POWER Processor

Total Page:16

File Type:pdf, Size:1020Kb

POWER Processor POWER Processor Technology Overview Myron Slota POWER Systems, IBM Systems © 2017 IBM Corporation Quarter Century of POWER 22nm Legacy of Leadership Innovation 45/32nm Driving Client Value 65nm POWER8 0.18um 0.25um 130/90nm POWER7/7+ 0.35um Business 0.5um RS64IV Sstar 180/130nm POWER6 0.5um RS64III Pulsar RS64II North Star 0.5um POWER5/5+ RS64I Apache 0.22um Cobra A10 Muskie POWER4/4+ A35 Modern UNIX Era 0.35um Workstation POWER3 -630 0.72um POWER2 P2SC 1.0um RSC 0.25um POWER1 0.35um PC 0.6um 604e 603 601 1990 1995 2000 2005 2010 2015 © 2017 IBM Corporation 2 IBM Optimized Semiconductor Technology World class technology with value-added features for server business. POWER9 is built on 14nm finFET technology transitioned to Global Foundaries 17-layer copper wire Silicon On Insulator On-chip eDRAM (14nm) -Faster Transistor, Less Noise - 6x latency improvement - No off-chip signaling required - 8x bandwidth improvement - 3x less area than SRAM - 5x less energy than SRAM Dense interconnect - Faster connections - Low latency distance paths - High density complex circuits - 2X wire per transistor DT DT eDRAM Cell “IBM is committed to meeting the rising demands of cognitive systems and cloud computing. GF’s leading performance in 7LP process technology, reflecting our joint Research collaboration, will allow IBM Power and Mainframe systems to push beyond limitations to provide high-performance computing solutions while aggressively pursuing 5nm to advance our leadership for years to come.” Tom Rosamilia, Senior Vice President, IBM Systems © 2017 IBM Corporation IBM Confidential Recent and Future POWER Processor Roadmap POWER10 Family 2020+ POWER9 Family 14nm SO, SU POWER8 Family 22nm 2H17 – 2H18+ POWER7+ 2014 – 2016 32 nm POWER7 2012 New uArch/Tech, multiple optimized 45 nm Enterprise 2010 Scale-out / OpenPOWER Accelerated / OpenPOWER New uArch/Tech System roll-out Enterprise + Scale-out / OpenPOWER Spin in new Tech System roll-out Significant Linux / Open / Partner focus Highly Optimized (Cognitive / Analytics) Enterprise focused Cloud delivery models, Accelerators IBM AIX, IBM i platforms General Purpose, IBM only © 2017 IBM Corporation 4 POWER Processor Technology Powerful Cores • Aggressive OOO design with 4 or 8 threads POWER8 • Optimized for wide range of algorithms • 22 nm SOI technology Robust Scaling • 12 x SMT8 cores • Large NUCA L3 architecture, eDRAM • PCIe G3, up to 48 lanes per package • CAPI 1.0 • Up to 8 memory channels per socket • POWER8 w/ NVLINK: GPU NVLink 1.0 • SMP interconnect and on chip switching Advanced Virtualization • Coarse or fine grained VM per core POWER9 • Advanced features for QoS • 14 nm finFET technology Leadership • 24 x SMT4 or 12 x SMT8 cores Hardware Acceleration Platform • PCIe G4, 48 lanes per socket • Coherent Accelerator Processor Interface • CAPI 2.0 provides reduced latency and high BW • 25Gbps Link, 48 lanes for acceleration • Robust Accelerated computing roadmap • OpenCAPI 3.0 supported by OpenPOWER partners • GPU NVLink 2.0 © 2017 IBM Corporation 5 POWER9 Processor Chipset 4 Targeted Deployments Core Count / Size SMT4 Core SMT8 Core 24 SMT4 Cores / Chip 12 SMT8 Cores / Chip SMP / Memory Linux Ecosystem Optimized PowerVM Ecosystem Focus Scale-Out – 2 Socket Optimized Robust 