Molecular Study of Insoluble Organic Matter in Kainsaz CO3 Carbonaceous Chondrite: Comparison with CI and CM IOM

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Study of Insoluble Organic Matter in Kainsaz CO3 Carbonaceous Chondrite: Comparison with CI and CM IOM Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM Item Type Article; text Authors Remusat, L.; Le Guillou, C.; Rouzaud, J.-N.; Binet, L.; Derenne, S.; Robert, F. Citation Remusat, L., Le Guillou, C., Rouzaud, J.-N., Binet, L., Derenne, S., & Robert, F. (2008). Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM. Meteoritics & Planetary Science, 43(7), 1099-1111. DOI 10.1111/j.1945-5100.2008.tb01115.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 01/10/2021 18:57:36 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656447 Meteoritics & Planetary Science 43, Nr 7, 1099–1111 (2008) Abstract available online at http://meteoritics.org Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM Laurent REMUSAT1‡, Corentin Le GUILLOU2, Jean-Noël ROUZAUD2, Laurent BINET3, Sylvie DERENNE1*, and François ROBERT4 1Laboratoire de Chimie Bioorganique et Organique Physique, UMR CNRS 7618 BioEMCo, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France ‡Present address: Laboratoire de Géologie des Systèmes Volcaniques, UMR CNRS 7154, Institut de Physique du Globe de Paris/Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France 2Laboratoire de Géologie, UMR CNRS 8538, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 5, France 3Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France 4Laboratoire d’Etude de la Matière Extraterrestre, UMS CNRS 2679 NanoAnalyses, Museum National d’Histoire Naturelle, 61 rue Buffon, 75005 Paris, France *Corresponding author. E-mail: [email protected] (Received 25 May 2007; revision accepted 28 August 2007) Abstract–Kainsaz CO3 insoluble organic matter (IOM) was studied using Curie point pyrolysis, electronic paramagnetic resonance (EPR), and high-resolution transmission electron microscopy (HRTEM) to determine the effect of thermal metamorphism on molecular chondritic fingerprints. Pyrolysis released a very low amount of products that consist of one- and two-ring aromatic units with methyl, dimethyl, and ethyl substituents. Moreover, Kainsaz IOM contains two orders of magnitude fewer radicals than Orgueil, Murchison, and Tagish Lake IOM. In addition, no diradicaloids were found in Kainsaz, although they are thought to constitute a specific signature for weakly organized extraterrestrial organic compounds in contrast to terrestrial ones. HRTEM reveals a very heterogeneous structure, with microporous disordered carbon, mesoporous graphitic carbons and graphite. Graphitization likely occurs and explains the differences between Kainsaz and CI or CM IOM. Heating stress experienced by Kainsaz IOM, on the parent body and/or prior its accretion, is likely responsible for the differences in molecular and structural organizations compared with those of CI and CM IOM. INTRODUCTION molecular structure of IOM from CI and CM chondrites. It is now admitted that the IOM constitutes of rather small Carbonaceous chondrites are among the most studied aromatic units, highly cross-linked with short, branched objects from the solar system because of their primitive bulk aliphatic chains. Oxygen atoms are located in ether or ester compositions, noble gases concentration and composition, linkages between aromatic units. In contrast, nitrogen atoms and occurrence of primitive condensates and organic are involved into aromatic structures as pyrroles. These compounds. These organics can be recovered as soluble features are consistent with recent high-resolution compounds and, predominantly, as a macromolecular transmission electron microscopy (HRTEM) observations insoluble fraction, hereafter named insoluble organic matter performed on Orgueil and Murchison IOM (Derenne et al. (IOM). Organics have been so far almost exclusively studied 2005). Indeed, HRTEM is an efficient tool to study organic in CI and CM carbonaceous chondrites due to high abundance samples at the nanometer scale (Papoular et al. 1996; Galvez (for a review, see Pizzarello et al. 2006). The combination of et al. 2002; Le Guillou et al. 2007); it was extensively used to results from pyrolysis (Levy et al. 1973; Sephton et al. 2000, characterize coals, chars, and soots (Boulmier et al. 1982; 2004; Remusat et al. 2005a), chemical degradation (Hayatsu Rouzaud and Oberlin 1990; Beyssac et al. 2002), et al. 1980; Remusat et al. 2005b), and solid-state nuclear Precambrian organic matter (Jehlicka and Rouzaud 1993; magnetic resonance (Gardinier et al. 2000; Cody and Alexander Westall et al. 2006) and IOM of various carbonaceous 2005) allowed the determination of key features of the chondrites including Allende, Orgueil, and Murchison 1099 © The Meteoritical Society, 2008. Printed in USA. 1100 L. Remusat et al. (Daulton et al. 1996; Harris et al. 2000; Garvie and Buseck used. Organic matter is supposed