POWER8® Processor-Based Systems RAS Introduction to Power Systems™ Reliability, Availability, and Serviceability

Total Page:16

File Type:pdf, Size:1020Kb

POWER8® Processor-Based Systems RAS Introduction to Power Systems™ Reliability, Availability, and Serviceability POWER8® Processor-Based Systems RAS Introduction to Power Systems™ Reliability, Availability, and Serviceability March 17th, 2016 IBM Server and Technology Group Daniel Henderson Senior Technical Staff Member, RAS Information in this document is intended to be generally descriptive of a family of processors and servers. It is not intended to describe particular offerings of any individual servers. Not all features are available in all countries. Information contained herein is subject to change at any time without notice. Trademarks, Copyrights, Notices and Acknowledgements Trademarks IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both: Active AIX® POWER® POWER Hypervisor™ Power Systems™ Power Systems Software™ Memory™ POWER6® POWER7® POWER7+™ POWER8™ PowerHA® PowerLinux™ PowerVM® System x® System z® POWER Hypervisor™ Additional Trademarks may be identified in the body of this document. The following terms are trademarks of other companies: Intel, Intel Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Linux is a trademark of Linus Torvalds in the United States, other countries, or both. LTO, Ultrium, the LTO Logo and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries. Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates. UNIX is a registered trademark of The Open Group in the United States and other countries. Other company, product, or service names may be trademarks or service marks of others. Notices The last page of this document contains copyright information, important notices and other information. Acknowledgements While this whitepaper has a single principal author/editor it is the culmination of the work of a number of different subject matter experts within IBM who contributed ideas, detailed technical information, and the occasional photograph and section of description. These include the following: Theodore Maeurer, Thoi Nguyen, Doug Baska, Michael Mueller, Jim O’Connor, Gary Andrews, K Paul Muller, Len Daniels, Ken Wright, Steven Gold, Marc Gollub, Pat Egan, Ravi A. Shankar, Craig Shempert, Kevin Reick, Naresh Nayar, Peter Heyrman, Resham Kulkarni, Kanwal Bahri, Christopher Sturgill, Audrey Romonosky, George Ahrens, Jim Mitchell, Dan Hurlimann and Rob Overton. Page 4 POWER8 Processor Based Systems RAS, January 2016 Table of Contents Trademarks, Copyrights, Notices and Acknowledgements .................. 4 Trademarks ......................................................................................................................... 4 Notices ................................................................................................................................ 4 Acknowledgements ............................................................................................................. 4 Table of Contents ..................................................................................... 5 Introduction .............................................................................................. 9 Announce History ............................................................................................................................... 9 October 2015 Announcement ............................................................................................................ 9 Whitepaper Organization .................................................................................................................... 9 Section 1: POWER8 RAS Summary ....................................................... 11 RAS Summary: Common System Features ..................................................................... 11 POWER8 Processor RAS .................................................................................................. 11 Figure 1: POWER8 Processor Compared to POWER7+ ......................................................... 11 Figure 2: POWER8 DCM Module Integration ........................................................................... 12 Figure 3: POWER7/POWER7+ and POWER8 RAS Enhancements ....................................... 12 Memory RAS ..................................................................................................................... 13 Figure 4: POWER8 Custom DIMM Design............................................................................... 14 I/O Subsystem ................................................................................................................... 15 Figure 5: 1s and 2s POWER8 Processor-based Scale-out Systems ....................................... 15 RAS Summary: RAS Capabilities of Various System Models ........................................ 16 Introduction ....................................................................................................................... 16 Figure 6: Comparing Power System RAS Features ................................................................. 17 POWER8 processor-based 1s and 2s Systems IBM POWER System S814, S822, S824 . 18 POWER8 processor-based 1s and 2s Systems IBM POWER System S812L, S822L and S824L, ............................................................................................................................... 