Efficient Barrier Implementation on the POWER8 Processor

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Barrier Implementation on the POWER8 Processor Efficient Barrier Implementation on the POWER8 Processor C.D. Sudheer Ashok Srinivasan IBM Research Dept. of Computer Science New Delhi, India Florida State University [email protected] Tallahassee, USA [email protected] Abstract—POWER8 is a new generation of POWER access and the impact of pre-fetching to cache. Our best processor capable of 8-way simultaneous multi-threading implementation achieves latency of around 1 µs - 4 µs per core. High-performance computing capabilities, such as on 1 and 8-way SMT respectively. This improves on the high amount of instruction-level and thread level parallelism, are integrated with a deep memory hierarchy. Fine-grained existing implementations by one to two orders of magnitude. parallel applications running on such architectures often rely Our implementation uses characteristics of the memory sub- on an efficient barrier implementation for synchronization. system, which can also help optimize other applications, as We present a variety of barrier implementations for a 4-chip mentioned in section VII on future work. POWER8 node. These implementations are optimized based The primary contributions of this paper are as follows. on a careful study of the POWER8 memory sub-system. Our best implementation yields one to two orders of magnitude • Developing efficient MPI and POSIX threads based lower time than the current MPI and POSIX threads based barrier implementations that improve on existing ones barrier implementations on POWER8. Apart from providing by one to two orders of magnitude. efficient barrier implementations, an additional significance • Demonstrating the potential for optimization through of this work lies in demonstrating how certain features of the memory subsystem, such as NUMA access to remote L3 cache control of hardware prefetching by the POWER8 core. and the impact of prefetching, can be used to design efficient This will be useful for optimizing other applications primitives on the POWER8. too on POWER8. • Demonstrating optimization of data movement on Keywords-Barrier; POWER8; MPI; pthreads; multi-chip POWER8 servers by accounting for NUMA effects in access to L3 cache. I. INTRODUCTION II. POWER8 ARCHITECTURE The POWER8 is a new high-end processor from IBM, POWER8 is the eighth-generation POWER processor [2], and IBM’s first high-end processor to be available under designed for both high thread-level performance and system OpenPOWER Foundation. It provides up to 8-way SMT throughput on a wide variety of workloads. POWER8 pro- per core, thus permitting a high degree of parallelism in cessor is implemented in IBM’s 22nm SOI technology [3]. node. Further details on its architecture are presented in Each POWER8 chip has up to 12 processor cores, a 50% Section II. Applications may implement parallelism using increase over the previous generation POWER processor. multiple threads, multiple processes, or a combination. In The 649mm2 die, shown in Figure 1, includes 12 enhanced many applications involving fine-grained parallelization, the 8-way multithreaded cores with private L2 caches, and a performance of barrier calls play a crucial role [1]. In this 96MB high-bandwidth eDRAM L3 cache. paper, we present our efficient MPI and POSIX pthreads The POWER8 memory hierarchy includes a per-core L1 barrier implementations on a 4-chip POWER8 server. cache, with 32KB for instructions and 64KB for data, a per- An efficient barrier implementation relies on characteri- core SRAM-based 512KB L2 cache, and a 96MB eDRAM- zation of the memory sub-system. We present early related based shared L3 cache. The cache line size on POWER8 is work on the POWER8 memory sub-system in section III, 128 bytes. In addition, a 16MB off-chip eDRAM L4 cache and also related work on similar architectures, especially in per memory buffer chip is supported. There are 2 memory the context of collective communication implementations. controllers on the chip supporting a sustained bandwidth We present our results on additional characterization of the of up to 230GB per second. The POWER8 chip has an memory subsystem in section IV. We then describe a variety interconnection system that connects all components within of popular barrier algorithms in section V. the chip. The interconnect also extends through module and Section VI presents our comprehensive evaluation of board technology to other POWER8 processors in addition these algorithms, along with results of optimization for to DDR3 memory and various I/O devices. the POWER8 architecture. In particular, the most effective The POWER8 based Scale Out servers [4] such as the optimizations account for NUMA effects in remote L3 cache one we used in our work are based on IBM‘s Murano dual-chip module (DCM) [5], which puts two half-cored III. RELATED WORK POWER8 chips into a single POWER8 socket and links In [8] various