to have kept the overprint of 2004). HRTEM clearly shows that Orgueil and Murchison thermal stress on the parent body, assuming a common IOMs are poorly organized and constitute of aromatic units organic precursor. Nevertheless, the modifications at the with an average size of 2–3 aromatic rings in diameter, and molecular level induced by this stress are not well assessed. that the aromatic units are smaller than PAHs observed in the We applied some methods used on CI and CM IOM to interstellar medium, which could be the result of a selective study the molecular structure of Kainsaz (CO3) IOM. Little is preservation of small PAHs in the IOM before their known about molecular structure of IOM from CO chondrites destruction by UV radiation (Derenne et al. 2005). compared to data available on CI and CM chondrites. Bonal Electronic paramagnetic resonance (EPR) is a powerful et al. (2007) have reported Raman spectra showing that method to determine the occurrence of radicals in natural organics in Kainsaz, and especially IOM, reveal a higher samples and their distribution. For instance, it allowed the degree of organization than CI and CM. Indeed, the spectra are determination of radical concentration in organic matter of characteristic of weakly graphitized carbons (important defect Precambrian chert, which is highly refractory (Gourier et al. band at about 1350 cm−1), which is consistent with noticeable 2004). EPR has also successfully determined a typical thermal stress since the D band is not so broad (FWHM = behavior for chondritic IOM through the study of Orgueil, 117 cm−1) compared to Orgueil and Murchison IOM. Murchison, and Tagish Lake IOM (Binet et al. 2002, 2004a, In the present study, we used pyrolysis, HRTEM, and 2004b). It clearly shows that these disordered IOM share two EPR to characterize the IOM of Kainsaz meteorite and we common signatures that discern these organic samples from compare the obtained data with those from CI and CM IOM. terrestrial ones: the occurrence of abundant diradicaloid Our goal was to asses the effect, at the molecular level, of a moieties—i.e., aromatic moieties with two unpaired electron thermal stress on carbonaceous chondrites parent bodies. radicals that can be stabilized by delocalization of electrons Furthermore, our purpose was to examine if Kainsaz IOM over the aromatic rings—and a heterogeneous distribution of would exhibit the same EPR signatures as Orgueil, organic radicals. These two features are interpreted as the Murchison, and Tagish Lake IOM. fingerprint of an interstellar-like process involved in the organosynthesis of extraterrestrial organic matter. EXPERIMENTAL Along with isotopic data, these features are used to describe the origin and evolution of the organic matter of the Sample Preparation most primitive object of the solar system. It is not simple to determine a scenario for the story of the IOM, as it could be Kainsaz fell in Russia (Tatarstan republic) in 1937. About the result of several processes taking place in the interstellar 9 g of Kainsaz were provided by the Museum National d’Histoire medium, the protosolar nebula, and the parent bodies of the Naturelle of Paris, France. The sample was crushed in an carbonaceous chondrites. To distinguish the contribution of agate mortar and IOM was subsequently isolated as described these processes, it is essential to study the variability between in Remusat et al. (2005b). In brief, the ground sample was several classes of carbonaceous chondrites. Indeed, subjected to several extractions in water (stirring under reflux carbonaceous chondrites are divided into different classes that for 48 h), acetone (stirring at room temperature for 2 h twice) represent different stages of thermal metamorphisms and and dichloromethane/methanol (2:1, v/v, stirring at room aqueous alterations (Scott and Krot 2003). As described temperature for 2 h twice). The solid residue was then before, most of the previous studies on organic contents in subjected to HF/HCl treatment: it was successively stirred in carbonaceous chondrites have focused on CI and CM, i.e., the HCl (6N) for 24 h at room temperature, in a mixture of HF/ most aqueously and the least thermally altered carbonaceous HCl (28N/6N, 2:1, v/v) for 24 h at room temperature under chondrites. nitrogen flux and finally in HCl (6N) for 4 h at 60 °C. The Kainsaz is a member of the Ornans type (i.e., CO) acid residue was then extracted with acetone and a mixture of carbonaceous chondrites, which constitute a metamorphic CH2Cl2/MeOH, 2:1, v/v and was dried under N2. Carbon and series analogous to that seen in ordinary chondrites hydrogen contents were determined by the SGS laboratory in (McSween 1977). Several studies have dealt with the Evry, France. determination of the petrographic type by using various The acid residue represents about 1.4 wt% of the ground proxies as mineralogical associations (Scott and Jones 1990; Kainsaz meteorite and contains 30.5 wt% and 0.4 wt% of Chizmadia et al.