18 POWER8 processor-based IBM Power System S812LC and S822LC .............................. 19 Introduction ....................................................................................................................................... 19 Figure 7: Comparing Power System S812L and S822L to S812LC and S822LC ................... 19 Error Handling .................................................................................................................................. 20 POWER8 processor-based IBM POWER E850 System .................................................... 22 Introduction ....................................................................................................................................... 22 System Structure .............................................................................................................................. 22 Figure 8: A Schematic of a IBM Power System E850 .............................................................. 23 Comparing the IBM Power System E850 to POWER7 based IBM Power System 750 and 760 .... 23 Comparing the IBM Power System E850 to IBM Power System E870 and IBM Power System E880 .......................................................................................................................................................... 24 POWER8 processor-based IBM Power System E870 and IBM Power System E880 ........ 24 Introduction ....................................................................................................................................... 24 Figure 9: POWER8 SCM .......................................................................................................... 24 Figure 10: Logical View of Power System E870/E80 System Structure .................................. 25 Compared to POWER7 based IBM Power System 795 .................................................................. 26 Figure 11: Some Power System Featuresa E870/E880 Compared to 795.............................. 26 Compared to POWER7 based IBM Power System 770/780 ........................................................... 27 Figure 12: Power System E880 and E870 Compared to 770/780 ........................................... 27 CEC Hot Add Repair Maintenance (CHARM) .................................................................................. 28 Page 5 POWER8 Processor Based Systems RAS, January 2016 PCIe Gen 3 I/O Expansion Drawer .................................................................................... 29 Figure 13: PCIe Gen3 I/O Drawer RAS Features .................................................................... 29 Figure 14: PCIe Gen3 I/O Expansion Drawer RAS Feature Matrix ......................................... 30 Section 2: Hallmarks of Power Systems RAS ..................................... 31 Integrated System Design ................................................................................................. 31 Figure 15: IBM Enterprise System Stacks ................................................................................ 32 Alternate System Approach .............................................................................................................. 32 Hardware That Takes Care of the Hardware ..................................................................... 33 Figure 16: Two Concepts of Server RAS
Recommended publications
  • Development of a Dynamically Extensible Spinnaker Chip Computing Module
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Development of a Dynamically Extensible SpiNNaker Chip Computing Module Rui Emanuel Gonçalves Calado Araújo Master in Electrical and Computers Engineering Supervisor: Jörg Conradt Co-Supervisor: Diamantino Freitas January 27, 2014 Resumo O projeto SpiNNaker desenvolveu uma arquitetura que é capaz de criar um sistema com mais de um milhão de núcleos, com o objetivo de simular mais de um bilhão de neurónios em tempo real biológico. O núcleo deste sistema é o "chip" SpiNNaker, um multiprocessador System-on-Chip com um elevado nível de interligação entre as suas unidades de processamento. Apesar de ser uma plataforma de computação com muito potencial, até para aplicações genéricas, atualmente é ape- nas disponibilizada em configurações fixas e requer uma estação de trabalho, como uma máquina tipo "desktop" ou "laptop" conectada através de uma conexão Ethernet, para a sua inicialização e receber o programa e os dados a processar. No sentido de tirar proveito das capacidades do "chip" SpiNNaker noutras áreas, como por exemplo, na área da robótica, nomeadamente no caso de robots voadores ou de tamanho pequeno, uma nova solução de hardware com software configurável tem de ser projetada de forma a poder selecionar granularmente a quantidade do poder de processamento. Estas novas capacidades per- mitem que a arquitetura SpiNNaker possa ser utilizada em mais aplicações para além daquelas para que foi originalmente projetada. Esta dissertação apresenta um módulo de computação dinamicamente extensível baseado em "chips" SpiNNaker com a finalidade de ultrapassar as limitações supracitadas das máquinas SpiN- Naker atualmente disponíveis. Esta solução consiste numa única placa com um microcontrolador, que emula um "chip" SpiNNaker com uma ligação Ethernet, acessível através de uma porta série e com um "chip" SpiNNaker.
