Aircraft Based GPS Augmentation Using an On-Board RADAR Altimeter for Precision

Total Page:16

File Type:pdf, Size:1020Kb

Aircraft Based GPS Augmentation Using an On-Board RADAR Altimeter for Precision Aircraft Based GPS Augmentation Using an On-Board RADAR Altimeter for Precision Approach and Landing of Unmanned Aircraft Systems A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Andrew R. Videmsek May 2020 © 2020 Andrew R. Videmsek. All Rights Reserved. 2 This thesis titled Aircraft Based GPS Augmentation Using an On-Board RADAR Altimeter for Precision Approach and Landing of Unmanned Aircraft Systems by ANDREW R. VIDEMSEK has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Maarten Uijt de Haag Adjunct Professor of Electrical Engineering and Computer Science Mei Wei Dean, Russ College of Engineering and Technology 3 ABSTRACT VIDEMSEK, ANDREW R., M.S., May 2020, Electrical Engineering and Computer Science Aircraft Based GPS Augmentation Using an On-Board RADAR Altimeter for Precision Approach and Landing of Unmanned Aircraft Systems Director of Thesis: Maarten Uijt de Haag With a growing demand for large unmanned aircraft system operations in the national airspace system, a method to safely and automatically land unmanned aircraft at a wide range of airports with varying levels of equipage is still needed. Currently no navigation system is capable of a fully coupled precision approach and landing without the use of ground based navigational aids. To enable widescale adoption and usage of unmanned aircraft systems, an aircraft based augmentation system that provides precision approach and landing service without sacrificing safety is required to land the aircraft at all runways. This thesis proposes an aircraft based GPS augmentation system using an on-board downward facing radar altimeter for precision approach and landing of unmanned aircraft systems. The proposed architecture is initially evaluated using a simulation environment designed to test multiple different GNSS, radar altimeter, and terrain elevation database configurations. Following the offline simulation, a flight test analysis is completed testing the proposed architecture using pre-recorded flight test data at the Ohio University Airport (OH) and Reno-Tahoe International Airport (NV). Furthermore, this thesis provides a sensitivity study on the systematic errors in the augmentation system to better characterize 4 and account for the inherent errors of the architecture’s subsystems. This thesis then discusses modifications to the previously developed terrain database spot algorithm to better account for the characteristics of the selected radar altimeter. Finally, an approach for future certification is proposed followed by recommendations for further research on the topic. 5 DEDICATION To my family, friends, and colleagues 6 ACKNOWLEDGMENTS I would like to give a special thanks to my advisor, Dr. Maarten Uijt de Haag, for his support, advice, and expertise on the research presented in this thesis. Without his encouragement and supervision this thesis would not have been possible. Thank you to my committee members, Dr. Frank van Graas, Dr. Sabrina Ugazio, and Dr. Justin Frantz for their time and assistance in reviewing, critiquing, and improving my thesis. I want to thank the members of General Atomics Aeronautical Systems Inc., including but not limited to Brandon Suarez, Timothy Bleakley, Jose Fuentes, Fabrice Kunzi, and Xavier Redondo, for the assistance they have provided throughout every step of my masters. Additionally, I would like to thank General Atomics Aeronautical Systems Inc. for providing the funding for this research. I thank every member of the Ohio University Avionics Engineering Center. The professors, engineers, students, and staff of the center are some of the brightest people I have ever had the opportunity to work with. Each and every one of them has provided me with invaluable knowledge and guidance. I would not have been able to do it without them. Most of all, I would like to thank my parents, Michael and Margaret Videmsek, for their support and encouragement. They have shaped me into the person I am today, always providing me with guidance in every goal I have pursued. Thank you! 7 TABLE OF CONTENTS Page Abstract ........................................................................................................................... 3 Dedication ....................................................................................................................... 5 Acknowledgments ........................................................................................................... 6 Table of Contents ............................................................................................................ 7 List of Tables................................................................................................................. 10 List of Figures ............................................................................................................... 12 List of Acronyms and Abbreviations.............................................................................. 14 1 Introduction ....................................................................................................... 17 1.1 Thesis Organization ................................................................................ 19 2 Unmanned Aerial Vehicle Background .............................................................. 21 3 Navigation Performance Background ................................................................. 24 3.1 Navigational Performance Parameters .................................................... 24 3.1.1 Accuracy ..................................................................................... 24 3.1.2 Integrity ...................................................................................... 24 3.1.3 Continuity ................................................................................... 27 3.2 Non-Approach Categories ...................................................................... 27 3.3 Approach Categories .............................................................................. 30 3.4 Navigational Requirements for RPA Autoland........................................ 34 4 Navigational Systems Background ..................................................................... 35 4.1 Instrument Landing System (ILS) ........................................................... 