Hilbert, Bourbaki and the Scorning of Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Gödel's Modernism: on Set-Theoretic Incompleteness,” Revisited
“G¨odel'sModernism: on Set-Theoretic Incompleteness," revisited∗ Mark van Atten and Juliette Kennedy As to problems with the answer Yes or No, the con- viction that they are always decidable remains un- touched by these results. —G¨odel Contents 1 Introduction 1.1 Questions of incompleteness On Friday, November 15, 1940, Kurt G¨odelgave a talk on set theory at Brown University.1 The topic was his recent proof of the consistency of Cantor's Con- tinuum Hypothesis, henceforth CH,2 with the axiomatic system for set theory ZFC.3 His friend from their days in Vienna, Rudolf Carnap, was in the audience, and afterward wrote a note to himself in which he raised a number of questions on incompleteness:4 (Remarks I planned to make, but did not) Discussion on G¨odel'slecture on the Continuum Hypothesis, November 14,5 1940 There seems to be a difference: between the undecidable propo- sitions of the kind of his example [i.e., 1931] and propositions such as the Axiom of Choice, and the Axiom of the Continuum [CH ]. We used to ask: \When these two have been decided, is then everything decided?" (The Poles, Tarski I think, suspected that this would be the case.) Now we know that (on the basis of the usual finitary rules) there will always remain undecided propositions. ∗An earlier version of this paper appeared as ‘G¨odel'smodernism: on set-theoretic incom- pleteness', Graduate Faculty Philosophy Journal, 25(2), 2004, pp.289{349. Erratum facing page of contents in 26(1), 2005. 1 1. Can we nevertheless still ask an analogous question? I.e. -
Model Theory, Arithmetic & Algebraic Geometry
MODEL THEORY, ARITHMETIC & ALGEBRAIC GEOMETRY JOEL TORRES DEL VALLE 1. LANGUAGES AND STRUCTURES. 1.1. What is Model Theory? Model Theory is the study of the relationship between theories and mathematical struc- tures which satisfies them [11]. Model Theory introduces Mathematical Logic in the prac- tice of Universal Algebra, so we can think it like Model Theory = Universal Algebra + Mathematical Logic. I started this pages with the same question Chang-Keisler started their celebrated book [3]: ‘What is Model Theory?’ They also summarize the answer to the equation above. In this pages I summarize the relationship between Model Theory, Arithmetic and Algebraic Geometry. The topics will be the basic ones in the area, so this is just an invitation, in the presentation of topics I mainly follow the philosophy of the references, my basic reference is [9]. The early pioneers in Model Theory were Leopold L¨owenheim in 1915, in his work ‘Uber¨ M¨oglichkeiten im Relativkalk¨ul’1 there he proved that if a first order theory T that has an infinite model then has a countable model. Thoralf Skolem in 1920 proved a second version of L¨owenheim result, in his work ‘Logisch-kombinatorische Untersuchungen ¨uber die Erf¨ullbarkeit oder Beweisbarkeit mathematischer S¨atze nebst einem Theoreme ¨uber dichte Mengen’2. Kurt G¨odel in 1930 proved his Completeness and Compactness Theorems for countable languages in his Doctoral dissertation at the University of Viena titled ‘Die Vollst¨andigkeit der Axiome des logischen Funktionenkalk¨uls’3. Alfred Tarski in 1931 -
Henkin's Method and the Completeness Theorem
Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let L be a first-order logic. For a sentence ' of L, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about T that can be formalized in the first-order language of T is derivable from the axioms of T . -
The Z of ZF and ZFC and ZF¬C
From SIAM News , Volume 41, Number 1, January/February 2008 The Z of ZF and ZFC and ZF ¬C Ernst Zermelo: An Approach to His Life and Work. By Heinz-Dieter Ebbinghaus, Springer, New York, 2007, 356 pages, $64.95. The Z, of course, is Ernst Zermelo (1871–1953). The F, in case you had forgotten, is Abraham Fraenkel (1891–1965), and the C is the notorious Axiom of Choice. The book under review, by a prominent logician at the University of Freiburg, is a splendid in-depth biography of a complex man, a treatment that shies away neither from personal details nor from the mathematical details of Zermelo’s creations. BOOK R EV IEW Zermelo was a Berliner whose early scientific work was in applied By Philip J. Davis mathematics: His PhD thesis (1894) was in the calculus of variations. He had thought about this topic for at least ten additional years when, in 1904, in collaboration with Hans Hahn, he wrote an article on the subject for the famous Enzyclopedia der Mathematische Wissenschaften . In point of fact, though he is remembered today primarily for his axiomatization of set theory, he never really gave up applications. In his Habilitation thesis (1899), Zermelo was arguing with Ludwig Boltzmann about the foun - dations of the kinetic theory of heat. Around 1929, he was working on the problem of the path of an airplane going in minimal time from A to B at constant speed but against a distribution of winds. This was a problem that engaged Levi-Civita, von Mises, Carathéodory, Philipp Frank, and even more recent investigators. -
Georg Kreisel Papers SC0136