2 socket SMP system Direct Memory Attach • Up to 8 DDR4 ports • Commodity packaging form factor OpenCAPI OpenCAPI Scale-Up – 16-Socket Optimized Scalable System Topology / Capacity • Large multi-socket Buffered Memory Attach • 8 Buffered channels OpenCAPI OpenCAPI © 2017 IBM Corporation POWER9: Improved Per Thread Performance with SMT4 or SMT8 Cores • ‘Modular Execution’ enables SMT4 and SMT8 cores to be efficiently built from same DNA • 96 threads per chip: 12 SMT8 cores or 24 SMT4 cores – >2x threads per chip versus X86 offerings • Each thread significantly stronger than in POWER8 due to increased HW resources POWER9 SMT8 Core POWER9 SMT4 Core • PowerVM Ecosystem Continuity • Linux Ecosystem Focus • Strongest Thread • Core Count / Socket • Optimized for Large Partitions • Virtualization Granularity SMT8 Core SMT4 Core © 2017 IBM Corporation 7 New POWER9 Core MicroArchitecture Optimized for Cognitive Workloads and Stronger Thread Performance • Shorter pipeline • Increased execution bandwidth for a range of workloads including commercial, cognitive and analytics • Sophisticated instruction scheduling & branch prediction for unoptimized code and interpretive languages • Adaptive features for improved efficiency and performance • Shared compute resource optimizes data-type interchange Symmetric Engines Per Data-Type for Higher Performance on Diverse Workloads © 2017 IBM Corporation 8 POWER9 – Data Capacity & Throughput Big Caches for Massively Parallel Compute Extreme Switching Bandwidth for the and Heterogeneous Interaction Most Demanding Compute and Accelerated Workloads L3 Cache: 120 MB (POWER8 96 MB) High-Throughput On-Chip Fabric Shared Capacity NUCA Cache • POWER9: Over 7 TB/s On-chip Switch • 12 Regions – one per 8 threads – provide dedicated local capacity • Move Data in/out at 256 GB/s per SMT8 Core • Cache regions share data and capacity on demand POWER9 17 Layers of Metal eDRAM Processing Cores 10M 10M 10M 10M 10M 10M 10M 10M 10M 10M 10M 10M 7 TB/s 256 GB/s x 12 DDR SMP PCIe CAPI NVLink 2 NVLink OpenCAPI PCIe IBM & Nvidia IBM & Memory Device Partner GPU Partner POWER9 Devices Devices © 2017 IBM Corporation 9 POWER – Dual Memory Subsystems POWER8 and POWER9 Scale Out POWER9 Scale Up Direct Attach Memory Buffered Memory 8 Direct DDR4 Ports 8 Buffered Channels • Up to 130 GB/s of sustained bandwidth • Up to 230GB/s of sustained bandwidth • Low latency access • Extreme capacity – up to 8TB / socket • Commodity packaging form factor • Superior RAS with chip kill and lane sparing • Adaptive 64B / 128B reads • Agnostic interface for alternate memory innovations 10 © 2017 IBM Corporation POWER9 Processor Modular High-speed 25 Gb/s Signaling Power Processor Utilize Best-of-Breed Power Processor Flexible & Modular 25Gbps Optical-Style Coherence Packaging Signaling Technology OpenCAPI Infrastructure App FPGA © 2017 IBM Corporation 16 Socket 2-Hop POWER9 Enterprise System Topology Horizontal Full Connect 4 Socket CEC New 25 GT/s SMP Cable 4X Bandwidth!!! Vertical Full Connect FullVertical © 2017 IBM Corporation POWER9 – Premier Acceleration Platform • Extreme Processor / Accelerator Bandwidth and Reduced Latency • Coherent Memory and Virtual Addressing Capability for all Accelerators POWER9 • OpenPOWER and OpenCAPI Community Enablement – Robust Accelerated PowerAccel Compute Options • State