35 4.2 Global Navigation Satellite Systems (GNSS) .......................................... 37 4.2.1 GPS Space Segment .................................................................... 37 4.2.2 GPS Control Segment ................................................................. 38 4.2.3 GPS User Segment ...................................................................... 39 4.2.4 GPS Error Sources ...................................................................... 42 4.3 Aircraft Based Augmentation Systems (ABAS) ...................................... 42 4.4 Satellite Based Augmentation System (SBAS) ....................................... 43 4.4.1 Localizer Performance with Vertical Guidance (LPV) with WAAS 44 4.5 Ground Based Augmentation System Landing System (GLS) ................. 45 8 4.6 Radar Altimeter ...................................................................................... 47 5 Terrain Database Background ............................................................................ 51 5.1 World Geodetic System (WGS) 84 and Earth Gravitational Model (EGM) 96 51 5.2 Digital Elevation Models (DEM) ............................................................ 52 5.3 Digital Terrain Elevation Data (DTED) .................................................. 54 5.4 Shuttle Radar Topography Mission (STRM) ........................................... 55 5.5 LiDAR Generated Terrain Elevation Databases ...................................... 57 5.6 Terrain Database Integrity ...................................................................... 57 5.7 Terrain Referenced Navigation (TRN) .................................................... 59 6 RADAR Altimeter Aiding (RALT Aiding) ........................................................ 60 6.1 System Description and Concept of Operation ........................................ 62 6.2 RALT Aiding Method ............................................................................ 66 6.3 Position Computation ............................................................................. 66 6.3.1 Integrity Computation ................................................................. 68 7 Feasibility Study ................................................................................................ 72 7.1 Simulation Method ................................................................................. 72 7.1.1 Selected Error Statistics .............................................................. 73 7.1.2 Accuracy Calculation Algorithm ................................................. 76 7.1.3 Protection Level Calculation Algorithm ...................................... 78 7.2 Feasibility Results .................................................................................. 78 8 Flight Test Analysis ........................................................................................... 89 8.1 Description of Flight Tests...................................................................... 89 8.2 Analysis Method ...................................................................................
Recommended publications
  • ALT / VS Selector/Alerter
    ALT / VS Selector / Alerter PN 01279-( ) Pilot’s Operating Handbook ENT ALT SEL ALR DH VS BARO S–TEC * Asterisk indicates pages changed, added, or deleted by List of Effective Pages current revision. Retain this record in front of handbook. Upon receipt of a Record of Revisions revision, insert changes and complete table below. Revision Number Revision Date Insertion Date/Initials 1st Ed. Oct 26, 00 2nd Ed. Jan 15, 08 3rd Ed. Jun 24, 16 3rd Ed. Jun 24, 16 i S–TEC Page Intentionally Blank ii 3rd Ed. Jun 24, 16 S–TEC Table of Contents Sec. Pg. 1 Overview...........................................................................................................1–1 1.1 Document Organization....................................................................1–3 1.2 Purpose..............................................................................................1–3 1.3 General Control Theory....................................................................1–3 1.4 Block Diagram....................................................................................1–4 2 Pre-Flight Procedures...................................................................................2–1 2.1 Pre-Flight Test....................................................................................2–3 3 In-Flight Procedures......................................................................................3–1 3.1 Selector / Alerter Operation..............................................................3–3 3.1.1 Data Entry.............................................................................3–3
    [Show full text]
  • How Doc Draper Became the Father of Inertial Guidance
    (Preprint) AAS 18-121 HOW DOC DRAPER BECAME THE FATHER OF INERTIAL GUIDANCE Philip D. Hattis* With Missouri roots, a Stanford Psychology degree, and a variety of MIT de- grees, Charles Stark “Doc” Draper formulated the basis for reliable and accurate gyro-based sensing technology that enabled the first and many subsequent iner- tial navigation systems. Working with colleagues and students, he created an Instrumentation Laboratory that developed bombsights that changed the balance of World War II in the Pacific. His engineering teams then went on to develop ever smaller and more accurate inertial navigation for aircraft, submarines, stra- tegic missiles, and spaceflight. The resulting inertial navigation systems enable national security, took humans to the Moon, and continue to find new applica- tions. This paper discusses the history of Draper’s path to becoming known as the “Father of Inertial Guidance.” FROM DRAPER’S MISSOURI ROOTS TO MIT ENGINEERING Charles Stark Draper was born in 1901 in Windsor Missouri. His father was a dentist and his mother (nee Stark) was a school teacher. The Stark family developed the Stark apple that was popular in the Midwest and raised the family to prominence1 including a cousin, Lloyd Stark, who became governor of Missouri in 1937. Draper was known to his family and friends as Stark (Figure 1), and later in life was known by colleagues as Doc. During his teenage years, Draper enjoyed tinkering with automobiles. He also worked as an electric linesman (Figure 2), and at age 15 began a liberal arts education at the University of Mis- souri in Rolla.