http://oac.cdlib.org/findaid/ark:/13030/kt4k403759 No online items Guide to the Georg Kreisel Papers SC0136 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives October 2010 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0.This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Georg Kreisel Papers SC0136 1 SC0136 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Georg Kreisel papers creator: Kreisel, Georg Identifier/Call Number: SC0136 Physical Description: 24.75 Linear Feet Date (inclusive): 1957-1984 Language of Material: English Language of Material: English Abstract: Correspondence with professional colleagues, collaborators, students, and others, primarily from 1962 to 1984, lecture notes, manuscripts and other writings. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/depts/spc/pubserv/permissions.html. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Biographical/Historical Sketch Professor of Logic and the Foundations of Mathematics at Stanford University. -
Kreisel and Wittgenstein
Kreisel and Wittgenstein Akihiro Kanamori September 17, 2018 Georg Kreisel (15 September 1923 { 1 March 2015) was a formidable math- ematical logician during a formative period when the subject was becoming a sophisticated field at the crossing of mathematics and logic. Both with his technical sophistication for his time and his dialectical engagement with man- dates, aspirations and goals, he inspired wide-ranging investigation in the meta- mathematics of constructivity, proof theory and generalized recursion theory. Kreisel's mathematics and interactions with colleagues and students have been memorably described in Kreiseliana ([Odifreddi, 1996]). At a different level of interpersonal conceptual interaction, Kreisel during his life time had extended engagement with two celebrated logicians, the mathematical Kurt G¨odeland the philosophical Ludwig Wittgenstein. About G¨odel,with modern mathemat- ical logic palpably emanating from his work, Kreisel has reflected and written over a wide mathematical landscape. About Wittgenstein on the other hand, with an early personal connection established Kreisel would return as if with an anxiety of influence to their ways of thinking about logic and mathematics, ever in a sort of dialectic interplay. In what follows we draw this out through his published essays|and one letter|both to elicit aspects of influence in his own terms and to set out a picture of Kreisel's evolving thinking about logic and mathematics in comparative relief.1 As a conceit, we divide Kreisel's engagements with Wittgenstein into the \early", \middle", and \later" Kreisel, and account for each in successive sec- tions. x1 has the \early" Kreisel directly interacting with Wittgenstein in the 1940s and initial work on constructive content of proofs. -
Classical Metalogic an Introduction to Classical Model Theory & Computability
Classical Metalogic An Introduction to Classical Model Theory & Computability Notes by R.J. Buehler January 5, 2015 2 Preface What follows are my personal notes created in preparation for the UC-Berkeley Group in Logic preliminary exam. I am not a computability theorist, nor a model theorist; I am a graduate student with some knowledge who is–alas–quite fallible. Accordingly, this text is made available as a convenient reference, set of notes, and summary, but without even the slight hint of a guarantee that everything contained within is factual and correct (indeed, some areas are entirely unchanged from the moment I copied them off the blackboard). This said, if you find a serious error, I would greatly appreciate it if you would let me know so that it can be corrected. The material for these notes derives from a wide variety of sources: Lectures by Wes Holliday Lectures by Antonio Montalban Lectures by John Steel Kevin Kelly’s computability theory notes David Marker’s “Model Theory: An Introduction” Wilfrid Hodge’s “A Shorter Model Theory” Robert Soare’s “Recursively Enumerable Sets and Degrees" Richard Kaye’s “Models of Peano Arithmetic” Chang and Keisler’s “Model Theory" While I certainly hope my notes are beneficial, if you’re attempting to learn the contained material for the first time, I would highly suggest picking up (at least) a copy of Marker and Soare’s texts in addition. To those Group in Logic students who may be using these notes to help themselves prepare for their preliminary exam, chapters 1-5, 7, and 9-18 contain relevant material, as well as chapter 8, section 3. -
Georg Kreisel Correspondence with Jean Van Heijenoort
http://oac.cdlib.org/findaid/ark:/13030/c84q7wxh No online items Guide to the Georg Kreisel Correspondence with Jean van Heijenoort Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California October 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Georg Kreisel SC0233 1 Correspondence with Jean van Heijenoort Overview Call Number: SC0233 Creator: Kreisel, Georg, 1923- Title: Georg Kreisel correspondence with Jean van Heijenoort Dates: 1949-1981 Physical Description: 6 Linear feet Summary: Correspondence, notes, memoranda, articles and other materials by Professor Georg Kreisel, sent to his colleague, Professor J. van Heijenoort of Harvard University. Includes some correspondence with other colleagues. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Gift of J. van Heijenoort, 1981. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. -
An Interview with Martin Davis
Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required. -
A NEW L¨OWENHEIM-SKOLEM THEOREM 1. Introduction The
