Comparison of Methods and Systems in Internal Radiation Dosimetry

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Methods and Systems in Internal Radiation Dosimetry Mini Review ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2021.33.005413 Comparison of Methods and Systems in Internal Radiation Dosimetry Guy Yembi Goma and Muhammad Maqbool* Health Physics Program, Department of Clinical & Diagnostic Sciences, the University of Alabama at Birmingham, USA *Corresponding author: Muhammad Maqbool, Health Physics Program, Department of Clinical & Diagnostic Sciences, the University of Alabama at Birmingham, USA ARTICLE INFO ABSTRACT Received: January 17, 2021 Exact dose delivery to cancer patients in their treatment by radiation is very Published: January 29, 2021 patients and radiations workers is performed before any dose delivery. A cancer patient canimportant. be exposed Radiation to radiation Dosimetry in twois a ways:specific external area in exposurewhich exact and doseinternal calculation exposure. to External exposure occurs when source of radiation is located and placed outside a Citation: Guy Yembi Goma, Muhammad Maqbool. Comparison of Methods and patient. Internal exposure is due to radiopharmaceuticals taken inside a patient’s body. Systems in Internal Radiation Dosimetry. The area of dosimetry dealing with radiation delivered by external sources of radiation is called external dosimetry and the area in which radiation is obtained from radioactive BJSTR. MS.ID.005413. sources within the body is called internal dosimetry. In this minireview, various methods Biomed J Sci & Tech Res 33(3)-2021. and systems used in the internal dosimetry are analyzed. Comparison of those methods Keywords: Dosimetry; Internal Dosimetry reveals that every method and system has its own advantages and priorities over others Methods; Internal Dosimetry Systems in various cases and circumstances. Abbreviations: S: Source Organ; CFR: Code of Federal Regulations; GI: Gastrointestinal Tract; ALI: Annual Limit of Intake, DAC: Derived Air Concentration; ICRP: International Commission on Radiology Protection Mini Review parameters such as: the activity of the radionuclide, its physical This different internal dosimetry methods were developed for and biological half-life T and T , the fractional abundance of the the purpose of radioprotection, and radiation safety to minimize p b radiation with energy E emitted per nuclear transition n , the the risk of the effects of ionizing radiation on the people. The i i fraction of energy emitted that is absorbed in the target volume current method for calculating dose was proposed by the ICRP , the pathology or biodistribution of the radioactivity in the body [1-4]. Internal dosimetry modalities or methods are used when a i [5,6]. The equivalent and effective doses are proportional to the radioactive material enters the body by different routes inhalation, ϕ radiation and tissue weighting factors and the absorbed dose. The ingestion, absorption, injection on different circumstances either absorbed dose rate is given by the equation: by breathing, eating, or drinking respectively, contaminated air, ~~ ~ . Φ ∆Φ Φ −1 A∑∑ii NEiii A ii A ∑ i NEiii occupational or accidentally. In this course class paper, we describe D(..) rad hr orGy s= k = k = 2.13 fluids foods and wounds. These occur in different occasions, either mm m the various mathematical models for calculating the absorbed dose Ci or Bq], is the accumulated activity, (1) by diverse organs of the body. Where A ̃ [μ −1 −−11 ∆=total [rad . g .µ Ci orGy . kg . Bq . s ] 2.13Σi N i E i Internal Dosimetry Dose Calculation is the equilibrium absorbed dose constant, and , is the mass(2) of the target volume. This formula is applicable only for non- amount of energy deposited per unit mass of the body tissue. That The quantification of the absorbed dose to tissue requires the penetrating radiations ( -rays and energy comes from different type of radiations, the penetrating energy is absorbed in the target volume. For penetrating radiations and α β-rays), implying that all the (x and . Furthermore, the radiation absorbed dose is a function of lot of emissions (x and γ-rays), as well as non-penetrating ones α γ-rays), all the energy or portion of it will be absorbed by β Copyright@ Muhammad Maqbool | Biomed J Sci & Tech Res | BJSTR. MS.ID.005413. 