aspects of a POWER8 system were studied them by a crossbar [6]. Each DCM contains two POWER8 using microbenchmarks, and the performance of OpenMP chips mounted onto a single module that is plugged into a directives is evaluated. The performance of few scientific processor socket. For example, a 12-core DCM actually has applications using OpenMP is evaluated and it highlights two 6-core POWER8 processors mounted on the module. the overhead of OpenMP primitives especially when 8-way The particular server we used in this work is 8247-42L [7], SMT is used in each core. and it has 2 sockets, each with one DCM containing two 6- Communication between the cores in a cache coherent core POWER8 chips. In total, it has 24 cores with 192-way system is modeled in [9] using Xeon Phi as a case study. parallelism. Using their model, they designed algorithms for collective Each POWER8 core can issue and execute up to ten communication. instructions and 4 load operations can be performed in a Our barrier implementation is not built on top of given cycle [2]. This higher load/store bandwidth capability point-to-point primitives. Rather, all processes directly compared to its predecessor makes POWER8 more suitable use a common region of shared memory. Such use of for high bandwidth requirements of many commercial, big shared memory has been shown to be more efficient data, and HPC workloads. than implementing collectives on top of point-to-point POWER8 also has enhanced prefetching features such primitives [10] on the Opteron. We have also implemented as Instruction speculation awareness and Data prefetch collectives using shared memory for Cell BE and Xeon depth awareness. Designed into the load-store unit, the Phi. In our earlier work, we had used double buffering data prefetch engine can recognize streams of sequentially on the programmer controlled caches (local stores) of the increasing or decreasing accesses to adjacent cache lines Cell processor to optimize MPI [11]. We also showed that and then request anticipated lines from more distant levels double buffering can be effective even on the Xeon Phi of the memory hierarchy. After a steady state of data [12]. Since the caches on Xeon Phi are not programmer stream prefetching is achieved by the pipeline, each stream controlled, we induce the same benefits by careful design of confirmation causes the engine to bring one additional line the algorithms. Though our implementations on POWER8 into the L1 cache, one additional line into the L2 cache, use shared memory, the implementation is tuned considering and one additional line into the L3 cache [2]. Prefetching is the cache hierarchy and prefetching features of POWER8 automatically done by the POWER8 hardware and is config- rather than through the above optimization techniques. urable through the Data Streams Control Register (DSCR). The POWER ISA supports instructions and corresponding programming language intrinsics to supply a hint to data IV. EVALUATION OF MEMORY SUBSYSTEM prefetch engines to override the automatic stream detection Understanding the memory bandwidth, memory access capability of the data prefetcher [3]. Our shared memory latency or the cache-to-cache bandwidth on the POWER8 based barrier implementation is optimized as described later is crucial to optimize parallel codes. Here we focus on the by configuring this DSCR register. chip organization used in the POWER8 scale-out servers, which uses a 2 socket configuration. The L3 cache is shared among the the cores and a core can access a remote L3 cache block and the latency for the access depends on the placement of the remote core. The remote core could be present on the same chip, or same socket or a remote socket, and access latency varies accordingly. To achieve better parallel performance, core binding and NUMA placement are crucial. To better understand the NUMA effects of the POWER8 memory subsystem, we used two benchmarks to measure the core to core access latency. First, we use the standard ping-pong benchmark [13] to measure the point-to-point communication latency. Message passing latency between two nodes or between two cores within a node is commonly determined by measuring ping pong latency. MPI latency is usually defined to be half of the time of a ping pong operation with a message of size zero. Figure 1. POWER8 processor chip The table I shows MPI latency between two POWER8 cores with the two MPI processes placed onto different chips. For convenience, we use the following naming con- Min 0.295 Max 0.328 vention. The chips on the 2-socket POWER8 server is Average 0.303 referred as socket 0 having two chips A and B, and socket 1 Table III having two chips C and D. One MPI process is always bound BARRIER LATENCY IN A CHIP WITH ALL POSSIBLE MAPPINGS. onto a core in chip A, and latency is measured by placing the other task onto different chips. As can be seen from the latency numbers, when the two cores are on the same chip (A), the latency is less compared to when the cores V.