Recommended publications
  • Press Abstracts Twenty-First Lunar and Planetary Science Conference
    Lunar and Planetary Science XXI Abstractsof paperssubmitted to the Twenty-FirstLunar and Planetary Science Conference PRESS ABSTRACTS N/\51\ National Aeronautics and LUNARAND PLANETARYINSTTME Space Administration UNIVERSffiESSPACE RESEARCHA5SOCIAT ION Lyndon B. Johnson Space Center Houston, Texas PRESS ABSTRACTS 1WEN1Y-FIRST LUNAR AND PLANETARY SCIENCE CONFERENCE March 12-16, 1990 Compiled by the Lunar and Planetary Institute 3303 NASA Road 1 Houston, Texas 77058-4399 LPI Contribution 740 t Business Telephone Numbers of First Authors T. J. Ahrens (correspondence author) ................................................................ 818-356-6905 V. R. Baker ............................................................................................................. 602-621-6003 J.-P. Bibring ........................................................................................................... 33-1-69415256 R. N. Clayton ........................................................................................................... 312-702-7777 J. S. Delaney ........... ................................................................................................. 201-932-3636 T. Graf .................................................................................................. ..................... 619-534-0443 B. B. Holn1berg ........................................................................................................ 617-495-7299 R. L. Kirk .................................................................................................................
    [Show full text]
  • Bartoschewitz - Catalogue of Meteorites
    BARTOSCHEWITZ - CATALOGUE OF METEORITES *FALL TOTAL BC- BC - NAME COUNTRY FIND WEIGHT TYPE No. SPECIMEN WEIGHT (kg) (gms) 1.1 CHONDRITES - ORDINARY OLIVINE BRONZITE CHONDRITES ACFER 005 Algeria March 1989 0,115 H 3.9/4 613.1 cut endpiece 32,70 ACFER 006 Algeria March 1989 0,561 H 3.9/4 614.1 slice 1,30 ACFER 011 Algeria 1989 3,8 H 5 399.1 cut fragm. 3,00 ACFER 020 Algeria 1989 0,708 H 5 401.1 cut fragm. 2,50 ACFER 028 Algeria 1989 3,13 H 3.8 844.1 part slice 1,70 ACFER 050 Algeria 1989 1,394 H 5-6 443.1 complete slice 105,00 ACFER 084 Algeria Apr. 16, 1990 6,3 H 5 618.1 cut corner piece 12,60 ACFER 089 Algeria 1990 0,682 H 5 437.1 complete slice 62,00 ACFER 098 Algeria 1990 5,5 H 5 615.1 cut fragment 29,20 ACFER 222 Algeria 1991 0,334 H 5-6 536.1 cut fragm. with crust 2,50 ACFER 284 Algeria 1991 0,12 H 5 474.1 slice 11,00 ACHILLES USA, Kansas 1924 recogn. 1950 16 H 5 314.1 slice 3,40 ACME USA, New Mexico 1947 75 H 5 303.1 slice 10,80 AGEN France *Sept. 5, 1815 30 H 5 208.1 fragm. with crust 54,40 ALAMOGORDO USA, New Mexico 1938 13,6 H 5 2.1 fragment 0,80 ALLEGAN USA *July 10, 1899 35 H 5 276.0 5 small fragments 1,52 ALLEGAN USA *July 10, 1899 35 H 5 276.1 5 small fragments 1,50 ALLEGAN USA *July 10, 1899 35 H 5 276.2 chondrules 0,02 ALLEN USA, Texas 1923 recogn.