of the Art I/O and Acceleration Attachment Signaling PCIe – PCIe Gen 4 x 48 lanes – 192 GB/s duplex bandwidth Devices PCIe G4 I/O PCIe – G4 – 25Gbps Link x 48 lanes – 300 GB/s duplex bandwidth ASIC / CAPI FPGA CAPI 2.0 Devices NVLink • Robust Accelerated Compute Options with OPEN standards NVLink 2.0 Nvidia 25G GPUs OpenCAPI – On-Chip Acceleration – Gzip x1, 842 Compression x2, AES/SHA x2 Link – ASIC / OpenCAPI – CAPI 2.0 – 4x bandwidth of POWER8 using PCIe Gen 4 FPGA – Devices – NVLink 2.0 – Next generation of GPU/CPU bandwidth and integration On Chip – OpenCAPI – High bandwidth, low latency and open interface using 25Gbps Link Accel © 2017 IBM Corporation 13 Accelerated Solution Enablement 25G Accelerators Accelerators Bus Storage Host- Storage Coherence architecture 128 GBps agnostic Advanced PCIe Gen4 200 GBps Memory (SCM) CAPI CAPI Network OpenCAPI Network 25G • POWER8: CAPI (Coherent Accelerator Processor Interface): – Enables coherent attach of external devices over PCIe Gen3 physicals – Simplifies programming model, eliminates code-path overhead of accelerator / storage / network access POWER9: • CAPI 2.0: PCIe Gen4 provides 4x bandwidth of POWER8 • OpenCAPI 3.0: 100% Open Interface Architecture with low-latency, high bandwidth attach (up to 200GBps) – Ability to connect to user-level accelerators, storage + network devices, and advanced memories © 2017 IBM Corporation 14 CAPI Technology Overview Copy or Pin MMIO Notify Poll / Int Copy or Unpin Ret. From DD DD Call Acceleration Source Data Accelerator Completion Result Data Completion 300 Instructions 10,000 Instructions Application 3,000 Instructions 1,000 Instructions Dependent, but 1,000 Instructions Equal to below Typical I/O Model Flow Flow with a Coherent Model Shared Mem. Shared Memory Acceleration Notify Accelerator Completion 400 Instructions Application 100 Instructions Dependent, but Equal to above CAPI FPGA IBM Supplied POWER Service Layer Function Function Function Function CAPP PCIe n 0 1 2 Power Processor Added Advantages of Coherent Attachment Over I/O Attachment Virtual Addressing & Data Caching Easier, More Natural Programming Enables Applications Not Possible – Shared Memory Model on I/O – Lower latency for highly referenced data – Traditional thread level programming – Pointer chasing, etc… – Long latency of I/O typically requires restructuring of application © 2017 IBM Corporation 15 POWER9 – Ideal for Acceleration Extreme CPU/Accelerator Bandwidth POWER9 with 25G Link OpenCAPI 3.0 PCIe Gen3 x16 PCIe Gen4 x16 POWER8 with NVLink 1.0 NVLIink 2.0 Accelerator Accelerator Accelerator CPU CPU GPU GPU 2x GPU 1x 5x GPU 7-10x Increased Performance / Features / Acceleration Opportunity Seamless CPU/Accelerator Interaction Broader Application of Heterogeneous Compute • Coherent memory sharing • Designed for efficient programming models • Enhanced virtual address translation on chip • Accelerate complex analytic / cognitive applications • Data interaction
Recommended publications
  • Investigations on Hardware Compression of IBM Power9 Processors
