Native Bradyrhizobial Symbionts of Lupinus Mariae-Josephae, a Unique Endemism Thriving in Alkaline Soils in Eastern Spain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Report Template
Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
Cusick's Lupine (Lupinus Lepidus Var
Cusick's lupine (Lupinus lepidus var. cusickii) ENDANGERED Flowers (left), habit (center), and habitat (right) of Cusick’s lupine. Photos by Robert Meinke (left and right) and Rebecca Currin (center). If downloading images from this website, please credit the photographer. Family Fabaceae Taxonomic notes Synonyms: Lupinus cusickii, L. aridus var. cusickii, L. lepidus ssp. cusickii The genus Lupinus poses many taxonomic challenges due to the extremely variable nature of the species and intergradations between recognized taxa, a situation that in many instances is likely the result of or complicated by free interbreeding that has obscured species boundaries. Lupine populations designated by the epithet cusickii have been treated in a myriad of ways: as a species, as a variety of L. aridus, and as a subspecies, variety, or synonym of L. lepidus. Plant description Cusick’s lupine is an erect, caespitose perennial 2-11 cm tall. Stems are sparingly branched at the base, with upper stem internodes 1-3 cm long. Upper stem nodes often bear a lateral branch terminating in an inflorescence. Leaves are mainly basal, the petioles 2-6 cm long, the 5-9 oblanceolate leaflets abundantly hairy on both surfaces, 0.7-1.9 cm long by 0.3-0.7 cm wide. Peduncles are 1-6 cm long, subequal to or shorter than the racemes. Racemes are 1-6 cm long, and held at about the height of the vegetative crown when mature. Flowers are crowded and whorled, borne on slender pedicels 0.4-0.5 cm long at anthesis. The calyx is hairy and not saccate or spurred. -
Narrow-Leaf Lupin, EM 8834-E
Dryland Cropping Systems EM 8834-E • June 2003 $1.00 Narrow-leaf Lupin K. Kettel, B. Tuck, W.A. Payne, C. Chen, S. Machado, and R. Karow History As a crop species, lupin was important to many ancient civilizations and has been cultivated, mostly as a green manure, for at least 3,000 years. Its native range extends through the western parts of North and South America as well as around the Mediterranean, extending into eastern Africa. Of the more than 300 Lupinus species, only five are cultivated (L. albus, L. angustifolius, L. luteus, L. mutabilis, and L. cosentenii). In the 1920s, German plant breeders produced the first low-alkaloid lupin varieties. Like other legumes, lupin fixes atmospheric nitrogen and produces a high-protein seed that is used as a feed and food source throughout the world. In the past, lupin production in Oregon was limited to white lupin varieties (L. albus). White lupin has been grown in the Columbia Gorge region since the late 1980s. Research at the Oregon State University (OSU) Moro Research Station showed excellent yield potential. Although white lupin is well adapted to most growing conditions in Oregon, it has suffered from undetermined disease problems. In 1998, OSU researchers resumed lupin research in response to grower interest. After conferring with Australian researchers, Dr. William Payne became convinced that imported narrow-leaf lupin varieties (L. angustifolius) from Australia would provide resistance to the types of diseases that had troubled white lupin in the past. Because current Oregon lupin research has focused on narrow-leaf varieties, this publication will discuss the agronomic practices of growing the narrow-leaf varieties developed in Australia. -
Bumble Bee Pollen Foraging on Lupine (Lupinus: Fabaceae)
BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts In Biology May 2000 BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. Approved by the Master's Thesis Committee: Michael R. Mesler, Major Professor Michael &mann, Committee Member P. Dawn Goley, Committee Member Casey Lu, Committee Member Milton J. Boyd, Graduate Coordinator Ronald Fritzsche, Dean for Research and Graduate Studies ABSTRACT Bumble bee pollen foraging on lupine (Lupinus: Fabaceae): within-whorl decisions Birgit Semsrott Bumble bees (Bombus: Apidae) can maximize foraging efficiency in a resource-patchy environment by visiting mainly rewarding flowers and avoiding those that are either empty or less rewarding. This study investigated how bumble bees avoid unrewarding flowers of lupine (Lupinus: Fabaceae), a plant in which the pollen is hidden from view. I recorded whether bees left a whorl upon encountering various situations. Bumble bees clearly discriminated against flowers that showed unambiguous visual signs of being unrewarding. In the absence of any visual cues, bees made use of a presumably predictable spatial distribution of pollen within whorls. They were able to assess the amount of pollen collected per flower, and they departed upon encountering one or more unrewarding flowers. -
Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive G C A T T A C G G C A T genes Review Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae Tomasz St˛epkowski 1,*, Joanna Banasiewicz 1, Camille E. Granada 2, Mitchell Andrews 3 and Luciane M. P. Passaglia 4 1 Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; [email protected] 2 Universidade do Vale do Taquari—UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil; [email protected] 3 Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand; [email protected] 4 Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +48-509-453-708 Received: 31 January 2018; Accepted: 5 March 2018; Published: 14 March 2018 Abstract: The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits. -
Growth, Yield and Yield Component Attributes of Narrow-Leafed Lupin