    [Show full text]
  • (2000) Forging Asteroid-Meteorite Relationships Through Reflectance
    Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.
    [Show full text]
  • List G - Meteorites - Alphabetical List
    LIST G - METEORITES - ALPHABETICAL LIST Specific name Group name Specific name Group name Abee Meteorite EH chondrites EETA 79001 Elephant Moraine Meteorites Acapulco Meteorite acapulcoite and shergottite acapulcoite stony meteorites Efremovka Meteorite CV chondrites Acfer Meteorites meteorites EH chondrites enstatite chondrites achondrites stony meteorites EL chondrites enstatite chondrites ALH 84001 Allan Hills Meteorites and Elephant Moraine meteorites achondrites Meteorites ALHA 77005 Allan Hills Meteorites and enstatite chondrites chondrites shergottite eucrite achondrites ALHA 77307 Allan Hills Meteorites and Fayetteville Meteorite H chondrites CO chondrites Frontier Mountain meteorites ALHA 81005 Allan Hills Meteorites and Meteorites achondrites Gibeon Meteorite octahedrite Allan Hills Meteorites meteorites GRA 95209 Graves Nunataks Meteorites Allende Meteorite CV chondrites and lodranite angrite achondrites Graves Nunataks meteorites Ashmore Meteorite H chondrites Meteorites Asuka Meteorites meteorites H chondrites ordinary chondrites ataxite iron meteorites Hammadah al Hamra meteorites aubrite achondrites Meteorites Barwell Meteorite L chondrites Haveroe Meteorite ureilite Baszkowka Meteorite L chondrites Haviland Meteorite H chondrites Belgica Meteorites meteorites HED meteorites achondrites Bencubbin Meteorite chondrites Hedjaz Meteorite L chondrites Bishunpur Meteorite LL chondrites Henbury Meteorite octahedrite Bjurbole Meteorite L chondrites hexahedrite iron meteorites Brenham Meteorite pallasite HL chondrites ordinary chondrites
    [Show full text]
  • Minerals in Meteorites
    APPENDIX 1 Minerals in Meteorites Minerals make up the hard parts of our world and the Solar System. They are the building blocks of all rocks and all meteorites. Approximately 4,000 minerals have been identified so far, and of these, ~280 are found in meteorites. In 1802 only three minerals had been identified in meteorites. But beginning in the 1960s when only 40–50 minerals were known in meteorites, the discovery rate greatly increased due to impressive new analytic tools and techniques. In addition, an increasing number of different meteorites with new minerals were being discovered. What is a mineral? The International Mineralogical Association defines a mineral as a chemical element or chemical compound that is normally crystalline and that has been formed as a result of geological process. Earth has an enormously wide range of geologic processes that have allowed nearly all the naturally occurring chemical elements to participate in making minerals. A limited range of processes and some very unearthly processes formed the minerals of meteorites in the earliest history of our solar system. The abundance of chemical elements in the early solar system follows a general pattern: the lighter elements are most abundant, and the heavier elements are least abundant. The miner- als made from these elements follow roughly the same pattern; the most abundant minerals are composed of the lighter elements. Table A.1 shows the 18 most abundant elements in the solar system. It seems amazing that the abundant minerals of meteorites are composed of only eight or so of these elements: oxygen (O), silicon (Si), magnesium (Mg), iron (Fe), aluminum (Al), calcium (Ca), sodium (Na) and potas- sium (K).