25881 Volume 33- Issue 3 DOI: 10.26717/BJSTR.2021.33.005413 the target volume. When the source and the target are different, we 1 fraction, with , being basically the absorbed fraction and is an r 2 energy by the target tissue, then, the absorbed dose is given by the μ must insert a coefficient to account for the partial absorption of the following equation. Internationalabsorption coefficient. Commission on Radiology Protection Φ← (ICRP) −1 A* NEii i () T S D( rad . hr )= 2.13 m The ICRP introduced two methodologies ICRP II [10] and Where Φ=iT()← S AF() T ← S is the absorbed fraction (3) of dose ICRP 30 [1] for internal dosimetry implementable in occupational settings, particularly in the nuclear fuel cycle with reference to organ T. For and particles, x- and -radiation of energies less coming from the source organ (S), that is absorbed by the target than 11 keV, all the energy emitted. By the radiopharmaceutical is α β γ (Figure 1). The ICRP II is the foundation of the radiation protection absorbed in the volume greater than 1cm. So, will take the value i regulations in the US (Code of Federal Regulations (CFR), 10 CFR 0, unless the source S and target T are the same, . For and new ICRP 30. The ICRP II and ICRP 30 systems have to do with ϕ i 20), which was revised (10 CFR 20) in 1994 and gave birth to the particles, most non-penetrating radiation is usually absorbed, so occupational exposure and its calculation of the dose equivalent ϕ α β we set the absorption fraction . For x and -rays, penetrating 51.2*A *ξ i using the formula: H = , with ξ =∑ iinQ Φ i i m radiation with energy greater than , the value of i varies inversely ϕ γ Where n , is the quality with increasing energy and between 0 and 1, contingent on the i i (2)i ϕ factor of the radiation to get the result in equivalent dose. The energy. The data of i are computed by statistical Monte Carlo ϕ are defined in section 2., while Q methods based on the interaction radiation and matter [6]. constant 5.12 is the k constant that converts into rem per day, for ϕ activity A( Different Dosimetry Systems certain amount of radiopharmaceutical enters the body either by μCi), mass m(g), and energy E(MeV). At time t = 0, a inhalation or The previous formulas have been derived using lot of dose for radiopharmaceutical with complex emission spectra. respiratory system models are used to compute the transfer of simplifications and are the most commonly used to calculate ingestion. For the gastrointestinal (GI) tract as well as the These dosimetry systems that seem to look different, where some radionuclide from the GI or the respiratory system to the body parameters have been combined, may look different, but yield the same output given the same input and assumptions. fluids as well as its excretion. Then, by either pathway of intake, the enters the body through compartment a which is connected to Marinelli-Quimby Methods radionuclide enters the body fluid system [11]. The radionuclide different compartments, b, c, d, etc. representing type of tissues The equation for the dose of non-penetrating beta ( or organs of the body, where the radiopharmaceutical experiences that decays completely in a body tissue is given by the equation: β) emitter [7,8]. biological clearance and physical decay, and finally goes out of the Dββ= 73.8* CE * * T to be uniform in the reference man. The ICRP metabolic design body. The dose distribution in the first compartment is assumed uses mathematical models for the reference man to track the where: Dβ [] rad is the concentration of(4) the radionuclide, radiopharmaceutical as it moves from the original compartment C[µ Ci .] g −1 is the concentration of the nuclide, E[] MeV is the β to other tissues or organs. The different compartment models mean energy emitted per decay of the nuclide, is the half-life of are: ICRP-30 Dosimetric Model for Respiratory System (ICRP the nuclide in the tissue. By analogy with the cumulative activity, ~ 73.8 A=1.44* fAT * * ,we see that k = = 51.1 , and C[µ Ci .] g −1 is the the Gastrointestinal Tract, and ICRP-30 Dosimetric Model for 0 1.44 Human Respiratory Tract Model), ICRP-30 Dosimetric Model for activity per unit mass, and for the emitter, the absorbed fraction Submersion in a Radioactive Gas Cloud. The solutions of these =1. For penetrating radiations such as -rays, we use the geometric computations are the equivalent dose and effective dose rates of β factors of Brownell and Hine [9] for spheres and cylinders of set various tissues and organs as a function of time. Then, the committed ϕ γ shape to calculate the data for the fraction of energy emitted that equivalent dose and the committed effective dose subsequent from is absorbed in the target volume. The dose in the vicinity of the the original intake can be evaluated, as well as the ALI (Annual ϕ γ-emitter is given by the formula: e−µr rad LimitWe of calculateIntake), the the DAC committed (Derived effective Air Concentration) dose for a [11].radionuclide D=10−3τ * c dV y ∫ r2 hr in the body with the ICRP mathematical tools and data from the − reference man. The committed effective dose is given for a period where C[µ Ci .] g 1 is the activity of the gamma emitter. Similarly, (5) = 50 years by the formula: E(ττ )=∑⇔=∑ wH ( ) E (50) wH -rate constant is the exposure rate per TTT TTT disintegration from the point source (same as k**Σ nE τ by analogy, the specific γ Γ ii i e−µr where w is the weighting factor for the tissue, and H () (6) T T ∫ r 2 plays a role of the absorbed) to an (τ) is the infinite medium, while the factor committed equivalent dose of tissue T given by equation (7) Copyright@ Muhammad Maqbool | Biomed J Sci & Tech Res | BJSTR.