    [Show full text]
  • IBM Power System POWER8 Facts and Features
    IBM Power Systems IBM Power System POWER8 Facts and Features April 29, 2014 IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER7® and POWER7+® processors are described in a separate Facts and Features report dated July 2013 (POB03022-USEN-28). IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER6® and POWER6+™ processors are described in a separate Facts and Features report dated April 2010 (POB03004-USEN-14). 1 IBM Power Systems Table of Contents IBM Power System S812L 4 IBM Power System S822 and IBM Power System S822L 5 IBM Power System S814 and IBM Power System S824 6 System Unit Details 7 Server I/O Drawers & Attachment 8 Physical Planning Characteristics 9 Warranty / Installation 10 Power Systems Software Support 11 Performance Notes & More Information 12 These notes apply to the description tables for the pages which follow: Y Standard / Supported Optional Optionally Available / Supported N/A or - Not Available / Supported or Not Applicable SOD Statement of General Direction announced SLES SUSE Linux Enterprise Server RHEL Red Hat Enterprise Linux a One x8 PCIe slots must contain a 4-port 1Gb Ethernet LAN available for client use b Use of expanded function storage backplane uses one PCIe slot Backplane provides dual high performance SAS controllers with 1.8 GB write cache expanded up to 7.2 GB with c compression plus Easy Tier function plus two SAS ports for running an EXP24S drawer d Full benchmark results are located at ibm.com/systems/power/hardware/reports/system_perf.html e Option is supported on IBM i only through VIOS.
    [Show full text]
  • NVIDIA CUDA on IBM POWER8: Technical Overview, Software Installation, and Application Development
    Redpaper Dino Quintero Wei Li Wainer dos Santos Moschetta Mauricio Faria de Oliveira Alexander Pozdneev NVIDIA CUDA on IBM POWER8: Technical overview, software installation, and application development Overview The exploitation of general-purpose computing on graphics processing units (GPUs) and modern multi-core processors in a single heterogeneous parallel system has proven highly efficient for running several technical computing workloads. This applied to a wide range of areas such as chemistry, bioinformatics, molecular biology, engineering, and big data analytics. Recently launched, the IBM® Power System S824L comes into play to explore the use of the NVIDIA Tesla K40 GPU, combined with the latest IBM POWER8™ processor, providing a unique technology platform for high performance computing. This IBM Redpaper™ publication discusses the installation of the system, and the development of C/C++ and Java applications using the NVIDIA CUDA platform for IBM POWER8. Note: CUDA stands for Compute Unified Device Architecture. It is a parallel computing platform and programming model created by NVIDIA and implemented by the GPUs that they produce. The following topics are covered: Advantages of NVIDIA on POWER8 The IBM Power Systems S824L server Software stack System monitoring Application development Tuning and debugging Application examples © Copyright IBM Corp. 2015. All rights reserved. ibm.com/redbooks 1 Advantages of NVIDIA on POWER8 The IBM and NVIDIA partnership was announced in November 2013, for the purpose of integrating IBM POWER®-based systems with NVIDIA GPUs, and enablement of GPU-accelerated applications and workloads. The goal is to deliver higher performance and better energy efficiency to companies and data centers. This collaboration produced its initial results in 2014 with: The announcement of the first IBM POWER8 system featuring NVIDIA Tesla GPUs (IBM Power Systems™ S824L).
    [Show full text]
  • Openpower AI CERN V1.Pdf
    Moore’s Law Processor Technology Firmware / OS Linux Accelerator sSoftware OpenStack Storage Network ... Price/Performance POWER8 2000 2020 DRAM Memory Chips Buffer Power8: Up to 12 Cores, up to 96 Threads L1, L2, L3 + L4 Caches Up to 1 TB per socket https://www.ibm.com/blogs/syst Up to 230 GB/s sustained memory ems/power-systems- openpower-enable- bandwidth acceleration/ System System Memory Memory 115 GB/s 115 GB/s POWER8 POWER8 CPU CPU NVLink NVLink 80 GB/s 80 GB/s P100 P100 P100 P100 GPU GPU GPU GPU GPU GPU GPU GPU Memory Memory Memory Memory GPU PCIe CPU 16 GB/s System bottleneck Graphics System Memory Memory IBM aDVantage: data communication and GPU performance POWER8 + 78 ms Tesla P100+NVLink x86 baseD 170 ms GPU system ImageNet / Alexnet: Minibatch size = 128 ADD: Coherent Accelerator Processor Interface (CAPI) FPGA CAPP PCIe