    Investigations on hardware compression of IBM Power9 processors Jérome Kieffer, Pierre Paleo, Antoine Roux, Benoît Rousselle Outline ● The bandwidth issue at synchrotrons sources ● Presentation of the evaluated systems: – Intel Xeon vs IBM Power9 – Benchmarks on bandwidth ● The need for compression of scientific data – Compression as part of HDF5 – The hardware compression engine NX-gzip within Power9 – Gzip performance benchmark – Bitshuffle-LZ4 benchmark – Filter optimizations – Benchmark of parallel filtered gzip ● Conclusions – on the hardware – on the compression pipeline in HDF5 Page 2 HDF5 on Power9 18/09/2019 Bandwidth issue at synchrotrons sources Data analysis computer with the main interconnections and their associated bandwidth. Data reduction Upgrade to → Azimuthal integration 100 Gbit/s Data compression ! Figures from former generation of servers Kieffer et al. Volume 25 | Part 2 | March 2018 | Pages 612–617 | 10.1107/S1600577518000607 Page 3 HDF5 on Power9 18/09/2019 Topologies of Intel Xeon servers in 2019 Source: intel.com Page 4 HDF5 on Power9 18/09/2019 Architecture of the AC922 server from IBM featuring Power9 Credit: Thibaud Besson, IBM France Page 6 HDF5 on Power9 18/09/2019 Bandwidth measurement: Xeon vs Power9 Computer Dell R840 IBM AC922 Processor 4 Intel Xeon (12 cores) 2 IBM Power9 (16 cores) 2.6 GHz 2.7 GHz Cache (L3) 19 MB 8x 10 MB Memory channels 4x 6 DDR4 2x 8 DDR4 Memory capacity → 3TB → 2TB Memory speed theory 512 GB/s 340 GB/s Measured memory speed 160 GB/s 270 GB/s Interconnects PCIe v3 PCIe v4 NVlink2 & CAPI2 GP-GPU co-processor 2Tesla V100 PCIe v3 2Tesla V100 NVlink2 Interconnect speed 12 GB/s 48 GB/s CPU ↔ GPU Page 8 HDF5 on Power9 18/09/2019 Strength and weaknesses of the OpenPower architecture While amd64 is today’s de facto standard in HPC, it has a few competitors: arm64, ppc64le and to a less extend riscv and mips64.
    [Show full text]
  • Wind Rose Data Comes in the Form >200,000 Wind Rose Images
    Making Wind Speed and Direction Maps Rich Stromberg Alaska Energy Authority [email protected]/907-771-3053 6/30/2011 Wind Direction Maps 1 Wind rose data comes in the form of >200,000 wind rose images across Alaska 6/30/2011 Wind Direction Maps 2 Wind rose data is quantified in very large Excel™ spreadsheets for each region of the state • Fields: X Y X_1 Y_1 FILE FREQ1 FREQ2 FREQ3 FREQ4 FREQ5 FREQ6 FREQ7 FREQ8 FREQ9 FREQ10 FREQ11 FREQ12 FREQ13 FREQ14 FREQ15 FREQ16 SPEED1 SPEED2 SPEED3 SPEED4 SPEED5 SPEED6 SPEED7 SPEED8 SPEED9 SPEED10 SPEED11 SPEED12 SPEED13 SPEED14 SPEED15 SPEED16 POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 WEIBC1 WEIBC2 WEIBC3 WEIBC4 WEIBC5 WEIBC6 WEIBC7 WEIBC8 WEIBC9 WEIBC10 WEIBC11 WEIBC12 WEIBC13 WEIBC14 WEIBC15 WEIBC16 WEIBK1 WEIBK2 WEIBK3 WEIBK4 WEIBK5 WEIBK6 WEIBK7 WEIBK8 WEIBK9 WEIBK10 WEIBK11 WEIBK12 WEIBK13 WEIBK14 WEIBK15 WEIBK16 6/30/2011 Wind Direction Maps 3 Data set is thinned down to wind power density • Fields: X Y • POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 • Power1 is the wind power density coming from the north (0 degrees). Power 2 is wind power from 22.5 deg.,…Power 9 is south (180 deg.), etc… 6/30/2011 Wind Direction Maps 4 Spreadsheet calculations X Y POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 Max Wind Dir Prim 2nd Wind Dir Sec -132.7365 54.4833 0.643 0.767 1.911 4.083
    [Show full text]
  • IBM Power System POWER8 Facts and Features