    [Show full text]
  • An Evolutionary System of Mineralogy, Part II: Interstellar and Solar Nebula Primary Condensation Mineralogy (> 4.565
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7447 1 REVISION #2—07 May 2020—American Mineralogist 2 3 An evolutionary system of mineralogy, part II: Interstellar and solar 4 nebula primary condensation mineralogy (> 4.565 Ga) 5 1 1,* 6 SHAUNNA M. MORRISON AND ROBERT M. HAZEN 7 1Earth and Planets Laboratory, Carnegie Institution for Science, 8 5251 Broad Branch Road NW, Washington DC 20015, U. S. A. 9 10 11 ABSTRACT 12 The evolutionary system of mineralogy relies on varied physical and chemical attributes, 13 including trace elements, isotopes, solid and fluid inclusions, and other information-rich 14 characteristics, to understand processes of mineral formation and to place natural condensed 15 phases in the deep-time context of planetary evolution. Part I of this system reviewed the earliest 16 refractory phases that condense at T > 1000 K within the turbulent expanding and cooling 17 atmospheres of highly evolved stars. Part II considers the subsequent formation of primary 18 crystalline and amorphous phases by condensation in three distinct mineral-forming environments, 19 each of which increased mineralogical diversity and distribution prior to the accretion of 20 planetesimals > 4.5 billion years ago: 21 1) Interstellar molecular solids: Varied crystalline and amorphous molecular solids containing 22 primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the 23 interstellar medium (10 < T < 20 K; P < 10-13 atm). With the possible exception of some 24 nano-scale organic condensates preserved in carbonaceous meteorites, the existence of Always consult and cite the final, published document.
    [Show full text]
  • Mineralogy, Mineral-Chemistry, and Composition of the Murchison (C2) Meteorite
    SMITHSONIAN CONTRIBUTIONS TO THE EARTH SCIENCES • NUMBER 10 Mineralogy, Mineral-Chemistry, and Composition of the Murchison (C2) Meteorite Louis H. Fuchs, Edward Olsen, and Kenneth J. Jensen SMITHSONIAN INSTITUTION PRESS City of Washington 1973 ABSTRACT Fuchs, Louis H., Edward Olsen, and Kenneth J. Jensen. Mineralogy, Mineral- Chemistry, and Composition of the Murchison (C2) Meteorite. Smithsonian Contributions to the Earth Sciences, number 10, 39 pages, 19 figures, frontispiece, 1973.—The Murchison meteorite shower, September 28, 1969, occurred in and around Murchison, Victoria, Australia. Chemical and mineralogical analyses established it as a type II carbonaceous chondrite (C2). Murchison consists largely of fine-grained black matrix which has been identified as primarily a mixture of two iron-rich, low-aluminum chamosite polytypes. Contained in the matrix are four main types of inclusions: (1) single crystals and crystal frag- ments, (2) loosely aggregated clusters of crystals ("white inclusions"), (3) discrete true chondrules, (4) xenolithic fragments of two other meteorite types (mostly a unique kind of C3 chondrite). The first type of inclusions consists of unzoned and highly zoned olivines, unzoned (disordered and ordered) orthopyroxenes, clinoenstatite, and rare diop- side. Prominent minor phases are calcite, chromite, metal (with occasional traces of schreibersite), troilite, pentlandite, and two phases that could not be fully characterized. The second type of inclusions consists primarily of grains of olivine (Fa 0 to Fa 40), lesser low-Ca pyroxenes, and minor spinel, calcite, whewellite, hib- onite, perovskite, chromite, pentlandite, and rare Ca-pyroxene. The true chondrules consist of olivine, Ca-poor pyroxene, occasional metal, and, in rare instances, one of the poorly characterized phases.
    [Show full text]
  • Meteorite Mineralogy Alan Rubin , Chi Ma Index More Information
    Cambridge University Press 978-1-108-48452-7 — Meteorite Mineralogy Alan Rubin , Chi Ma Index More Information Index 2I/Borisov, 104, See interstellar interloper alabandite, 70, 96, 115, 142–143, 151, 170, 174, 177, 181, 187, 189, 306 Abbott. See meteorite Alais. See meteorite Abee. See meteorite Albareto. See meteorite Acapulco. See meteorite Albin. See meteorite acapulcoites, 107, 173, 179, 291, 303, Al-Biruni, 3 309, 314 albite, 68, 70, 72, 76, 78, 87, 92, 98, 136–137, 139, accretion, 238, 260, 292, 347, 365 144, 152, 155, 157–158, 162, 171, 175, 177–178, acetylene, 230 189–190, 200, 205–206, 226, 243, 255–257, 261, Acfer 059. See meteorite 272, 279, 295, 306, 309, 347 Acfer 094. See meteorite albite twinning, 68 Acfer 097. See meteorite Aldrin, Buzz, 330 achondrites, 101, 106–108, 150, 171, 175, 178–179, Aletai. See meteorite 182, 226, 253, 283, 291, 294, 303, 309–310, 318, ALH 77307. See meteorite 350, 368, 374 ALH 78091. See meteorite acute bisectrix, 90 ALH 78113. See meteorite adamite, 83 ALH 81005. See meteorite addibischoffite, 116, 167 ALH 82130. See meteorite Adelaide. See meteorite ALH 83009. See meteorite Adhi Kot. See meteorite ALH 83014. See meteorite Admire. See meteorite ALH 83015. See meteorite adrianite, 117, 134, 167, 268 ALH 83108. See meteorite aerogel, 234 ALH 84001. See meteorite Aeschylus, 6 ALH 84028. See meteorite agate, 2 ALH 85085. See meteorite AGB stars. See asymptotic giant branch stars ALH 85151. See meteorite agglutinate, 201, 212, 224, 279, 301–302, 308 ALHA76004. See meteorite Agpalilik. See Cape York ALHA77005.