Recommended publications
  • 1 RC-6 Internal Dosimetry the Science and Art of Internal Dose
    RC-6 Internal Dosimetry The science and art of internal dose assessment H. Doerfel a, A. Andrasi b, M. Bailey c, V. Berkovski d, E. Blanchardon e, C.-M. Castellani f, R. Cruz-Suarez g, G. Etherington c, C. Hurtgen h, B. LeGuen i, I. Malatova j, J. Marsh c, J. Stather c aIDEA System GmbH, Am Burgweg 4, 76227 Karlsruhe, Germany, [email protected] bKFKI Atomic Energy Research Institute, Budapest, Hungary cRadiation Protection Division, Health Protection Agency, Chilton, Didcot, UK dRadiation Protection Institute, Kiev, Ukraine eInstitut de Radioprotection et de Sûreté Nucleaire, Fontenay-aux-Roses, France fENEA Radiation Protection Institute, Bologna, Italia gInternational Atomic Energy Agency, Vienna, Austria hSCK•CEN Belgian Nuclear Research Centre, Mol, Belgium iElectricite de France, Saint-Denis, France jNRPI, Prague, Czech Republic 1 Abstract Doses from intakes of radionuclides cannot be measured but must be assessed from monitoring, such as whole body counting or urinary excretion measurements. Such assessments require application of a biokinetic model and estimation of the exposure time, material properties, etc. Because of the variety of parameters involved, the results of such assessments may vary over a wide range, according to the skill and the experience of the assessor. The refresher course gives an overview over the state of the art of the determination of internal dose. The first part of the course deals with the measuring techniques for individual incorporation monitoring i.e (i) direct measurement of activity in the whole body or organs, (ii) measurement of activity excreted with urine and faeces, and (iii) measurement of activity in the breathing zone or at the workplace, respectively.
    [Show full text]
  • Forschungszentrum Karlsruhe Third European Intercomparison Exercise
    Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 6457 Third European Intercomparison Exercise on Internal Dose Assessment Results of a Research Programme in the Framework of the EULEP/EURADOS Action Group “Derivation of Parameter Values for Application to the New Model of the Human Respiratory Tract for Occupational Exposure” 1997-1999 H. Doerfel, A. Andrasi 1), M. R. Bailey 2), A. Birchall 2), C.-M. Castellani 3), C. Hurtgen 4), N. Jarvis 2), L. Johansson 5), B. LeGuen 6), G. Tarroni 3) Hauptabteilung Sicherheit 1) AERI, Budapest, Hungary 2) NRPB, Chilton Didcot, United Kingdom 3) ENEA, Bologna, Italy 4) CEN/SCK, Mol, Belgium 5) University of Umea, Umea, Sweden 6) EDF-GDF, Saint Denis Cedex, France Forschungszentrum Karlsruhe GmbH, Karlsruhe 2000 Abstract The EULEP/EURADOS Action Group „Derivation of Parameter Values for Application to the New Model of the Human Respiratory Tract for Occupational Exposure“ has initiated a new intercomparison exercise on internal dose assessment. During the last few years the ICRP has developed a new generation of more realistic internal dosimetry models, including the Human Respiratory Tract Model (ICRP Publication 66) and recycling systemic models for actinides. These models have been used to calculate dose coefficients, which have been adopted in the revised EURATOM Directive. This recent intercomparison exercise gave special consideration to the effects of the new models and the choice of input parameters on the assessment of internal doses from monitoring results. It also took into account some aspects which have not been considered in previous exercises, such as air monitoring, natural radionuclides, exposure of the public, artificially created cases and artificially reduced information.