    IBM Power Systems IBM Power System POWER8 Facts and Features April 29, 2014 IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER7® and POWER7+® processors are described in a separate Facts and Features report dated July 2013 (POB03022-USEN-28). IBM Power Systems™ servers and IBM BladeCenter® blade servers using IBM POWER6® and POWER6+™ processors are described in a separate Facts and Features report dated April 2010 (POB03004-USEN-14). 1 IBM Power Systems Table of Contents IBM Power System S812L 4 IBM Power System S822 and IBM Power System S822L 5 IBM Power System S814 and IBM Power System S824 6 System Unit Details 7 Server I/O Drawers & Attachment 8 Physical Planning Characteristics 9 Warranty / Installation 10 Power Systems Software Support 11 Performance Notes & More Information 12 These notes apply to the description tables for the pages which follow: Y Standard / Supported Optional Optionally Available / Supported N/A or - Not Available / Supported or Not Applicable SOD Statement of General Direction announced SLES SUSE Linux Enterprise Server RHEL Red Hat Enterprise Linux a One x8 PCIe slots must contain a 4-port 1Gb Ethernet LAN available for client use b Use of expanded function storage backplane uses one PCIe slot Backplane provides dual high performance SAS controllers with 1.8 GB write cache expanded up to 7.2 GB with c compression plus Easy Tier function plus two SAS ports for running an EXP24S drawer d Full benchmark results are located at ibm.com/systems/power/hardware/reports/system_perf.html e Option is supported on IBM i only through VIOS.
    [Show full text]
  • Ray Tracing on the Cell Processor
    Ray Tracing on the Cell Processor Carsten Benthin† Ingo Wald Michael Scherbaum† Heiko Friedrich‡ †inTrace Realtime Ray Tracing GmbH SCI Institute, University of Utah ‡Saarland University {benthin, scherbaum}@intrace.com, [email protected], [email protected] Abstract band”) architectures1 to hide memory latencies, at exposing par- Over the last three decades, higher CPU performance has been allelism through SIMD units, and at multi-core architectures. At achieved almost exclusively by raising the CPU’s clock rate. Today, least for specialized tasks such as triangle rasterization, these con- the resulting power consumption and heat dissipation threaten to cepts have been proven as very powerful, and have made modern end this trend, and CPU designers are looking for alternative ways GPUs as fast as they are; for example, a Nvidia 7800 GTX offers of providing more compute power. In particular, they are looking 313 GFlops [16], 35 times more than a 2.2 GHz AMD Opteron towards three concepts: a streaming compute model, vector-like CPU. Today, there seems to be a convergence between CPUs and SIMD units, and multi-core architectures. One particular example GPUs, with GPUs—already using the streaming compute model, of such an architecture is the Cell Broadband Engine Architecture SIMD, and multi-core—become increasingly programmable, and (CBEA), a multi-core processor that offers a raw compute power CPUs are getting equipped with more and more cores and stream- of up to 200 GFlops per 3.2 GHz chip. The Cell bears a huge po- ing functionalities. Most commodity CPUs already offer 2–8 tential for compute-intensive applications like ray tracing, but also cores [1, 9, 10, 25], and desktop PCs with more cores can be built requires addressing the challenges caused by this processor’s un- by stacking and interconnecting smaller multi-core systems (mostly conventional architecture.
