the Mammals of Indonesia
CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia. -
Retrotransposons
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11284–11289, September 1998 Evolution Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons OLIVIER VERNEAU*†,FRANC¸OIS CATZEFLIS‡, AND ANTHONY V. FURANO*§ *Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830; and ‡Institut des Sciences de l’Evolution, Case Courrier 064, Universite´Montpellier 2, 34095 Montpellier, France Communicated by Herbert Tabor, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, July 24, 1998 (received for review May 22, 1998) ABSTRACT Phylogenies based on the inheritance of This difference stems from the distinct biological properties shared derived characters will be ambiguous when the shared of these elements. L1 elements are prolific, self-replicating characters are not the result of common ancestry. Such mammalian retrotransposons that rapidly generate distinct characters are called homoplasies. Phylogenetic analysis also novel subfamilies consisting mostly of defective (pseudo) can be problematic if the characters have not changed suffi- copies (see legend to Fig. 1). The defective subfamily members ciently, as might be the case for rapid or recent speciations. are retained in the genome and diverge from each other with The latter are of particular interest because evolutionary time at the pseudogene (neutral) rate. The rapid generation of processes may be more accessible the more recent the specia- novel L1 characters keeps pace with speciation, and the tion. The repeated DNA subfamilies generated by the mam- sequence divergence of the various defective subfamily mem- malian L1 (LINE-1) retrotransposon are apparently ho- bers theoretically permits the dating of the speciations (4). -
Endemism and Diversity of Small Mammals Along Two Neighboring Bornean Mountains
Endemism and diversity of small mammals along two neighboring Bornean mountains Miguel Camacho-Sanchez1,2,*, Melissa T.R. Hawkins3,4,5,*, Fred Tuh Yit Yu6, Jesus E. Maldonado3 and Jennifer A. Leonard1 1 Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Sevilla, Spain 2 CiBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal 3 Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA 4 Department of Biological Sciences, Humboldt State University, Arcata, CA, USA 5 Division of Mammals, National Museum of Natural History, Washington, DC, USA 6 Sabah Parks, Kota Kinabalu, Sabah, Malaysia * These authors contributed equally to this work. ABSTRACT Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial Submitted 14 February 2018 Accepted 9 September 2019 factors (e.g., larger diversity in larger areas) are important. -
Biogeography and Taxonomy of Apodemus Sylvaticus (The Woodmouse) in the Tyrrhenian Region: Enzymatic Variations and Mitochondrial DNA Restriction Pattern Analysis J
Heredity 76(1996) 267—277 Received30 May 1995 Biogeography and taxonomy of Apodemus sylvaticus (the woodmouse) in the Tyrrhenian region: enzymatic variations and mitochondrial DNA restriction pattern analysis J. ft MICHAUX, M.-G. FILIPPUCCtt, ft M. LIBOIS, ft FONS & ft F. MATAGNE Service d'Ethologie et de Psycho/ogle An/male, Institut de Zoologie, Quai Van Beneden 22 4020 Liege, Belgium, ¶Dipartimento di Biologia, Universita di Roma 'Tor Vergata Via 0. Raimondo, Rome 00173, Italy, Centre d'Ecologie Terrestre, Laboratoire ARAGO, Université Paris VI, 66650, Banyu/s/Mer, France and §Laboratoire de Génetique des Microorganismes, Institut de Botanique (Bat. B 22), Université de Liege, Sart Ti/man, 4000 Liege, Belgium Inthe western Mediterranean area, the taxonomic status of the various forms of Apodemus sylvaticus is quite unclear. Moreover, though anthropogenic, the origins of the island popula- tions remain unknown in geographical terms. In order to examine the level of genetic related- ness of insular and continental woodmice, 258 animals were caught in 24 localities distributed in Belgium, France, mainland Italy, Sardinia, Corsica and Elba. Electrophoresis of 33 allo- zymes and mtDNA restriction fragments were performed and a UPGMA dendrogram built from the indices of genetic divergence. The dendrogram based on restriction patterns shows two main groups: 'Tyrrhenian', comprising all the Italian and Corsican animals and 'North- western', corresponding to all the other mice trapped from the Pyrenees to Belgium. Since all the Tyrrhenian mice are similar and well isolated from their relatives living on the western edge of the Alpine chain, they must share a common origin. The insular populations are consequently derived from peninsular Italian ones. -
Breaking Down Barriers Innovations in Cross-Border Harm Reduction Between Yunnan Province, China and Burma (Myanmar)
www.haarp-online.org BREAKING DOWN BARRIERS Innovations in cross-border harm reduction between Yunnan Province, China and Burma (Myanmar) A HAARP Positive Practice Study: In collaboration with Yunnan Provincial HIV/AIDS Prevention and Control Bureau and Yunnan Public Health Bureau Acknowledgements This Positive Practice study was commissioned by the HIV/AIDS Asia Regional Program (HAARP) Technical Support Unit in Bangkok and was drafted by Corrie Mills. © Commonwealth of Australia 2011 We would like to thank all in the Yunnan Injecting Drug User Cross-Border This work is copyright. Apart from any use as permitted under the Harm Reduction Project (Yunnan Cross-Border Project) and the Ruili AIDS Copyright Act 1968 no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and Department for their support and hospitality while researching this study. inquiries concerning reproduction and rights should be addressed We would also like to acknowledge all those who helped produce this to the Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 document: Duo Lin, HAARP Yunnan Manager; Zhang Miaoyun, Chief of the or posted at Ruili AIDS Department; Han Shuaizhan, Qiu Zhengxian and Mao Chunling, www.ag.gov.au/cca Ruili outreach workers; Li Hong, Director of the Education and Science Department, Yunnan Center for Disease Control and Prevention; Zhou This document is online at: www.ausaid.gov.au/publications For more information about the Australian Government’s international Hongmei, Deputy Director, Administration Office of the Yunnan Provincial development program, contact: HIV/AIDS Prevention & Control Bureau; Michael Cole, Australian Agency for International Development; Mukta Sharma, HAARP Technical Support Unit; Communications Section and Ji Xue, Project Officer, Yunnan Injecting Drug User Cross-Border Harm AusAID GPO Box 887 Reduction Project. -