    [Show full text]
  • Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear Or Radiological Emergency
    CONTAMINATION EPR-INTERNAL AND RESPONSE PREPAREDNESS EMERGENCY EPR-INTERNAL EPR-INTERNAL CONTAMINATION CONTAMINATION 2018 2018 2018 Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear or Radiological Emergency Contaminatedin aNuclear with Radionuclides Internally of Persons Management Medical Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear or Radiological Emergency A Manual for Medical Personnel Jointly sponsored by the Endorsed by AMERICAN SOCIETY FOR RADIATION ONCOLOGY INTERNATIONAL ATOMIC ENERGY AGENCY V I E N N A ISSN 2518–685X @ IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS IAEA SAFETY STANDARDS Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. The publications by means of which the IAEA establishes standards are issued in the IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport safety and waste safety. The publication categories in the series are Safety Fundamentals, Safety Requirements and Safety Guides. Information on the IAEA’s safety standards programme is available on the IAEA Internet site http://www-ns.iaea.org/standards/ The site provides the texts in English of published and draft safety standards. The texts of safety standards issued in Arabic, Chinese, French, Russian and Spanish, the IAEA Safety Glossary and a status report for safety standards under development are also available. For further information, please contact the IAEA at: Vienna International Centre, PO Box 100, 1400 Vienna, Austria. All users of IAEA safety standards are invited to inform the IAEA of experience in their use (e.g.
    [Show full text]
  • Radiation Quantities and Units Definitions
    Radiation Quantities and Units Definitions The quantities and units of radiation dose are inherently more complex than those used in toxicology or pharmacology, and additional complexity has resulted from several changes required by evolving concepts in radiation dosimetry. The first widely used physical quantity of radiation was “exposure,” related to the ability of x or gamma radiation to ionize air; its unit was the roentgen (R). Exposure was limited to photon radiation with energy less than 2.5 MeV. The quantity “absorbed dose” (D) was introduced because it was applicable to all forms of ionizing radiation and absorbing materials. Absorbed dose is energy deposited per unit mass, and its original unit was the rep (roentgen equivalent-physical); 1 rep equaled 93 ergs per g (0.0093 J per kg) of absorbing material. The rep was replaced with the rad (radiation absorbed dose); 1 rad equaled 100 ergs per g (0.01 J per kg). The “dose equivalent” (H) and its unit, the rem (roentgen equivalent-man), were introduced to account for the different biologic effects of the same absorbed dose from different types of radiation; H is the product of D, Q, and N at a point of interest in tissue, where D is absorbed dose, Q is the quality factor, and N is the product of any other modifying factors. The “effective dose equivalent” was introduced to include the different sensitivities of individual tissues and organs, which are important for internal dosimetry: its unit is the same as the unit of “dose equivalent.” In the 1990 recommendations of the International Commission on Radiological Protection (ICRP 1991), the use of N was dropped and the radiation weighting factor (WR) was substituted for Q.