    [Show full text]
  • March 11, 2010 Presentation
    IBM Power Systems POWER7TM Announcement, The Next Generation of Power Systems Power your planet. February 25, 2010 IBM Power Systems 2 February 25, 2010 IBM Power Systems POWER7 System Highlights .Balance System Design - Cache, Memory, and IO .POWER7 Processor Technology - 6th Implementation of multi-core design - On chip L2 & L3 caches .POWER7 System Architecture - Blades to High End offerings - Enhances memory implementation - PCIe, SAS / SATA .Built in Virtualization - Memory Expansion - VM Control .Green Technologies - Processor Nap & Sleep Mode - Memory Power Down support - Aggressive Power Save / Capping Modes 600 500 .Availability 400 - Processor Instruction Retry 300 - Alternate Process Recovery 200 100 - Concurrent Add & Services 0 JS23 JS43 520 550 560 570/16 570/32 595 3 February 25, 2010 IBM Power Systems 4 February 25, 2010 IBM Power Systems Power Processor Technology IBM investment in the Power Franchise Dependable Execution for a decade POWER8 POWER7 45 nm Globalization and globally POWER6 available resources 65 nm •Performance/System Capacity POWER5 •4-5X increase from Power6 130 nm •Multi Core – Up to 8 POWER4 •SMT4 – 4 threads/core 180 nm . Dual Core •On-Chip eDRAM . High Frequencies • Energy . Dual Core . Virtualization + . Enhanced Scaling • Efficiency: 3-4X Power6 . Memory Subsystem + . SMT • Dynamic Energy . Dual Core . Altivec . Distributed Switch + Management . Chip Multi Processing . Instruction Retry . Distributed Switch . Core Parallelism + • Reliability + . Dyn Energy Mgmt . Shared L2 . FP Performance + . SMT + •Memory DIMM – DRAM . Dynamic LPARs (32) . Memory bandwidth + . Protection Keys Sparing . Virtualization •N+2 Voltage Regulator Redundancy •Protection Keys + 5 February 25, 2010 IBM Power Systems POWER6 – POWER7 Compare Wireless world Mobile platforms are developing as new means of identification.
    [Show full text]
  • IBM System P5 Quad-Core Module Based on POWER5+ Technology: Technical Overview and Introduction
    Giuliano Anselmi Redpaper Bernard Filhol SahngShin Kim Gregor Linzmeier Ondrej Plachy Scott Vetter IBM System p5 Quad-Core Module Based on POWER5+ Technology: Technical Overview and Introduction The quad-core module (QCM) is based on the well-known POWER5™ dual-core module (DCM) technology. The dual-core POWER5 processor and the dual-core POWER5+™ processor are packaged with the L3 cache chip into a cost-effective DCM package. The QCM is a package that enables entry-level or midrange IBM® System p5™ servers to achieve additional processing density without increasing the footprint. Figure 1 shows the DCM and QCM physical views and the basic internal architecture. to I/O to I/O Core Core 1.5 GHz 1.5 GHz Enhanced Enhanced 1.9 MB MB 1.9 1.9 MB MB 1.9 L2 cache L2 L2 cache switch distributed switch distributed switch 1.9 GHz POWER5 Core Core core or CPU or core 1.5 GHz L3 Mem 1.5 GHz L3 Mem L2 cache L2 ctrl ctrl ctrl ctrl Enhanced distributed Enhanced 1.9 MB Shared Shared MB 1.9 Ctrl 1.9 GHz L3 Mem Ctrl POWER5 core or CPU or core 36 MB 36 MB 36 L3 cache L3 cache L3 DCM 36 MB QCM L3 cache L3 to memory to memory DIMMs DIMMs POWER5+ Dual-Core Module POWER5+ Quad-Core Module One Dual-Core-chip Two Dual-Core-chips plus two L3-cache-chips plus one L3-cache-chip Figure 1 DCM and QCM physical views and basic internal architecture © Copyright IBM Corp. 2006.
    [Show full text]
  • Copyrighted Material
    CHAPTER 1 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS Lasse Natvig, Alexandru Iordan, Mujahed Eleyat, Magnus Jahre and Jorn Amundsen 1.1 INTRODUCTION 1.1.1 Fundamental Techniques Parallelism hasCOPYRIGHTED been used since the early days of computing MATERIAL to enhance performance. From the first computers to the most modern sequential processors (also called uni- processors), the main concepts introduced by von Neumann [20] are still in use. How- ever, the ever-increasing demand for computing performance has pushed computer architects toward implementing different techniques of parallelism. The von Neu- mann architecture was initially a sequential machine operating on scalar data with bit-serial operations [20]. Word-parallel operations were made possible by using more complex logic that could perform binary operations in parallel on all the bits in a computer word, and it was just the start of an adventure of innovations in parallel computer architectures. Programming Multicore and Many-core Computing Systems, 3 First Edition. Edited by Sabri Pllana and Fatos Xhafa. © 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc. 4 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS Prefetching is a 'look-ahead technique' that was introduced quite early and is a way of parallelism that is used at several levels and in different components of a computer today. Both data and instructions are very often accessed sequentially. Therefore, when accessing an element (instruction or data) at address k, an auto- matic access to address k+1 will bring the element to where it is needed before it is accessed and thus eliminates or reduces waiting time.