Recommended publications
  • IBM Power System POWER8 Facts and Features
    IBM Power Systems IBM Power System POWER8 Facts and Features April 29, 2014 IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER7® and POWER7+® processors are described in a separate Facts and Features report dated July 2013 (POB03022-USEN-28). IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER6® and POWER6+™ processors are described in a separate Facts and Features report dated April 2010 (POB03004-USEN-14). 1 IBM Power Systems Table of Contents IBM Power System S812L 4 IBM Power System S822 and IBM Power System S822L 5 IBM Power System S814 and IBM Power System S824 6 System Unit Details 7 Server I/O Drawers & Attachment 8 Physical Planning Characteristics 9 Warranty / Installation 10 Power Systems Software Support 11 Performance Notes & More Information 12 These notes apply to the description tables for the pages which follow: Y Standard / Supported Optional Optionally Available / Supported N/A or - Not Available / Supported or Not Applicable SOD Statement of General Direction announced SLES SUSE Linux Enterprise Server RHEL Red Hat Enterprise Linux a One x8 PCIe slots must contain a 4-port 1Gb Ethernet LAN available for client use b Use of expanded function storage backplane uses one PCIe slot Backplane provides dual high performance SAS controllers with 1.8 GB write cache expanded up to 7.2 GB with c compression plus Easy Tier function plus two SAS ports for running an EXP24S drawer d Full benchmark results are located at ibm.com/systems/power/hardware/reports/system_perf.html e Option is supported on IBM i only through VIOS.
    [Show full text]
  • Openpower AI CERN V1.Pdf
    Moore’s Law Processor Technology Firmware / OS Linux Accelerator sSoftware OpenStack Storage Network ... Price/Performance POWER8 2000 2020 DRAM Memory Chips Buffer Power8: Up to 12 Cores, up to 96 Threads L1, L2, L3 + L4 Caches Up to 1 TB per socket https://www.ibm.com/blogs/syst Up to 230 GB/s sustained memory ems/power-systems- openpower-enable- bandwidth acceleration/ System System Memory Memory 115 GB/s 115 GB/s POWER8 POWER8 CPU CPU NVLink NVLink 80 GB/s 80 GB/s P100 P100 P100 P100 GPU GPU GPU GPU GPU GPU GPU GPU Memory Memory Memory Memory GPU PCIe CPU 16 GB/s System bottleneck Graphics System Memory Memory IBM aDVantage: data communication and GPU performance POWER8 + 78 ms Tesla P100+NVLink x86 baseD 170 ms GPU system ImageNet / Alexnet: Minibatch size = 128 ADD: Coherent Accelerator Processor Interface (CAPI) FPGA CAPP PCIe POWER8 Processor ...FPGAs, networking, memory... Typical I/O MoDel Flow Copy or Pin MMIO Notify Poll / Int Copy or Unpin Ret. From DD DD Call Acceleration Source Data Accelerator Completion Result Data Completion Flow with a Coherent MoDel ShareD Mem. ShareD Memory Acceleration Notify Accelerator Completion Focus on Enterprise Scale-Up Focus on Scale-Out and Enterprise Future Technology and Performance DriVen Cost and Acceleration DriVen Partner Chip POWER6 Architecture POWER7 Architecture POWER8 Architecture POWER9 Architecture POWER10 POWER8/9 2007 2008 2010 2012 2014 2016 2017 TBD 2018 - 20 2020+ POWER6 POWER6+ POWER7 POWER7+ POWER8 POWER8 P9 SO P9 SU P9 SO 2 cores 2 cores 8 cores 8 cores 12 cores w/ NVLink
    [Show full text]
  • IBM Power System E850 the Most Agile 4-Socket System in the Marketplace, Optimized for Performance, Reliability and Expansion