    [Show full text]
  • Robust Integrated Ins/Radar Altimeter Accounting Faults at the Measurement Channels
    ICAS 2002 CONGRESS ROBUST INTEGRATED INS/RADAR ALTIMETER ACCOUNTING FAULTS AT THE MEASUREMENT CHANNELS Ch. Hajiyev, R.Saltoglu (Istanbul Technical University) Keywords: Integrated Navigation, INS/Radar Altimeter, Robust Kalman Fillter, Error Model, Abstract was a milestone, and we were witnesses to these improvements in the near past. A great amount of In this study, the integrated navigation system, study has already been made about this issue. consisting of radio and INS altimeters, is Many more seem to be observed in the future. As presented. INS and the radio altimeter have many of these studies were examined, and some different benefits and drawbacks. The reason for useful information was reached. integrating these two navigators is mainly to Integrated navigation systems combine the combine the best features, and eliminate the best features of both autonomous and stand-alone shortcomings, briefly described above. systems and are not only capable of good short- The integration is achieved by using an term performance in the autonomous or stand- indirect Kalman filter. Hereby, the error models alone mode of operation, but also provide of the navigators are used by the Kalman filter to exceptional performance over extended periods estimate vertical channel parameters of the of time when in the aided mode. Integration thus navigation system. In the open loop system, INS brings increased performance, improved is the main source of information, and radio reliability and system integrity, and of course altimeter provides discrete aiding data to support increased complexity and cost [1,2]. Moreover, the estimations. outputs of an integrated navigation system are At the next step of the study, in case of digital, thus they are capable of being used by abnormal measurements, the performance of the other resources of being transmitted without loss integrated system is examined.
    [Show full text]
  • Instrument Standard Operating Procedures
    INSTRUMENT STANDARD OPERATING PROCEDURES INTRODUCTION PRE-FLIGHT ACTIONS BASIC INSTRUMENT MANEUVERS UNUSUAL ATTITUDE RECOVERY HOLDING PROCEDURES INSTRUMENT APPROACH PROCEDURES APPENDIX TABLE OF CONTENTS INTRODUCTION AND THEORY .......................................................................................................... 1 PRE-FLIGHT ACTIONS ........................................................................................................................ 3 IMC WEATHER ................................................................................................................................... 3 PRE-FLIGHT INSTRUMENT CHECKS ......................................................................................... 3 BASIC INSTRUMENT MANEUVERS ................................................................................................... 6 STRAIGHT AND LEVEL FLIGHT (SLF) ......................................................................................... 6 CHANGES OF AIRSPEEDS .......................................................................................................... 8 CONSTANT AIRSPEED CLIMBS AND DESCENTS ..................................................................... 9 CONSTANT RATE CLIMBS AND DESCENTS ............................................................................ 10 TIMED TURNS TO MAGNETIC COMPASS HEADINGS ............................................................ 12 MAGNETIC COMPASS TURNS .................................................................................................