POWER8 Processor ...FPGAs, networking, memory... Typical I/O MoDel Flow Copy or Pin MMIO Notify Poll / Int Copy or Unpin Ret. From DD DD Call Acceleration Source Data Accelerator Completion Result Data Completion Flow with a Coherent MoDel ShareD Mem. ShareD Memory Acceleration Notify Accelerator Completion Focus on Enterprise Scale-Up Focus on Scale-Out and Enterprise Future Technology and Performance DriVen Cost and Acceleration DriVen Partner Chip POWER6 Architecture POWER7 Architecture POWER8 Architecture POWER9 Architecture POWER10 POWER8/9 2007 2008 2010 2012 2014 2016 2017 TBD 2018 - 20 2020+ POWER6 POWER6+ POWER7 POWER7+ POWER8 POWER8 P9 SO P9 SU P9 SO 2 cores 2 cores 8 cores 8 cores 12 cores w/ NVLink
    [Show full text]
  • IBM Power System E850 the Most Agile 4-Socket System in the Marketplace, Optimized for Performance, Reliability and Expansion
    IBM Systems Data Sheet IBM Power System E850 The most agile 4-socket system in the marketplace, optimized for performance, reliability and expansion Businesses today are demanding faster insights that analyze more data in Highlights new ways. They need to implement applications in days versus months, and they need to achieve all these goals while reducing IT costs. This is ●● ●●Designed for data and analytics, delivers creating new demands on IT infrastructures, requiring new levels of per- secure, reliable performance in a compact, 4-socket system formance and the flexibility to respond to new business opportunities, all at an affordable price. ●● ●●Can flexibly scale to rapidly respond to changing business needs The IBM® Power® System E850 server offers a unique blend of ●● ●●Can reduce IT costs through application enterprise-class capabilities in a space-efficient, 4-socket system with consolidation, higher availability and excellent price performance. With up to 48 IBM POWER8™ processor virtualization to yield over 70 percent utilization cores, advanced IBM PowerVM® virtualization that can yield over 70 percent system utilization and Capacity on Demand (CoD), no other 4-socket system in the industry delivers this combination of performance, efficiency and business agility. These capabilities make the Power E850 server an ideal platform for medium-size businesses and as a departmental server or data center building block for large enterprises. Designed for the demands of big data and analytics Businesses are amassing a wealth of data and IBM Power Systems™, built with innovation to support today’s data demands, can store it, secure it and, most important, extract actionable insight from it.
    [Show full text]
  • IBM Power Systems Performance Report Apr 13, 2021
    IBM Power Performance Report Power7 to Power10 September 8, 2021 Table of Contents 3 Introduction to Performance of IBM UNIX, IBM i, and Linux Operating System Servers 4 Section 1 – SPEC® CPU Benchmark Performance 4 Section 1a – Linux Multi-user SPEC® CPU2017 Performance (Power10) 4 Section 1b – Linux Multi-user SPEC® CPU2017 Performance (Power9) 4 Section 1c – AIX Multi-user SPEC® CPU2006 Performance (Power7, Power7+, Power8) 5 Section 1d – Linux Multi-user SPEC® CPU2006 Performance (Power7, Power7+, Power8) 6 Section 2 – AIX Multi-user Performance (rPerf) 6 Section 2a – AIX Multi-user Performance (Power8, Power9 and Power10) 9 Section 2b – AIX Multi-user Performance (Power9) in Non-default Processor Power Mode Setting 9 Section 2c – AIX Multi-user Performance (Power7 and Power7+) 13 Section 2d – AIX Capacity Upgrade on Demand Relative Performance Guidelines (Power8) 15 Section 2e – AIX Capacity Upgrade on Demand Relative Performance Guidelines (Power7 and Power7+) 20 Section 3 – CPW Benchmark Performance 19 Section 3a – CPW Benchmark Performance (Power8, Power9 and Power10) 22 Section 3b – CPW Benchmark Performance (Power7 and Power7+) 25 Section 4 – SPECjbb®2015 Benchmark Performance 25 Section 4a – SPECjbb®2015 Benchmark Performance (Power9) 25 Section 4b – SPECjbb®2015 Benchmark Performance (Power8) 25 Section 5 – AIX SAP® Standard Application Benchmark Performance 25 Section 5a – SAP® Sales and Distribution (SD) 2-Tier – AIX (Power7 to Power8) 26 Section 5b – SAP® Sales and Distribution (SD) 2-Tier – Linux on Power (Power7 to Power7+)
    [Show full text]
  • IBM Energyscale for POWER8 Processor-Based Systems