    IBM Systems Data Sheet IBM Power System E850 The most agile 4-socket system in the marketplace, optimized for performance, reliability and expansion Businesses today are demanding faster insights that analyze more data in Highlights new ways. They need to implement applications in days versus months, and they need to achieve all these goals while reducing IT costs. This is ●● ●●Designed for data and analytics, delivers creating new demands on IT infrastructures, requiring new levels of per- secure, reliable performance in a compact, 4-socket system formance and the flexibility to respond to new business opportunities, all at an affordable price. ●● ●●Can flexibly scale to rapidly respond to changing business needs The IBM® Power® System E850 server offers a unique blend of ●● ●●Can reduce IT costs through application enterprise-class capabilities in a space-efficient, 4-socket system with consolidation, higher availability and excellent price performance. With up to 48 IBM POWER8™ processor virtualization to yield over 70 percent utilization cores, advanced IBM PowerVM® virtualization that can yield over 70 percent system utilization and Capacity on Demand (CoD), no other 4-socket system in the industry delivers this combination of performance, efficiency and business agility. These capabilities make the Power E850 server an ideal platform for medium-size businesses and as a departmental server or data center building block for large enterprises. Designed for the demands of big data and analytics Businesses are amassing a wealth of data and IBM Power Systems™, built with innovation to support today’s data demands, can store it, secure it and, most important, extract actionable insight from it.
    [Show full text]
  • IBM Power Systems Performance Report Apr 13, 2021
    IBM Power Performance Report Power7 to Power10 September 8, 2021 Table of Contents 3 Introduction to Performance of IBM UNIX, IBM i, and Linux Operating System Servers 4 Section 1 – SPEC® CPU Benchmark Performance 4 Section 1a – Linux Multi-user SPEC® CPU2017 Performance (Power10) 4 Section 1b – Linux Multi-user SPEC® CPU2017 Performance (Power9) 4 Section 1c – AIX Multi-user SPEC® CPU2006 Performance (Power7, Power7+, Power8) 5 Section 1d – Linux Multi-user SPEC® CPU2006 Performance (Power7, Power7+, Power8) 6 Section 2 – AIX Multi-user Performance (rPerf) 6 Section 2a – AIX Multi-user Performance (Power8, Power9 and Power10) 9 Section 2b – AIX Multi-user Performance (Power9) in Non-default Processor Power Mode Setting 9 Section 2c – AIX Multi-user Performance (Power7 and Power7+) 13 Section 2d – AIX Capacity Upgrade on Demand Relative Performance Guidelines (Power8) 15 Section 2e – AIX Capacity Upgrade on Demand Relative Performance Guidelines (Power7 and Power7+) 20 Section 3 – CPW Benchmark Performance 19 Section 3a – CPW Benchmark Performance (Power8, Power9 and Power10) 22 Section 3b – CPW Benchmark Performance (Power7 and Power7+) 25 Section 4 – SPECjbb®2015 Benchmark Performance 25 Section 4a – SPECjbb®2015 Benchmark Performance (Power9) 25 Section 4b – SPECjbb®2015 Benchmark Performance (Power8) 25 Section 5 – AIX SAP® Standard Application Benchmark Performance 25 Section 5a – SAP® Sales and Distribution (SD) 2-Tier – AIX (Power7 to Power8) 26 Section 5b – SAP® Sales and Distribution (SD) 2-Tier – Linux on Power (Power7 to Power7+)
    [Show full text]
  • IBM Energyscale for POWER8 Processor-Based Systems
    IBM EnergyScale for POWER8 Processor-Based Systems November 2015 Martha Broyles Christopher J. Cain Todd Rosedahl Guillermo J. Silva Table of Contents Executive Overview...................................................................................................................................4 EnergyScale Features.................................................................................................................................5 Power Trending................................................................................................................................................................5 Thermal Reporting...........................................................................................................................................................5 Fixed Maximum Frequency Mode...................................................................................................................................6 