Tropical Grasslands-Forrajes Tropicales (2019) Vol. 7(1):48–55 48 DOI: 10.17138/TGFT(7)48-55 Research Paper Growth, yield and yield component attributes of narrow-leafed lupin (Lupinus angustifolius L.) varieties in the highlands of Ethiopia Crecimiento, rendimiento y componentes del rendimiento de variedades de lupino dulce de hoja angosta (Lupinus angustifolius L.) en las tierras altas de Etiopía FRIEHIWOT ALEMU1, BIMREW ASMARE2 AND LIKAWENT YEHEYIS3 1Woldiya University, Department of Animal Science, Woldiya, Amhara, Ethiopia. www.wldu.edu.et 2Bahir Dar University, Department of Animal Production and Technology, Bahir Dar, Amhara, Ethiopia. www.bdu.edu/caes 3Amhara Agricultural Research Institute, Bahir Dar, Amhara, Ethiopia. www.arari.gov.et Abstract An experiment was conducted to characterize the growth and yield performance of narrow-leafed sweet blue lupin varieties (Lupinus angustifolius L.) in northwestern Ethiopia. The experiment was laid out in a randomized complete block design with 4 replications and included 7 varieties (Bora, Probor, Sanabor, Vitabor, Haags blaue, Borlu and Boregine). Data on days to flowering and to maturity, flower color, plant height, numbers of leaflets, branches and pods per plant, pod length, number of seeds per pod, forage dry matter (DM) yield, grain yield and 1,000-seed weight were recorded. The results showed that plant height, number of branches per plant, forage DM yield, number of seeds per pod, grain yield and 1,000-seed weight varied significantly (P<0.01) among varieties. The highest forage DM yield at 50% flowering (2.67 t/ha), numbers of pods per plant (16.9) and of seeds per pod (4.15), grain yield (1,900 kg/ha) and 1,000- seed weight (121 g) were obtained from the Boregine variety. -
Specificity in Legume-Rhizobia Symbioses
International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Endangered but Genetically Stable—Erythrophleum Fordii Within Feng Shui Woodlands in Suburbanized Villages
Received: 22 February 2019 | Revised: 6 July 2019 | Accepted: 12 July 2019 DOI: 10.1002/ece3.5513 ORIGINAL RESEARCH Endangered but genetically stable—Erythrophleum fordii within Feng Shui woodlands in suburbanized villages Zheng‐Feng Wang1,2 | Hai‐Lin Liu3,4,5 | Se‐Ping Dai6 | Hong‐Lin Cao2 | Rui‐Jiang Wang2 | Zhang‐Ming Wang2 1Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Abstract Guangzhou, China Feng Shui woodlands are naturally or artificially formed green areas in southern 2 Guangdong Provincial Key Laboratory China. They are precious for maintaining ecosystem balance in modern semiurban of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, environments. However, they are generally small and geographically isolated from Guangzhou, China each other, and the status of genetic diversity of the plant species within them has 3Environmental Horticulture Research Institute, Guangdong Academy of been almost neglected. Therefore, we studied the genetic diversity of the endan‐ Agricultural Sciences, Guangzhou, China gered Erythrophleum fordii in eight Feng Shui woodlands (a total of 1,061 individuals) 4 Key Lab of Ornamental Plant Germplasm in Guangzhou, a large city in southern China, using microsatellites. For comparison, Innovation and Utilization, Guangzhou, China one population with 33 individuals sampled in a nature reserve was also studied. 5University of Chinese Academy of Sciences, Although our results indicate that significant demographic declines occurred histori‐ Beijing, China cally in E. fordii, such declines have not resulted in consistent reductions in genetic 6Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China variation over generations in Feng Shui populations in the recent past, and the lev‐ els of genetic variation in these populations were higher than or comparable to the Correspondence Se‐Ping Dai, Guangzhou Institute of genetic variation of the population in the nature reserve. -
Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection
sustainability Review Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection Brandon Schlautman 1,2,* ID , Spencer Barriball 1, Claudia Ciotir 2,3, Sterling Herron 2,3 and Allison J. Miller 2,3 1 The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA; [email protected] 2 Saint Louis University Department of Biology, 1008 Spring Ave., St. Louis, MO 63110, USA; [email protected] (C.C.); [email protected] (S.H.); [email protected] (A.J.M.) 3 Missouri Botanical Garden, 4500 Shaw Blvd. St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +1-785-823-5376 Received: 12 February 2018; Accepted: 4 March 2018; Published: 7 March 2018 Abstract: Annual cereal and legume grain production is dependent on inorganic nitrogen (N) and other fertilizers inputs to resupply nutrients lost as harvested grain, via soil erosion/runoff, and by other natural or anthropogenic causes. Temperate-adapted perennial grain legumes, though currently non-existent, might be uniquely situated as crop plants able to provide relief from reliance on synthetic nitrogen while supplying stable yields of highly nutritious seeds in low-input agricultural ecosystems. As such, perennial grain legume breeding and domestication programs are being initiated at The Land Institute (Salina, KS, USA) and elsewhere. This review aims to facilitate the development of those programs by providing criteria for evaluating potential species and in choosing candidates most likely to be domesticated and adopted as herbaceous, perennial, temperate-adapted grain legumes. We outline specific morphological and ecophysiological traits that may influence each candidate’s agronomic potential, the quality of its seeds and the ecosystem services it can provide.