    [Show full text]
  • Development and Flight Test Experiences with a Flight-Crucial Digital Control System
    NASA Technical Paper 2857 1 1988 Development and Flight Test Experiences With a Flight-Crucial Digital Control System Dale A. Mackall Ames Research Center Dryden Flight Research Facility Edwards, Calgornia I National Aeronautics I and Space Administration I Scientific and Technical Information Division I CONTENTS Page ~ SUMMARY ................................... 1 I 1 INTRODUCTION . 1 2 NOMENCLATURE . 2 3 SYSTEM SPECIFICATION . 5 3.1 Control Laws and Handling Qualities ................. 5 3.2 Reliability and Fault Tolerance ................... 5 4 DESIGN .................................. 6 4.1 System Architecture and Fault Tolerance ............... 6 4.1.1 Digital flight control system architecture .......... 6 4.1.2 Digital flight control system computer hardware ........ 8 4.1.3 Avionics interface ...................... 8 4.1.4 Pilot interface ........................ 9 4.1.5 Actuator interface ...................... 10 4.1.6 Electrical system interface .................. 11 4.1.7 Selector monitor and failure manager ............. 12 4.1.8 Built-in test and memory mode ................. 14 4.2 ControlLaws ............................. 15 4.2.1 Control law development process ................ 15 4.2.2 Control law design ...................... 15 4.3 Digital Flight Control System Software ................ 17 4.3.1 Software development process ................. 18 4.3.2 Software design ........................ 19 5 SYSTEM-SOFTWARE QUALIFICATION AND DESIGN ITERATIONS ............ 19 5.1 Schedule ............................... 20 5.2 Software Verification ........................ 21 5.2.1 Verification test plan .................... 21 5.2.2 Verification support equipment . ................ 22 5.2.3 Verification tests ...................... 22 5.2.4 Reverifying the design iterations ............... 24 5.3 System Validation .......................... 24 5.3.1 Validation test plan . ............... 24 5.3.2 Support equipment ....................... 25 5.3.3 Validation tests ....................... 25 5.3.4 Revalidation of designs ...................
    [Show full text]
  • Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008)
    Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008) Through the brief but brilliant span of aviation history, the United States has been at the leading edge of advancing technology, from airframe and engines to navigation aids and avionics. One key component of American aviation progress has always been the airway and navigation system that today makes all-weather transcontinental flight unremarkable and routine. From the initial, tentative efforts aimed at supporting the infant air mail service of the early 1920s and the establishment of the airline industry in the 1930s and 1940s, air navigation later guided aviation into the jet age and now looks to satellite technology for direction. Today, the U.S. Federal Aviation Administration (FAA) provides, as one of many services, the management and maintenance of the American airway system. A little-seen but still important element of that maintenance process is airborne flight inspection. Flight inspection has long been a vital part of providing a safe air transportation system. The concept is almost as old as the airways themselves. The first flight inspectors flew war surplus open-cockpit biplanes, bouncing around with airmail pilots and watching over a steadily growing airway system predicated on airway light beacons to provide navigational guidance. The advent of radio navigation brought an increased importance to the flight inspector, as his was the only platform that could evaluate the radio transmitters from where they were used: in the air. With the development of the Instrument Landing System (ILS) and the Very High Frequency Omni-directional Range (VOR), flight inspection became an essential element to verify the accuracy of the system.
    [Show full text]
  • Installation Manual, Document Number 200-800-0002 Or Later Approved Revision, Is Followed
    9800 Martel Road Lenoir City, TN 37772 PPAAVV8800 High-fidelity Audio-Video In-Flight Entertainment System With DVD/MP3/CD Player and Radio Receiver STC-PMA Document P/N 200-800-0101 Revision 6 September 2005 Installation and Operation Manual Warranty is not valid unless this product is installed by an Authorized PS Engineering dealer or if a PS Engineering harness is purchased. PS Engineering, Inc. 2005 © Copyright Notice Any reproduction or retransmittal of this publication, or any portion thereof, without the expressed written permission of PS Engi- neering, Inc. is strictly prohibited. For further information contact the Publications Manager at PS Engineering, Inc., 9800 Martel Road, Lenoir City, TN 37772. Phone (865) 988-9800. Table of Contents SECTION I GENERAL INFORMATION........................................................................ 1-1 1.1 INTRODUCTION........................................................................................................... 1-1 1.2 SCOPE ............................................................................................................................. 1-1 1.3 EQUIPMENT DESCRIPTION ..................................................................................... 1-1 1.4 APPROVAL BASIS (PENDING) ..................................................................................... 1-1 1.5 SPECIFICATIONS......................................................................................................... 1-2 1.6 EQUIPMENT SUPPLIED ............................................................................................