    [Show full text]
  • Power4 Focuses on Memory Bandwidth IBM Confronts IA-64, Says ISA Not Important
    VOLUME 13, NUMBER 13 OCTOBER 6,1999 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Power4 Focuses on Memory Bandwidth IBM Confronts IA-64, Says ISA Not Important by Keith Diefendorff company has decided to make a last-gasp effort to retain control of its high-end server silicon by throwing its consid- Not content to wrap sheet metal around erable financial and technical weight behind Power4. Intel microprocessors for its future server After investing this much effort in Power4, if IBM fails business, IBM is developing a processor it to deliver a server processor with compelling advantages hopes will fend off the IA-64 juggernaut. Speaking at this over the best IA-64 processors, it will be left with little alter- week’s Microprocessor Forum, chief architect Jim Kahle de- native but to capitulate. If Power4 fails, it will also be a clear scribed IBM’s monster 170-million-transistor Power4 chip, indication to Sun, Compaq, and others that are bucking which boasts two 64-bit 1-GHz five-issue superscalar cores, a IA-64, that the days of proprietary CPUs are numbered. But triple-level cache hierarchy, a 10-GByte/s main-memory IBM intends to resist mightily, and, based on what the com- interface, and a 45-GByte/s multiprocessor interface, as pany has disclosed about Power4 so far, it may just succeed. Figure 1 shows. Kahle said that IBM will see first silicon on Power4 in 1Q00, and systems will begin shipping in 2H01. Looking for Parallelism in All the Right Places With Power4, IBM is targeting the high-reliability servers No Holds Barred that will power future e-businesses.
    [Show full text]
  • POWER® Processor-Based Systems
    IBM® Power® Systems RAS Introduction to IBM® Power® Reliability, Availability, and Serviceability for POWER9® processor-based systems using IBM PowerVM™ With Updates covering the latest 4+ Socket Power10 processor-based systems IBM Systems Group Daniel Henderson, Irving Baysah Trademarks, Copyrights, Notices and Acknowledgements Trademarks IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both: Active AIX® POWER® POWER Power Power Systems Memory™ Hypervisor™ Systems™ Software™ Power® POWER POWER7 POWER8™ POWER® PowerLinux™ 7® +™ POWER® PowerHA® POWER6 ® PowerVM System System PowerVC™ POWER Power Architecture™ ® x® z® Hypervisor™ Additional Trademarks may be identified in the body of this document. Other company, product, or service names may be trademarks or service marks of others. Notices The last page of this document contains copyright information, important notices, and other information. Acknowledgements While this whitepaper has two principal authors/editors it is the culmination of the work of a number of different subject matter experts within IBM who contributed ideas, detailed technical information, and the occasional photograph and section of description.