    [Show full text]
  • Perspective on Internal Contamination and Dose
    Perspective on Internal Contamination and Dose Hanford Internal Dosimetry Program 1 What is meant by contamination and dose? Contamination: the unwanted presence of radioactive material. Dose: energy deposited in the body by radioactive decay of contamination 2 External and Internal Sources External exposure: Route of intake: Route of intake: no intake inhalation skin absorption Route of intake: Route of intake: wound exposure ingestion 3 Measuring External Dose Dosimeters measure dose from external sources. Left: Hanford Left: Hanford combination standard neutron dosimeter dosimeter Below: Hanford extremity dosimeter Dose from internal contamination (within the body) cannot be measured by dosimeters. 4 External Dose vs. Internal Dose External Dose Internal Dose • Generally, easy to measure with • Requires determination from a dosimeter bioassay measurements of • Usually reported as a “whole material in the body or excreted body” or “effective” dose from the body • Type of bioassay depends on radioactive material • Optimum type of bioassay depends on radioactive material and time since intake occurred 5 Bioassay Methods There are several bioassay methods used to determine intake and internal dose: • Whole body exam/count Left: a whole body • Chest count count and lung count being taken • Wound count • Urine/fecal sample analysis Left: the in-home kit for collecting urine or fecal samples for bioassay 6 How Critical is Time to Bioassay? Don’t sample too soon… but don’t wait too long • The material may not be present in the bladder or bowel if the sample is taken too soon. • Dose detection capability varies with time after intake. Getting a bioassay at the right time can provide a more accurate analysis.
    [Show full text]
  • External and Internal Dosimetry
    Chapter 7 External and Internal Dosimetry H-117 – Introductory Health Physics Slide 1 Objectives ¾ Discuss factors influencing external and internal doses ¾ Define terms used in external dosimetry ¾ Discuss external dosimeters such as TLDs, film badges, OSL dosimeters, pocket chambers, and electronic dosimetry H-117 – Introductory Health Physics Slide 2 Objectives ¾ Define terms used in internal dosimetry ¾ Discuss dose units and limits ¾ Define the ALI, DAC and DAC-hr ¾ Discuss radiation signs and postings H-117 – Introductory Health Physics Slide 3 Objectives ¾ Discuss types of bioassays ¾ Describe internal dose measuring equipment and facilities ¾ Discuss principles of internal dose calculation and work sample problems H-117 – Introductory Health Physics Slide 4 External Dosimetry H-117 – Introductory Health Physics Slide 5 External Dosimetry Gamma, beta or neutron radiation emitted by radioactive material outside the body irradiates the skin, lens of the eye, extremities & the whole body (i.e. internal organs) H-117 – Introductory Health Physics Slide 6 External Dosimetry (cont.) ¾ Alpha particles cannot penetrate the dead layer of skin (0.007 cm) ¾ Beta particles are primarily a skin hazard. However, energetic betas can penetrate the lens of an eye (0.3 cm) and deeper tissue (1 cm) ¾ Beta sources can produce more penetrating radiation through bremsstrahlung ¾ Primary sources of external exposure are photons and neutrons ¾ External dose must be measured by means of appropriate dosimeters H-117 – Introductory Health Physics Slide 7
    [Show full text]
  • Internal Dosimetry Co-Exposure Data for the Savannah River Site
    Page 1 of 287 DOE Review Release 09/04/2020 ORAUT-OTIB-0081 Rev. 05 Internal Dosimetry Co-Exposure Data for the Effective Date: 09/01/2020 Savannah River Site Supersedes: Revision 04 Subject Expert(s): Matthew G. Arno, James M. Mahathy, and Nancy Chalmers Document Owner Signature on File Approval Date: 08/24/2020 Approval: Matthew G. Arno, Document Owner Concurrence: Signature on File Concurrence Date: 08/24/2020 John M. Byrne, Objective 1 Manager Concurrence: Signature on File Concurrence Date: 08/24/2020 Scott R. Siebert, Objective 3 Manager Concurrence: Vickie S. Short Signature on File for Concurrence Date: 08/24/2020 Kate Kimpan, Project Director Approval: Signature on File Approval Date: 08/25/2020 Timothy D. Taulbee, Associate Director for Science FOR DOCUMENTS MARKED AS A TOTAL REWRITE, REVISION, OR PAGE CHANGE, REPLACE THE PRIOR REVISION AND DISCARD / DESTROY ALL COPIES OF THE PRIOR REVISION. New Total Rewrite Revision Page Change Document No. ORAUT-OTIB-0081 Revision No. 05 Effective Date: 09/01/2020 Page 2 of 287 PUBLICATION RECORD EFFECTIVE REVISION DATE NUMBER DESCRIPTION 02/08/2013 00 New technical information bulletin to provide internal coworker data for the Savannah River Site. Incorporates formal internal and NIOSH review comments. Training required: As determined by the Objective Manager. Initiated by Matthew Arno. 04/01/2013 01 Revision initiated to correct the values provided in Tables 5-6, Type S uranium intake rates for 1968 through 2007, 5-10, changed end date from 2006 to 2007, A-3, plutonium bioassay data for 1955 through 2007, and A-8, neptunium bioassay data for 1991 through 2007.