    [Show full text]
  • Performance Improvement Methods for Terrain Database Integrity
    PERFORMANCE IMPROVEMENT METHODS FOR TERRAIN DATABASE INTEGRITY MONITORS AND TERRAIN REFERENCED NAVIGATION A thesis presented to the Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Ananth Kalyan Vadlamani March 2004 This thesis entitled PERFORMANCE IMPROVEMENT METHODS FOR TERRAIN DATABASE INTEGRITY MONITORS AND TERRAIN REFERENCED NAVIGATION BY ANANTH KALYAN VADLAMANI has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Maarten Uijt de Haag Assistant Professor of Electrical Engineering and Computer Science R. Dennis Irwin Dean, Russ College of Engineering and Technology VADLAMANI, ANANTH K. M.S. March 2004. Electrical Engineering and Computer Science Performance Improvement Methods for Terrain Database Integrity Monitors and Terrain Referenced Navigation (115pp.) Director of Thesis: Maarten Uijt de Haag Terrain database integrity monitors and terrain-referenced navigation systems are based on performing a comparison between stored terrain elevations with data from airborne sensors like radar altimeters, inertial measurement units, GPS receivers etc. This thesis introduces the concept of a spatial terrain database integrity monitor and discusses methods to improve its performance. Furthermore, this thesis discusses an improvement of the terrain-referenced aircraft position estimation for aircraft navigation using only the information from downward-looking sensors and terrain databases, and not the information from the inertial measurement unit. Vertical and horizontal failures of the terrain database are characterized. Time and frequency domain techniques such as the Kalman filter, the autocorrelation function and spectral estimation are designed to evaluate the performance of the proposed integrity monitor and position estimator performance using flight test data from Eagle/Vail, CO, Juneau, AK, Asheville, NC and Albany, OH.
    [Show full text]
  • AEN-88: the Global Positioning System
    AEN-88 The Global Positioning System Tim Stombaugh, Doug McLaren, and Ben Koostra Introduction cies. The civilian access (C/A) code is transmitted on L1 and is The Global Positioning System (GPS) is quickly becoming freely available to any user. The precise (P) code is transmitted part of the fabric of everyday life. Beyond recreational activities on L1 and L2. This code is scrambled and can be used only by such as boating and backpacking, GPS receivers are becoming a the U.S. military and other authorized users. very important tool to such industries as agriculture, transporta- tion, and surveying. Very soon, every cell phone will incorporate Using Triangulation GPS technology to aid fi rst responders in answering emergency To calculate a position, a GPS receiver uses a principle called calls. triangulation. Triangulation is a method for determining a posi- GPS is a satellite-based radio navigation system. Users any- tion based on the distance from other points or objects that have where on the surface of the earth (or in space around the earth) known locations. In the case of GPS, the location of each satellite with a GPS receiver can determine their geographic position is accurately known. A GPS receiver measures its distance from in latitude (north-south), longitude (east-west), and elevation. each satellite in view above the horizon. Latitude and longitude are usually given in units of degrees To illustrate the concept of triangulation, consider one satel- (sometimes delineated to degrees, minutes, and seconds); eleva- lite that is at a precisely known location (Figure 1). If a GPS tion is usually given in distance units above a reference such as receiver can determine its distance from that satellite, it will have mean sea level or the geoid, which is a model of the shape of the narrowed its location to somewhere on a sphere that distance earth.