Static Power Saver Mode.................................................................................................................................................6 Fixed Frequency Override...............................................................................................................................................6 Dynamic Power Saver Mode...........................................................................................................................................7 Power Management's Effect on System Performance................................................................................................7
    [Show full text]
  • IBM Power System S814 and S824 Technical Overview and Introduction
    Front cover IBM Power Systems S814 and S824 Technical Overview and Introduction Outstanding performance based on POWER8 processor technology 4U scale-out desktop and rack-mount servers Improved reliability, availability, and serviceability features Alexandre Bicas Caldeira Bartłomiej Grabowski Volker Haug Marc-Eric Kahle Cesar Diniz Maciel Monica Sanchez ibm.com/redbooks Redpaper International Technical Support Organization IBM Power System S814 and S824 Technical Overview and Introduction August 2014 REDP-5097-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (August 2014) This edition applies to IBM Power System S814 (8286-41A) and IBM Power System S824 (8286-42A) systems. © Copyright International Business Machines Corporation 2014. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . xi Comments welcome. xi Stay connected to IBM Redbooks . xi Chapter 1. General description . 1 1.1 Systems overview . 2 1.1.1 Power S814 server . 2 1.1.2 Power S824 server . 3 1.2 Operating environment . 3 1.3 Physical package . 4 1.3.1 Tower model . 4 1.3.2 Rack-mount model . 5 1.4 System features . 7 1.4.1 Power S814 system features . 7 1.4.2 Power S824 system features . 8 1.4.3 Minimum features . 9 1.4.4 Power supply features . 9 1.4.5 Processor module features . 9 1.4.6 Memory features .
    [Show full text]
  • Upgrade to POWER9 Planning Checklist
    Achieve your full business potential with IBM POWER9 Future-forward infrastructure designed to crush data-intensive workloads Upgrade to POWER9 Planning Checklist Using this checklist will help to ensure that your infrastructure strategy is aligned to your needs, avoiding potential cost overruns or capability shortfalls. 1 Determine current and future capacity 5 Identify all dependencies for major database requirements. Bring your team together, platforms, including Oracle, DB2, SAP HANA, assess your current application workload and open-source databases like EnterpriseDB, requirements and three- to five-year MongoDB, neo4j, and Redis. You’re likely outlook. You’ll then have a good picture running major databases on the Power of when and where application growth Systems platform; co-locating your current will take place, enabling you to secure servers may be a way to reduce expenditure capacity at the appropriate time on an and increase flexibility. as-needed basis. 6 Understand current and future data center 2 Assess operational efficiencies and identify environmental requirements. You may be opportunities to improve service levels unnecessarily overspending on power, while decreasing exposure to security and cooling and space. Savings here will help your compliancy issues/problems. With new organization avoid costs associated with data technologies that allow you to easily adjust center expansion. capacity, you will be in a much better position to lower costs, improve service Identify the requirements of your strategy for levels, and increase efficiency. 7 on- and off-premises cloud infrastructure. As you move to the cloud, ensure you 3 Create a detailed inventory of servers have a strong strategy to determine which across your entire IT infrastructure.