    [Show full text]
  • Internal Dosimetry Hazard and Risk Assessments: Methods and Applications G
    DOSIMETRY AND INSTRUMENTATION INTERNAL DOSIMETRY HAZARD AND RISK ASSESSMENTS: METHODS AND APPLICATIONS G. A. Roberts RWE NUKEM Limited, Didcot, UK ABSTRACT Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. INTRODUCTION The estimation of internal dose needs to be inferred from the measurement of activity in the individual (by in-vivo or in-vitro methods) or in the workplace environment. A variety of monitoring methods are available for making these measurements [1]. A review of the current monitoring practices within European Union countries was included within the OMINEX project (Optimisation of Monitoring for Internal Exposure) [2] and are summarised in Table 1. Type of Total Monitoring method Monitoring operation number In vivo Bioassay SAS/PAS Routine Special Both Nuclear power 34 33 15 7 8 4 27 plant Reprocessing 2 2 2 - - - 1 Fuel 7 6 6 2 3 2 5 fabrication Decommiss- 6 5 6 1 2 2 5 ioning Research 19 17 12 5 3 5 16 Non-nuclear 3 3 3 2 2 2 2 SAS – static air sampling PAS – personal air sampling Table 1: Number of organisations using each monitoring method for routine or special monitoring, classified by type of operation.
    [Show full text]
  • INTERNAL DOSIMETRY for NUCLEAR POWER PROGRAM (Dosimeter Dalaman Untuk Program Kuasa Nuklear)
    Konvensyen Teknikal Nuklear Malaysia 13 – 15 Sep 2011 INTERNAL DOSIMETRY FOR NUCLEAR POWER PROGRAM (Dosimeter dalaman untuk Program Kuasa Nuklear) Yii Mei-Wo Waste and Environmental Technology Division Malaysian Nuclear Agency Bangi, 43000 Kajang, Malaysia Tel: 03-8925 0510 Fax: 03-8928 2977 E-mail: [email protected] Abstract Internal dosimetry which refers to dosage estimation from internal part of an individual body is an important and compulsory component in order to ensure the safety of the personnel involved in operational of a Nuclear Power Program. Radionuclides particle may deposit in the human being through several pathways and release wave and/or particle radiation to irradiate that person and give dose to body until it been excreted or completely decayed from the body. Type of radionuclides of concerning, monitoring program, equipments and technique used to measure the concentration level of such radionuclides and dose calculation will be discussed in this article along with the role and capability of Malaysian Nuclear Agency. Abstrak Dosimetri dalaman yang merujuk kepada penganggran dos dari bahagian dalaman badan seseorang individu adalah satu komponen mustahak dan wajib untuk menjamin keselamatan personel yang terlibat dalam pengendalian Program Kuasa Nuklear. Patikel radionuklid boleh memasuki ke dalam manusia melalui beberapa laluan dan membebaskan sinaran gelombang dan/atau zarah untuk mengiridiasi manusia dan memberi dos kepada badan sehingga ia disingkirkan atau menyepai habis dari badan manusia. Jenis radionuklid yang berkenaan, program pemantauan, peralatan dan teknik pengukuran tahap kepekatan radionuklid tersebut serta pengiraan dos akan dibincang dalam artikel ini bersama peranan dan kemampuan Agensi Nuklear Malaysia. Keyword: dose; internal dosimetry; Nuclear Power Program; monitoring; INTRODUCTION When a personnel is dealing with ionizing radiation, he may be exposed to the radiation either external or internally.