    [Show full text]
  • Department of Transportation Federal Aviation Administration
    Thursday, October 6, 2005 Part II Department of Transportation Federal Aviation Administration 14 CFR Parts 1, 25, 91, etc. Enhanced Airworthiness Program for Airplane Systems/Fuel Tank Safety (EAPAS/FTS); Proposed Advisory Circulars; Proposed Rule and Notices VerDate Aug<31>2005 16:39 Oct 05, 2005 Jkt 208001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\06OCP2.SGM 06OCP2 58508 Federal Register / Vol. 70, No. 193 / Thursday, October 6, 2005 / Proposed Rules DEPARTMENT OF TRANSPORTATION • Mail: Docket Management Facility; before and after the comment closing U.S. Department of Transportation, 400 date. If you wish to review the docket Federal Aviation Administration Seventh Street, SW., Nassif Building, in person, go to the address in the Room PL–401, Washington, DC 20590– ADDRESSES section of this preamble 14 CFR Parts 1, 25, 91, 121, 125, 129 001. between 9 a.m. and 5 p.m., Monday • Fax: 1–202–493–2251. through Friday, except Federal holidays. [Docket No. FAA–2004–18379; Notice No. • Hand Delivery: Room PL–401 on You may also review the docket using 05–08 ] the plaza level of the Nassif Building, the Internet at the Web address in the RIN 2120–AI31 400 Seventh Street, SW., Washington, ADDRESSES section. DC, between 9 a.m. and 5 p.m., Monday Privacy Act: Using the search function Enhanced Airworthiness Program for through Friday, except Federal holidays. of our docket Web site, anyone can find Airplane Systems/Fuel Tank Safety For more information on the and read the comments received into (EAPAS/FTS) rulemaking process, see the any of our dockets, including the name SUPPLEMENTARY INFORMATION section of of the individual sending the comment AGENCY: Federal Aviation this document.
    [Show full text]
  • Basic Principles of Inertial Navigation
    Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation • Pilotage, which essentially relies on recognizing landmarks to know where you are. It is older than human kind. • Dead reckoning, which relies on knowing where you started from plus some form of heading information and some estimate of speed. • Celestial navigation, using time and the angles between local vertical and known celestial objects (e.g., sun, moon, or stars). • Radio navigation, which relies on radio‐frequency sources with known locations (including GNSS satellites, LORAN‐C, Omega, Tacan, US Army Position Location and Reporting System…) • Inertial navigation, which relies on knowing your initial position, velocity, and attitude and thereafter measuring your attitude rates and accelerations. The operation of inertial navigation systems (INS) depends upon Newton’s laws of classical mechanics. It is the only form of navigation that does not rely on external references. • These forms of navigation can be used in combination as well. The subject of our seminar is the fifth form of navigation – inertial navigation. 2 A few definitions • Inertia is the property of bodies to maintain constant translational and rotational velocity, unless disturbed by forces or torques, respectively (Newton’s first law of motion). • An inertial reference frame is a coordinate frame in which Newton’s laws of motion are valid. Inertial reference frames are neither rotating nor accelerating. • Inertial sensors measure rotation rate and acceleration, both of which are vector‐ valued variables. • Gyroscopes are sensors for measuring rotation: rate gyroscopes measure rotation rate, and integrating gyroscopes (also called whole‐angle gyroscopes) measure rotation angle.
    [Show full text]
  • FS/OAS A-24, Avionics Operational Test Standards for Contractually
    Avionics Operational Test Standards FS/OAS A-24 Revision F September 10, 2018 The following standards apply to all contractually required/offered avionics equipment under US Forest Service contracts and Department of the Interior interagency fire contracts. Abbreviations and Selected Definitions are in Section 7. 1. Communications Systems Interference No squelch breaks or interference with other transceivers with 1 MHz separation. No transmit interlock functions for communications transceivers on fire aircraft. VHF-AM Transceiver Type TSO approved, selectable frequencies in 25 kHz increments, 760 channel minimum, operation from 118.000 to 136.975 MHz, 720 channel acceptable for DOI if contractually permitted Display Visible in direct sunlight Operation To and from service monitor Transmitter System modulation from 50% to 95% and clear, 5 watts minimum output power, frequency within 20 PPM (+2.46 kHz @ 122.925 MHz) (47 CFR 87.133) Receiver Squelch opens when receiving a signal from 50 Nautical Miles or (All Aircraft) greater when no other radios on the aircraft are transmitting. (See FS/OAS A-30 Radio Interference Test Procedures) Receiver Squelch opens when receiving a signal from 24 Nautical Miles or (Fire aircraft approved greater while other radios on the aircraft are transmitting with a for passengers or aircraft spacing of 2 MHz or greater. (See FS/OAS A-30 Radio Interference requiring two pilots) Test Procedures) 1 Aeronautical VHF-FM Transceiver (P25 required for Fire) Type Listed on Approved Radios list, P25 meets FS/AMD A-19
    [Show full text]