    [Show full text]
  • Collection Pierre Delpuech
    LUCIEN PARIS - DROUOT 7 DÉCEMBRE 2015 LUCIEN PARIS COLLECTION PIERRE DELPUECH PARIS, DROUOT, LE 7 DÉCEMBRE 2015 1 2 • LUNDI 7 DÉCEMBRE 2015 COLLECTION PIERRE DELPUECH MÉTÉORITES MINÉRAUX INSTRUMENTS SCIENTIFIQUES ANCIENS LIVRES SCIENTIFIQUES ANCIENS DOCUMENTATION VENTE AUX ENCHÈRES PUBLIQUES Lundi 7 décembre 2015 à 14 h Drouot Richelieu - Salle 4 9, rue Drouot, 75009 Paris EXPOSITIONS PUBLIQUES : Samedi 5 décembre, Drouot, de 11h à 18h Dimanche 6 décembre, Drouot, de 11h à 18h Lundi 7 décembre, Drouot, de 11h à 12h Téléphone pendant l’exposition et la vente : +33 (0)1 48 00 20 04 LUCIEN PARIS SARL EXPERT POUR LES MÉTÉORITES ET MINÉRAUX Christophe LUCIEN Bérangère JANIK Luc LABENNE Commissaires-Priseurs 23, rue de l’Espérance 17, rue du Port - 94130 Nogent sur Marne 75013 PARIS T. +33 (0) 1 45 80 04 56 5, rue des Lions Saint-Paul - 75004 Paris [email protected] T. +33 (0) 1 48 72 07 33 F. +33 (0) 1 48 72 64 71 [email protected] www.lucienparis.com EXPERT CNES POUR LES INSTRUMENTS ET LIVRES SCIENTIFIQUES ANCIENS Agrément 2002 194 Certification ISO 9001 Anthony TURNER 24, rue du Buisson Richard 78600 LE MESNIL-LE-ROI tel. + 33 (0) 1 39 12 11 91 et + 33 (0) 6 80 20 44 97 [email protected] PHOTOS-MONTAGES Presse Sophie MEN Cathy SPECHT + 33 (0) 1 48 72 07 33 Expertises / ventes aux enchères Christophe LUCIEN SCÉNOGRAPHIE Bérangère JANIK Thu Hang LE THI + 33 (0) 1 48 72 36 13 Grégoire GILLES + 33 (0) 1 48 72 36 10 Comptabilité PHOTOGRAPHIES DES MINÉRAUX Caroline ROUSSEAU ET INSTRUMENTS SCIENTIFIQUES + 33 (0) 1 48 72 36
    [Show full text]
  • 9781108418010.Pdf
    CHONDRULES Chondrules are sub-millimetre spherical metal-sulphide-silicate objects which formed from the solar protoplanetary disk material, and as such provide an important record of the chronology and conditions of the solar system in pre-planetary times. Chondrules are a major constituent of chondritic meteorites; however, despite being recognised for over 200 years their origins remain enigmatic. This comprehensive review describes state-of-the-art research into chondrules, bringing together leading cosmochemists and astrophysicists to review the properties of chon- drules and their possible formation mechanisms based on careful observations of their chemis- try, mineralogy, petrology and isotopic composition, as well as laboratory experiments and theoretical modelling. Current and upcoming space missions returning material from chondritic asteroids and cometary bodies have invigorated research in this field, leading to new models and observations, and providing new insight into the conditions and timescales of the solar proto- planetary disk. Presenting the most recent advances, this book is an invaluable reference for researchers and graduate students interested in meteorites, asteroids, planetary accretion and solar system dynamics. sara s. russell is Head of Planetary Materials at the Natural History Museum in London, England, and a visiting professor at the Open University. She is a fellow of the Meteoritical Society and has been honoured with the eponymous asteroid 5497 Sararussell. She has been awarded the Antarctica Service Medal of the United States of America and the Bigsby Medal of the Geological Society. Her research interests include the formation of the solar system and the evolution of the Moon. harold c. connolly jr. is founding Chair and Professor in the Department of Geology, School of Earth and Environment, Rowan University in Glassboro, New Jersey.