    [Show full text]
  • Dosimetry Issuance Request Form
    Dosimeter Issuance and Information Request Form Instructions: Complete and submit this form if you will work under an RUA that requires external or internal radiation monitoring (see checkboxes under “Precautions Required” on the RUA form). Last Name:________________________________ , First Name:______________________________ __ CalNet ID:_________________________ ________, Birthdate (Month/Day/Year):____________________ __ Gender: Male Female [ ] I am a declared pregnant worker and will will work under an RUA or { will not be working with radiation under a specific RUA at this time. I am being added to RUA ___________________which has a requirement for: External monitoring (TLD ring, body badge or neutron badge) [ ] Bioassay (thyroid scan or urinalysis) [ ] RUA requires: RUA requires: TLD ring [ ] Body Badge [ ] Neutron Badge [ ] Thyroid Scan [ ] Urinalysis [ ] Other analysis per listed under “Precautions” [ ] Previous radiation monitoring (radiation badges and/or bioassays): Yes [ ] No [ ]: Within the current calendar year I have been monitored for external radiation exposure and/or internal radiation uptake. I give authorization for these records to be released to the University of California, Berkeley EH&S. Your ID no. at organization: ____________________________ Street address:________________________________________ Approx. dates of rad monitoring:__________________________ City, state & zip:_______________________________________ Organization name____________________________________ ATTN:_______________________________________________ [ ] I had radiation monitoring from more than one organization this year, please see attached sheet with added information. [ ] I have been informed that additional information regarding radiation exposure during pregnancy is available from the EH&S Radiation Safety website. [ ] I have been informed of the frequency for bioassays and/or the exchange of external dosimeters and agree to participate in bioassays and/or to have my assigned dosimeter available for exchange at the designated frequency.
    [Show full text]
  • Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production
    ORNL/TM-2013/226 Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production June 2013 R. W. Leggett K. F. Eckerman R. P. Manger Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research CONTENTS LIST OF TABLES ...................................................................................................................... v LIST OF FIGURES ................................................................................................................ viii EXECUTIVE SUMMARY ........................................................................................................ 1 Background ............................................................................................................................ 1 Objectives of this report ......................................................................................................... 1 Method of dose comparison ................................................................................................... 2 Main results ............................................................................................................................ 3 Differences in fundamental dosimetric concepts of NRC77 and later systems ................ 3 Comparison of dose estimates for individual radionuclides in drinking water ................. 4 Comparison of dose estimates for inhalation of individual radionuclides .......................
    [Show full text]
  • Report of CM Internal Dosimetry
    INTERNATIONAL ATOMIC ENERGY AGENCY Report of a Consultancy Meeting held 26-28 September 2011 at the IAEA Headquarters in Vienna FOREWORD The Dosimetry and Medical Radiation Physics (DMRP) section’s efforts in Nuclear Medicine Physics follow the section’s overall focus on Quality Assurance in radiation medicine, with special emphasis on educating and training medical physicists. For nuclear medicine physics, extra effort has previously been placed on proper radioactivity measurements. Currently the section is involved in providing guidelines for proper quantification of nuclear medicine images. These efforts set the stage for patient-specific dosimetry, a requirement for therapeutic nuclear medicine but also useful for diagnostic procedures. A consultants’ meeting was arranged to provide advice to the Agency on the current status of the field, as well as identifying any gaps that should be addressed. The specific purpose of the meeting was to review current guidelines for internal dosimetry in nuclear medicine, and to provide recommendations for international harmonization of this field. The consultants were Dr. Manuel Bardies, Centre de Recherche en Cancérologie de Toulouse, France; Dr. Michael Lassmann, University of Würzburg, Germany; Dr. Wesley Bolch, University of Florida, USA; and Dr. George Sgouros, Johns Hopkins University, USA. Scientific secretary for the meeting was Stig Palm, DMRP/NAHU. CONTENTS 1. ROLE OF INTERNAL DOSIMETRY IN NUCLEAR MEDICINE ............................... 1 1.1. Diagnostic Nuclear Medicine ............................................................................
    [Show full text]