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 357, Number 5, Pages 1693–1715 S 0002-9947(04)03445-2 Article electronically published on December 16, 2004 ANEWLOWENHEIM-SKOLEM¨ THEOREM MATTHEW FOREMAN AND STEVO TODORCEVIC Abstract. This paper establishes a refinement of the classical L¨owenheim- Skolem theorem. The main result shows that any first order structure has a countable elementary substructure with strong second order properties. Sev- eral consequences for Singular Cardinals Combinatorics are deduced from this. 1. Introduction The L¨owenheim-Skolem Theorem [21] is one of the classical and formative results of first order logic. Its consequences have been important technically in the devel- opment of Model Theory, Set Theory and interesting from the point of view of the Philosophy of Mathematics [16]. In this paper we improve the L¨owenheim-Skolem Theorem and deduce important combinatorial consequences from the stronger ver- sion. There have been many attempts to improve and generalize properties of first order logic to stronger logics. The literature is much too large to survey here. One property that defines first order logic is the fact that every infinite structure in a countable language has a countable elementary substructure. This is not true of many stronger logics such as second order logic. In particular, in the classical L¨owenheim-Skolem theorem, one has no control over the second order properties of the elementary substructure. In this paper we prove that if one fixes in advance a collection of “intervals” around each point in a particular domain κ (e.g. a club guessing ladder system), then for all real numbers r and all structures A with domain κ, there is a countable elementary substructure of A that has non-empty intersection with exactly those intervals specified by r. -
Foundations of Mathematics from the Perspective of Computer Verification
Foundations of Mathematics from the perspective of Computer Verification 8.12.2007:660 Henk Barendregt Nijmegen University The Netherlands To Bruno Buchberger independently of any birthday Abstract In the philosophy of mathematics one speaks about Formalism, Logicism, Platonism and Intuitionism. Actually one should add also Calculism. These foundational views can be given a clear technological meaning in the context of Computer Mathematics, that has as aim to represent and manipulate arbitrary mathematical notions on a computer. We argue that most philosophical views over-emphasize a particular aspect of the math- ematical endeavor. Acknowledgment. The author is indebted to Randy Pollack for his stylized rendering of Formalism, Logicism and Intuitionism as foundational views in con- nection with Computer Mathematics, that was the starting point of this paper. Moreover, useful information or feedback was gratefully received from Michael Beeson, Wieb Bosma, Bruno Buchberger, John Harrison, Jozef Hooman, Jesse Hughes, Bart Jacobs, Sam Owre, Randy Pollack, Bas Spitters, Wim Veldman and Freek Wiedijk. 1. Mathematics The ongoing creation of mathematics, that started 5 or 6 millennia ago and is still continuing at present, may be described as follows. By looking around and abstracting from the nature of objects and the size of shapes homo sapiens created the subjects of arithmetic and geometry. Higher mathematics later arose as a tower of theories above these two, in order to solve questions at the basis. It turned out that these more advanced theories often are able to model part of reality and have applications. By virtue of the quantitative, and even more qualitative, expressive force of mathematics, every science needs this discipline. -
Paradox and Intuition
PARADOX AND INTUITION ACASE STUDY JERZY POGONOWSKI Department of Applied Logic Adam Mickiewicz University www.logic.amu.edu.pl We share with the reader a few reflections concerning the role of mathematical in- tuition in possible resolutions of the Skolem’s Paradox. We assume that the reader is familiar with the rudiments of metalogic and the philosophy of mathematics. Paradoxes are not absolute — they are relativized to a chosen language. Paradoxes in mathematics are thus relativized to particular formal languages in which mathema- tical constructions are represented. Paradoxes are at the beginning of investigations — think for example about: the dis- covery of irrational numbers, the construction of complex numbers, prejudices concer- ning the „true” geometry and the discovery of non-Euclidean geometries, paradoxical uses of the infinitely small magnitudes in early Calculus and the rise of the non-standard analysis, etc. Mathematical intuition is not simply a part of common-sense intuition. The first has a dynamic nature, while the second is more static. Common-sense intuition is (may be) shaped by evolution. Mathematical intuition develops in the process of creating mathematics itself. The views concerning the nature of mathematical intuition are diversified according to the positions taken in the philosophy of mathematics (e.g. Platonistic, formalistic and intuitionistic standpoints). In the broadest sense, „intuition” means „immediate apprehension”. Here „appre- hension” may cover sensation, knowledge or even mystical rapport. In turn, „imme- diate” may mean the absence of e.g.: inference, causes, justification, symbols or even absence of thought. Looking from the functional perspective, we may say that: Paradoxes are modifiers of intuition.