    [Show full text]
  • Nature and Origins of Meteoritic Breccias 679
    Bischoff et al.: Nature and Origins of Meteoritic Breccias 679 Nature and Origins of Meteoritic Breccias Addi Bischoff Westfälische Wilhelms-Universität Münster Edward R. D. Scott University of Hawai‘i Knut Metzler Westfälische Wilhelms-Universität Münster Cyrena A. Goodrich University of Hawai‘i Meteorite breccias provide information about impact processes on planetary bodies, their collisional evolution, and their structure. Fragmental and regolith breccias are abundant in both differentiated and chondritic meteorite groups and together with rarer impact-melt rocks pro- vide constraints on cratering events and catastrophic impacts on asteroids. These breccias also constrain the stratigraphy of differentiated and chondritic asteroids and the relative abundance of different rock types among projectiles. Accretional chondritic breccias formed at low impact speeds (typically tens or hundreds of meters per second), while other breccias reflect hyper- velocity impacts at higher speeds (~5 km/s) after asteroidal orbits were dynamically excited. Iron and stony-iron meteorite breccias only formed, when their parent bodies were partly molten. Polymict fragmental breccias and regolith breccias in some meteorite groups contain unique types of clasts that do not occur as individual meteorites in our collections. For example, ureilite breccias contain feldspathic clasts from the ureilite parent body as well as carbonaceous chon- dritic projectile material. Such clasts provide new rock types from both unsampled parent bod- ies and unsampled parts of known parent bodies. We review breccias in all types of asteroidal meteorites and focus on the formation of regolith breccias and the role of catastrophic impacts on asteroids. 1. GENERAL INTRODUCTION shock waves during collisional processes. Partsch (1843) and von Reichenbach (1860) described “polymict breccias” 1.1.
    [Show full text]
  • Structure, Composition and Location of the Organic Matter Found in the Enstatite Chondrite Sahara 97096
    Structure, composition and location of organic matter in the enstatite chondrite Sahara 97096 (EH3) L. Piani1, F. Robert1, O. Beyssac2, L. Binet3, M. Bourot-Denise1, S. Derenne4, C. Le Guillou5, Y. Marrocchi6, S. Mostefaoui1, J.N. Rouzaud5, A. Thomen1 1Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS-MNHN, UMR7202, Case 52, 57 Rue Cuvier, 75005 Paris, France (contact : [email protected]), 2Institut de minéralogie et de physique des milieux condensés, UMR 7590, CNRS-UPMC, Campus Jussieu, 4 place Jussieu - 75005 PARIS, France. 3Chimie ParisTech, Laboratoire de Chimie de la Matière Condensée de Paris, CNRS, UMR 7574, ENSCP, 11 rue Pierre et Marie Curie 75231 Paris cedex 05 4BioEMCo, CNRS-UPMC, UMR 7618, 4 place Jussieu, 75252 Paris, France. 5Laboratoire de Géologie de l’Ecole normale supérieure, CNRS-ENS, UMR 8538, 24 Rue Lhomond, 75231 Paris, France. 6Centre de Recherches Pétrographiques et Géochimiques - Nancy Université, CNRS, UPR 2300, 15 Rue Notre-Dame des Pauvres, BP20, 54501 Vandœuvre-lès-Nancy, France. ABSTRACT The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the Solar System and to constrain the processes that could affect IOM during Solar System evolution. The Sahara97096 IOM is found in situ: as sub-micrometer grains in the network of fine- grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized.
    [Show full text]