    [Show full text]
  • Openpower AI CERN V1.Pdf
    Moore’s Law Processor Technology Firmware / OS Linux Accelerator sSoftware OpenStack Storage Network ... Price/Performance POWER8 2000 2020 DRAM Memory Chips Buffer Power8: Up to 12 Cores, up to 96 Threads L1, L2, L3 + L4 Caches Up to 1 TB per socket https://www.ibm.com/blogs/syst Up to 230 GB/s sustained memory ems/power-systems- openpower-enable- bandwidth acceleration/ System System Memory Memory 115 GB/s 115 GB/s POWER8 POWER8 CPU CPU NVLink NVLink 80 GB/s 80 GB/s P100 P100 P100 P100 GPU GPU GPU GPU GPU GPU GPU GPU Memory Memory Memory Memory GPU PCIe CPU 16 GB/s System bottleneck Graphics System Memory Memory IBM aDVantage: data communication and GPU performance POWER8 + 78 ms Tesla P100+NVLink x86 baseD 170 ms GPU system ImageNet / Alexnet: Minibatch size = 128 ADD: Coherent Accelerator Processor Interface (CAPI) FPGA CAPP PCIe POWER8 Processor ...FPGAs, networking, memory... Typical I/O MoDel Flow Copy or Pin MMIO Notify Poll / Int Copy or Unpin Ret. From DD DD Call Acceleration Source Data Accelerator Completion Result Data Completion Flow with a Coherent MoDel ShareD Mem. ShareD Memory Acceleration Notify Accelerator Completion Focus on Enterprise Scale-Up Focus on Scale-Out and Enterprise Future Technology and Performance DriVen Cost and Acceleration DriVen Partner Chip POWER6 Architecture POWER7 Architecture POWER8 Architecture POWER9 Architecture POWER10 POWER8/9 2007 2008 2010 2012 2014 2016 2017 TBD 2018 - 20 2020+ POWER6 POWER6+ POWER7 POWER7+ POWER8 POWER8 P9 SO P9 SU P9 SO 2 cores 2 cores 8 cores 8 cores 12 cores w/ NVLink
    [Show full text]
  • IBM Power System E850 the Most Agile 4-Socket System in the Marketplace, Optimized for Performance, Reliability and Expansion
    IBM Systems Data Sheet IBM Power System E850 The most agile 4-socket system in the marketplace, optimized for performance, reliability and expansion Businesses today are demanding faster insights that analyze more data in Highlights new ways. They need to implement applications in days versus months, and they need to achieve all these goals while reducing IT costs. This is ●● ●●Designed for data and analytics, delivers creating new demands on IT infrastructures, requiring new levels of per- secure, reliable performance in a compact, 4-socket system formance and the flexibility to respond to new business opportunities, all at an affordable price. ●● ●●Can flexibly scale to rapidly respond to changing business needs The IBM® Power® System E850 server offers a unique blend of ●● ●●Can reduce IT costs through application enterprise-class capabilities in a space-efficient, 4-socket system with consolidation, higher availability and excellent price performance. With up to 48 IBM POWER8™ processor virtualization to yield over 70 percent utilization cores, advanced IBM PowerVM® virtualization that can yield over 70 percent system utilization and Capacity on Demand (CoD), no other 4-socket system in the industry delivers this combination of performance, efficiency and business agility. These capabilities make the Power E850 server an ideal platform for medium-size businesses and as a departmental server or data center building block for large enterprises. Designed for the demands of big data and analytics Businesses are amassing a wealth of data and IBM Power Systems™, built with innovation to support today’s data demands, can store it, secure it and, most important, extract actionable insight from it.
    [Show full text]
  • Implementing Powerpc Linux on System I Platform
    Front cover Implementing POWER Linux on IBM System i Platform Planning and configuring Linux servers on IBM System i platform Linux distribution on IBM System i Platform installation guide Tips to run Linux servers on IBM System i platform Yessong Johng Erwin Earley Rico Franke Vlatko Kosturjak ibm.com/redbooks International Technical Support Organization Implementing POWER Linux on IBM System i Platform February 2007 SG24-6388-01 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. Second Edition (February 2007) This edition applies to i5/OS V5R4, SLES10 and RHEL4. © Copyright International Business Machines Corporation 2005, 2007. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. ix Become a published author . xi Comments welcome. xi Chapter 1. Introduction to Linux on System i platform . 1 1.1 Concepts and terminology . 2 1.1.1 System i platform . 2 1.1.2 Hardware management console . 4 1.1.3 Virtual Partition Manager (VPM) . 10 1.2 Brief introduction to Linux and Linux on System i platform . 12 1.2.1 Linux on System i platform . 12 1.3 Differences between existing Power5-based System i and previous System i models 13 1.3.1 Linux enhancements on Power5 / Power5+ . 14 1.4 Where to go for more information . 15 Chapter 2. Configuration planning . 17 2.1 Concepts and terminology . 18 2.1.1 Processor concepts .
    [Show full text]