    IBM EnergyScale for POWER8 Processor-Based Systems November 2015 Martha Broyles Christopher J. Cain Todd Rosedahl Guillermo J. Silva Table of Contents Executive Overview...................................................................................................................................4 EnergyScale Features.................................................................................................................................5 Power Trending................................................................................................................................................................5 Thermal Reporting...........................................................................................................................................................5 Fixed Maximum Frequency Mode...................................................................................................................................6 Static Power Saver Mode.................................................................................................................................................6 Fixed Frequency Override...............................................................................................................................................6 Dynamic Power Saver Mode...........................................................................................................................................7 Power Management's Effect on System Performance................................................................................................7
    [Show full text]
  • IBM Power System S814 and S824 Technical Overview and Introduction
    Front cover IBM Power Systems S814 and S824 Technical Overview and Introduction Outstanding performance based on POWER8 processor technology 4U scale-out desktop and rack-mount servers Improved reliability, availability, and serviceability features Alexandre Bicas Caldeira Bartłomiej Grabowski Volker Haug Marc-Eric Kahle Cesar Diniz Maciel Monica Sanchez ibm.com/redbooks Redpaper International Technical Support Organization IBM Power System S814 and S824 Technical Overview and Introduction August 2014 REDP-5097-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (August 2014) This edition applies to IBM Power System S814 (8286-41A) and IBM Power System S824 (8286-42A) systems. © Copyright International Business Machines Corporation 2014. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . xi Comments welcome. xi Stay connected to IBM Redbooks . xi Chapter 1. General description . 1 1.1 Systems overview . 2 1.1.1 Power S814 server . 2 1.1.2 Power S824 server . 3 1.2 Operating environment . 3 1.3 Physical package . 4 1.3.1 Tower model . 4 1.3.2 Rack-mount model . 5 1.4 System features . 7 1.4.1 Power S814 system features . 7 1.4.2 Power S824 system features . 8 1.4.3 Minimum features . 9 1.4.4 Power supply features . 9 1.4.5 Processor module features . 9 1.4.6 Memory features .
    [Show full text]
  • Upgrade to POWER9 Planning Checklist
    Achieve your full business potential with IBM POWER9 Future-forward infrastructure designed to crush data-intensive workloads Upgrade to POWER9 Planning Checklist Using this checklist will help to ensure that your infrastructure strategy is aligned to your needs, avoiding potential cost overruns or capability shortfalls. 1 Determine current and future capacity 5 Identify all dependencies for major database requirements. Bring your team together, platforms, including Oracle, DB2, SAP HANA, assess your current application workload and open-source databases like EnterpriseDB, requirements and three- to five-year MongoDB, neo4j, and Redis. You’re likely outlook. You’ll then have a good picture running major databases on the Power of when and where application growth Systems platform; co-locating your current will take place, enabling you to secure servers may be a way to reduce expenditure capacity at the appropriate time on an and increase flexibility. as-needed basis. 6 Understand current and future data center 2 Assess operational efficiencies and identify environmental requirements. You may be opportunities to improve service levels unnecessarily overspending on power, while decreasing exposure to security and cooling and space. Savings here will help your compliancy issues/problems. With new organization avoid costs associated with data technologies that allow you to easily adjust center expansion. capacity, you will be in a much better position to lower costs, improve service Identify the requirements of your strategy for levels, and increase efficiency. 7 on- and off-premises cloud infrastructure. As you move to the cloud, ensure you 3 Create a detailed inventory of servers have a strong strategy to determine which across your entire IT infrastructure.