    [Show full text]
  • IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition
    Front cover IBM POWER8 High-Performance Computing Guide IBM Power System S822LC (8335-GTB) Edition Dino Quintero Joseph Apuzzo John Dunham Mauricio Faria de Oliveira Markus Hilger Desnes Augusto Nunes Rosario Wainer dos Santos Moschetta Alexander Pozdneev Redbooks International Technical Support Organization IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition May 2017 SG24-8371-00 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. First Edition (May 2017) This edition applies to: IBM Platform LSF Standard 10.1.0.1 IBM XL Fortran v15.1.4 and v15.1.5 compilers IBM XLC/C++ v13.1.2 and v13.1.5 compilers IBM PE Developer Edition version 2.3 Red Hat Enterprise Linux (RHEL) 7.2 and 7.3 in little-endian mode © Copyright International Business Machines Corporation 2017. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . .x Preface . xi Authors. xi Now you can become a published author, too! . xiii Comments welcome. xiv Stay connected to IBM Redbooks . xiv Chapter 1. IBM Power System S822LC for HPC server overview . 1 1.1 IBM Power System S822LC for HPC server. 2 1.1.1 IBM POWER8 processor . 3 1.1.2 NVLink . 4 1.2 HPC system hardware components . 5 1.2.1 Login nodes . 6 1.2.2 Management nodes . 6 1.2.3 Compute nodes. 7 1.2.4 Compute racks . 7 1.2.5 High-performance interconnect.
    [Show full text]
  • POWER8: the First Openpower Processor
    POWER8: The first OpenPOWER processor Dr. Michael Gschwind Senior Technical Staff Member & Senior Manager IBM Power Systems #OpenPOWERSummit Join the conversation at #OpenPOWERSummit 1 OpenPOWER is about choice in large-scale data centers The choice to The choice to The choice to differentiate innovate grow . build workload • collaborative • delivered system optimized innovation in open performance solutions ecosystem • new capabilities . use best-of- • with open instead of breed interfaces technology scaling components from an open ecosystem Join the conversation at #OpenPOWERSummit Why Power and Why Now? . Power is optimized for server workloads . Power8 was optimized to simplify application porting . Power8 includes CAPI, the Coherent Accelerator Processor Interconnect • Building on a long history of IBM workload acceleration Join the conversation at #OpenPOWERSummit POWER8 Processor Cores • 12 cores (SMT8) 96 threads per chip • 2X internal data flows/queues • 64K data cache, 32K instruction cache Caches • 512 KB SRAM L2 / core • 96 MB eDRAM shared L3 • Up to 128 MB eDRAM L4 (off-chip) Accelerators • Crypto & memory expansion • Transactional Memory • VMM assist • Data Move / VM Mobility • Coherent Accelerator Processor Interface (CAPI) Join the conversation at #OpenPOWERSummit 4 POWER8 Core •Up to eight hardware threads per core (SMT8) •8 dispatch •10 issue •16 execution pipes: •2 FXU, 2 LSU, 2 LU, 4 FPU, 2 VMX, 1 Crypto, 1 DFU, 1 CR, 1 BR •Larger Issue queues (4 x 16-entry) •Larger global completion, Load/Store reorder queue •Improved branch prediction •Improved unaligned storage access •Improved data prefetch Join the conversation at #OpenPOWERSummit 5 POWER8 Architecture . High-performance LE support – Foundation for a new ecosystem . Organic application growth Power evolution – Instruction Fusion 1600 PowerPC .