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
The Superfamily Calopterygoidea in South China: Taxonomy and Distribution. Progress Report for 2009 Surveys Zhang Haomiao* *PH D
International Dragonfly Fund - Report 26 (2010): 1-36 1 The Superfamily Calopterygoidea in South China: taxonomy and distribution. Progress Report for 2009 surveys Zhang Haomiao* *PH D student at the Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Email: [email protected] Introduction Three families in the superfamily Calopterygoidea occur in China, viz. the Calo- pterygidae, Chlorocyphidae and Euphaeidae. They include numerous species that are distributed widely across South China, mainly in streams and upland running waters at moderate altitudes. To date, our knowledge of Chinese spe- cies has remained inadequate: the taxonomy of some genera is unresolved and no attempt has been made to map the distribution of the various species and genera. This project is therefore aimed at providing taxonomic (including on larval morphology), biological, and distributional information on the super- family in South China. In 2009, two series of surveys were conducted to Southwest China-Guizhou and Yunnan Provinces. The two provinces are characterized by karst limestone arranged in steep hills and intermontane basins. The climate is warm and the weather is frequently cloudy and rainy all year. This area is usually regarded as one of biodiversity “hotspot” in China (Xu & Wilkes, 2004). Many interesting species are recorded, the checklist and photos of these sur- veys are reported here. And the progress of the research on the superfamily Calopterygoidea is appended. Methods Odonata were recorded by the specimens collected and identified from pho- tographs. The working team includes only four people, the surveys to South- west China were completed by the author and the photographer, Mr. -
Genetic Variation and Evolution in the Genus Apodemus (Muridae: Rodentia)
Biological Journal of the Linnean Society, 2002, 75, 395–419 With 8 figures Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia) MARIA GRAZIA FILIPPUCCI1, MILOSˇ MACHOLÁN2* and JOHAN R. MICHAUX3 1Department of Biology, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica, I-00133 Rome, Italy 2Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveˇrí 97, CZ-60200 Brno, Czech Republic 3Laboratory of Palaeontology, Institut des Sciences de l’Evolution de Montpellier (UMR 5554), University of Montpellier II, Place E. Bataillon, F-34095 Montpellier Cedex 05, France Received June 2001; accepted for publication November 2001 Genetic variation was studied using protein electrophoresis of 28–38 gene loci in 1347 specimens of Apodemus agrar- ius, A. peninsulae, A. flavicollis, A. sylvaticus, A. alpicola, A. uralensis, A. cf. hyrcanicus, A. hermonensis, A. m. mystacinus and A. m. epimelas, representing 121 populations from Europe, the Middle East, and North Africa. Mean values of heterozygosity per locus for each species ranged from 0.02 to 0.04. Mean values of Nei’s genetic distance (D) between the taxa ranged from 0.06 (between A. flavicollis and A. alpicola) to 1.34 (between A. uralensis and A. agrarius). The highest values of D were found between A. agrarius and other Apodemus species (0.62–1.34). These values correspond to those generally observed between genera in small mammals. Our data show that A. agrarius and A. peninsulae are sister species, well-differentiated from other taxa. High genetic distance between A. m. mystac- inus and A. m. epimelas leads us to consider them distinct species and sister taxa to other Western Palaearctic species of the subgenus Sylvaemus. -
Tonatory Patterns in Taizhou Wu Tones
TONATORY PATTERNS IN TAIZHOU WU TONES Phil Rose Emeritus Faculty, Australian National University [email protected] ABSTRACT 台州 subgroup of Wu to which Huángyán belongs. The issue has significance within descriptive Recordings of speakers of the Táizhou subgroup of tonetics, tonatory typology and historical linguistics. Wu Chinese are used to acoustically document an Wu dialects – at least the conservative varieties – interaction between tone and phonation first attested show a wide range of tonatory behaviour [11]. One in 1928. One or two of their typically seven or eight finds breathy or ventricular phonation in groups of tones are shown to have what sounds like a mid- tones characterising natural tonal classes of Rhyme glottal-stop, thus demonstrating a new importance for phonotactics and Wu’s complex tone pattern in Wu tonatory typology. Possibly reflecting sandhi. One also finds a single tone characterised by gradual loss, larygealisation appears restricted to the a different non-modal phonation type [12]; or even north and north-west, and is absent in Huángyán two different non-modal phonation types in two dialect where it was first described. A perturbatory tones. However, the Huangyan-type tonation seems model of the larygealisation is tested in an to involve a new variation, with the same phonation experiment determining how much of the complete type in two different tones from the same historical tonal F0 contour can be restored from a few tonal category, thus prompting speculation that it centiseconds of modal F0 at Rhyme onset and offset. developed before the tonal split. The results are used both to acoustically quantify laryngealised tonal F0, with its problematic jitter and 2.