    [Show full text]
  • IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition
    Front cover IBM POWER8 High-Performance Computing Guide IBM Power System S822LC (8335-GTB) Edition Dino Quintero Joseph Apuzzo John Dunham Mauricio Faria de Oliveira Markus Hilger Desnes Augusto Nunes Rosario Wainer dos Santos Moschetta Alexander Pozdneev Redbooks International Technical Support Organization IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition May 2017 SG24-8371-00 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. First Edition (May 2017) This edition applies to: IBM Platform LSF Standard 10.1.0.1 IBM XL Fortran v15.1.4 and v15.1.5 compilers IBM XLC/C++ v13.1.2 and v13.1.5 compilers IBM PE Developer Edition version 2.3 Red Hat Enterprise Linux (RHEL) 7.2 and 7.3 in little-endian mode © Copyright International Business Machines Corporation 2017. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . .x Preface . xi Authors. xi Now you can become a published author, too! . xiii Comments welcome. xiv Stay connected to IBM Redbooks . xiv Chapter 1. IBM Power System S822LC for HPC server overview . 1 1.1 IBM Power System S822LC for HPC server. 2 1.1.1 IBM POWER8 processor . 3 1.1.2 NVLink . 4 1.2 HPC system hardware components . 5 1.2.1 Login nodes . 6 1.2.2 Management nodes . 6 1.2.3 Compute nodes. 7 1.2.4 Compute racks . 7 1.2.5 High-performance interconnect.
    [Show full text]
  • POWER8: the First Openpower Processor
    POWER8: The first OpenPOWER processor Dr. Michael Gschwind Senior Technical Staff Member & Senior Manager IBM Power Systems #OpenPOWERSummit Join the conversation at #OpenPOWERSummit 1 OpenPOWER is about choice in large-scale data centers The choice to The choice to The choice to differentiate innovate grow . build workload • collaborative • delivered system optimized innovation in open performance solutions ecosystem • new capabilities . use best-of- • with open instead of breed interfaces technology scaling components from an open ecosystem Join the conversation at #OpenPOWERSummit Why Power and Why Now? . Power is optimized for server workloads . Power8 was optimized to simplify application porting . Power8 includes CAPI, the Coherent Accelerator Processor Interconnect • Building on a long history of IBM workload acceleration Join the conversation at #OpenPOWERSummit POWER8 Processor Cores • 12 cores (SMT8) 96 threads per chip • 2X internal data flows/queues • 64K data cache, 32K instruction cache Caches • 512 KB SRAM L2 / core • 96 MB eDRAM shared L3 • Up to 128 MB eDRAM L4 (off-chip) Accelerators • Crypto & memory expansion • Transactional Memory • VMM assist • Data Move / VM Mobility • Coherent Accelerator Processor Interface (CAPI) Join the conversation at #OpenPOWERSummit 4 POWER8 Core •Up to eight hardware threads per core (SMT8) •8 dispatch •10 issue •16 execution pipes: •2 FXU, 2 LSU, 2 LU, 4 FPU, 2 VMX, 1 Crypto, 1 DFU, 1 CR, 1 BR •Larger Issue queues (4 x 16-entry) •Larger global completion, Load/Store reorder queue •Improved branch prediction •Improved unaligned storage access •Improved data prefetch Join the conversation at #OpenPOWERSummit 5 POWER8 Architecture . High-performance LE support – Foundation for a new ecosystem . Organic application growth Power evolution – Instruction Fusion 1600 PowerPC .
    [Show full text]
  • IBM Power System S824L Technical Overview and Introduction
    Front cover IBM Power System S824L Technical Overview and Introduction Linux server built on OpenPOWER technologies Ready for scientific, Java, and Big Data & Analytics workloads Dual NVIDIA GPU accelerators supported Alexandre Bicas Caldeira YoungHoon Cho James Cruickshank Bartłomiej Grabowski Volker Haug Andrew Laidlaw Seulgi Yoppy Sung ibm.com/redbooks Redpaper International Technical Support Organization IBM Power System S824L Technical Overview and Introduction December 2014 REDP-5139-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (December 2014) This edition applies to IBM Power System S824L (8247-42L) servers. © Copyright International Business Machines Corporation 2014. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . .x Comments welcome. xi Stay connected to IBM Redbooks . xi Chapter 1. General description . 1 1.1 Power S824L server . 2 1.2 NVIDIA Tesla GPU Accelerators. 3 1.2.1 NVIDIA CUDA. 5 1.3 Operating environment . 5 1.4 Physical package . 6 1.5 Server features . 7 1.5.1 Server features for a Power S824L with a NVIDIA GPU. 7 1.5.2 Server features for a Power S824L without a GPU. 8 1.5.3 Minimum features . 8 1.5.4 Power supply features . 8 1.5.5 Processor module features . 9 1.5.6 Memory features . 9 1.6 PCIe slots . 10 1.7 Disk and media features .
    [Show full text]