    [Show full text]
  • IBM Power System S824L Technical Overview and Introduction
    Front cover IBM Power System S824L Technical Overview and Introduction Linux server built on OpenPOWER technologies Ready for scientific, Java, and Big Data & Analytics workloads Dual NVIDIA GPU accelerators supported Alexandre Bicas Caldeira YoungHoon Cho James Cruickshank Bartłomiej Grabowski Volker Haug Andrew Laidlaw Seulgi Yoppy Sung ibm.com/redbooks Redpaper International Technical Support Organization IBM Power System S824L Technical Overview and Introduction December 2014 REDP-5139-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (December 2014) This edition applies to IBM Power System S824L (8247-42L) servers. © Copyright International Business Machines Corporation 2014. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . .x Comments welcome. xi Stay connected to IBM Redbooks . xi Chapter 1. General description . 1 1.1 Power S824L server . 2 1.2 NVIDIA Tesla GPU Accelerators. 3 1.2.1 NVIDIA CUDA. 5 1.3 Operating environment . 5 1.4 Physical package . 6 1.5 Server features . 7 1.5.1 Server features for a Power S824L with a NVIDIA GPU. 7 1.5.2 Server features for a Power S824L without a GPU. 8 1.5.3 Minimum features . 8 1.5.4 Power supply features . 8 1.5.5 Processor module features . 9 1.5.6 Memory features . 9 1.6 PCIe slots . 10 1.7 Disk and media features .
    [Show full text]
  • POWER8® Processor-Based Systems RAS Introduction to Power Systems™ Reliability, Availability, and Serviceability
    POWER8® Processor-Based Systems RAS Introduction to Power Systems™ Reliability, Availability, and Serviceability March 17th, 2016 IBM Server and Technology Group Daniel Henderson Senior Technical Staff Member, RAS Information in this document is intended to be generally descriptive of a family of processors and servers. It is not intended to describe particular offerings of any individual servers. Not all features are available in all countries. Information contained herein is subject to change at any time without notice. Trademarks, Copyrights, Notices and Acknowledgements Trademarks IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both: Active AIX® POWER® POWER Hypervisor™ Power Systems™ Power Systems Software™ Memory™ POWER6® POWER7® POWER7+™ POWER8™ PowerHA® PowerLinux™ PowerVM® System x® System z® POWER Hypervisor™ Additional Trademarks may be identified in the body of this document. The following terms are trademarks of other companies: Intel, Intel Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
    [Show full text]
  • POWER8Ò Processor Technology
    IBM Power Systems 9 January 2018 IBM Power Systems Facts and Features: Enterprise and Scale-out Systems with POWER8Ò Processor Technology 1 IBM Power Systems TaBle of contents Page no. Notes 3 Why Power Systems 4 IBM Power System S812LC, S822LC for Commercial Computing, S822LC for HPC, 5 S822LC for Big Data and S821LC IBM Power System S812L and S822L 6 IBM Power System S824L 7 IBM Power System S814 and S824 8 IBM Power System S812 and S822 9 IBM Power System E850C 10 IBM Power System E850 11 IBM Power System E870C 12 IBM Power System E870 13 IBM Power System E880C 14 IBM Power System E880 15 System S Class System Unit Details 16-19 Enterprise System, E850 System Unit and E870/E880 Node & Control Unit Details 19-20 Server I/O Drawers & Attachment 21-22 Physical Planning Characteristics 23 Warranty / Installation 24 Scale-out LC Server Systems Software Support 25 System S Class Systems Software Support 26-27 Enterprise Systems Software Support 28 Performance Notes & More Information 29 IBMÒ Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER7® and POWER7+® processors are described in a separate Facts and Features report dated July 2013 (POB03022-USEN-28). IBM Power Systems servers and IBM BladeCenter® blade servers using IBM POWER6® and POWER6+™ processors are described in a separate Facts and Features report dated April 2010 (POB03004-USEN-14). 2 IBM Power Systems These notes apply to the description tables for the pages which follow: Y Standard / Supported Optional Optionally Available / Supported N/A or – n/a Not Available / Supported or Not Applicable SOD Statement of General Direction announced SLES SUSE Linux Enterprise Server RHEL Red Hat Enterprise Linux A CoD capabilities include: Capacity Upgrade on Demand option – permanent processor or memory activation, Elastic Capacity on Demand – temporary processor or memory activation by the day, Utility Capacity on Demand – temporary processor activation by the minute, and Trial Capacity on Demand.
    [Show full text]