An Annotated List of Plant Viruses and Viroids Described in Brazil (1926-2018)

Total Page:16

File Type:pdf, Size:1020Kb

An Annotated List of Plant Viruses and Viroids Described in Brazil (1926-2018) Biota Neotropica 20(2): e20190932, 2020 www.scielo.br/bn ISSN 1676-0611 (online edition) Inventory An annotated list of plant viruses and viroids described in Brazil (1926-2018) Elliot W. Kitajima1* 1Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Fitopatologia e Nematologia, 13418-900, Piracicaba, SP, Brasil *Corresponding author: Elliot W. Kitajima, e-mail: [email protected] KITAJIMA, E.W. An annotated list of plant viruses and viroids described in Brazil (1926-2018). Biota Neotropica 20(2): e20190932. https://doi.org/10.1590/1676-0611-BN-2019-0932. Abstract: A list of plant species, in alphabetical order by their scientific name, and the viruses found naturally infecting them in Brazilian territory, with some comments, was prepared . The production of such a list was based on a yearly catalog of publications on plant viruses collected by the author, from 1926 to 2018. Listed species of viruses were those recognized by the International Committee on Taxonomy of Viruses (ICTV), but also those characterized and still waiting official recognition, were included. Several cases of putative viral diseases were listed for historical reasons expecting to raise interest for their clarification. This list includes 345 plants species belonging to 74 families naturally infected by plant viruses in Brazil. Fabaceae and Asteraceae had most virus- infected species, respectively 49 and 36. Until 2018, a total of 213 plant virus and 6 viroid species belonging to 57 genera and 22 families and 6 orders, officially recognized by ICTV, were found naturally infecting these plants. Begomovirus and Potyvirus genera have most representatives, with 45 and 42 species, respectively. There are 59 characterized plant viruses, up to species level, described in Brazil waiting for the inclusion in the ICTV Master Species List. One hundred and thirteen viruses were identified up to genus level but still uncharacterized, while four putative isometric viruses and eleven presumptive viral diseases (“unidentified”) are included in the list. A reverse catalog, listing viruses and the plant species in which they were found is also included. Keywords: ICTV, plant species, virus species. Lista comentada de vírus e viróides de planta descritos no Brasil (1926-2018) Resumo: Esta publicação consiste em uma listagem de espécies de plantas, em ordem alfabética de seus nomes científicos, e dos vírus que foram encontrados naturalmente infetando-as em território brasileiro, com alguns comentários. O preparo de tal lista foi basedo nas publicações sobre vírus de plantas e as doenças que eles causam, colecionadas pelo autor de 1926 a 2018. Os vírus listados incluem aqueles já oficialmente reconhecidos pelo International Committee on Taxonomy of Viruses (ICTV), constantes do “Master Species List 2018”. Também estão incluídos vírus já caracterizados, aguardando oficialização pelo ICTV, e outros casos de possíveis viroses, cujo agente causal ainda não se acha adequadamente caracterizado. A listagem inclui 345 espécies de plantas, pertencentes a 74 famílias, que foram encontradas naturalmente infetadas por diferentes vírus. Fabáceas e Asteráceas foram as famílias que tiveram mais espécies infetadas por vírus, respectivamente 49 e 36. Até 2018, 213 espécies de vírus e 6 de viróides, pertencentes a 57 gêneros e 22 famílias e 6 ordens, oficialmente reconhecidas pelo ICTV, acham-se descritas no Brasil. Os gêneros Begomovirus e Potyvirus têm mais espécies representadas, com 45 e 42 respectivamente. Além das espécies identificadas e aceitas pelo ICTV, foram incluídas na lista 59 possíveis espécies que ainda aguardam oficialização, 113 vírus identificados a nível de gênero, quatro possíveis vírus isométricos e onze presumíveis viroses, de agentes etiológicos não confirmados. Foi incluída também uma lista reversa, com catalogação dos vírus e viróides descritos no Brasdil e suas respectivas plantas hospedeiras. Palavras-chave: ICTV, espécies de plantas, espécies de vírus. https://doi.org/10.1590/1676-0611-BN-2019-0932 http://www.scielo.br/bn 2 Biota Neotrop., 20(2): e20190932, 2020 Kitajima EW Introduction 2014). Plant viruses rarely cause dramatic and extensive damages to The concept that viruses are part of the bioma is still a controversial human activity as the pandemy of some human and animal viruses. On subject. Their chemical composition is akin of the cellular organisms. the contrary, their action is more subtle but inexorable and may cause They have DNA or RNA as their genome, proteins (protective, consistent and constant losses in the quality and quantity of most of enzymes) and lipid and glycid (in membrane bounded viruses). cultivated plants (vegetables, ornamentals, fruits, grains, industrial Being unable to replicate by themselves, viruses rely entirely on a crops, forestry, etc.). Thus a good deal of plant pathology research cellular host to do so, as a molecular parasite. As far as we know, is devoted to the study of plant viral diseases, especially because most of cellular organisms, from pro- to eucaryotes, have been found there are no economically available chemicals for curative treatment, infected by one or more viruses, some of them already integrated into as fungicides, antibiotics, nematicides, etc. efficient to control plant their genomes (Shors, 2008; Hull, 2014). Recent works, using next viruses. Usually, after identifying the causal virus, the management of generation sequencing (NGS) or high-throughput sequencing (HTS) the viral diseases concentrates on the use of genetically bred resistance technologies (Reuter et al., 2015), discovered a huge number of virus- varieties, cross-protection by mild strains, control of the vector, if any, like sequences in several environments (Walker et al., 2019). Their crop techniques (rotation, time and local for cultivation). Recently, proposition to incorporate them in the present official taxonomic use of genetic engineering by gene transference between different system seems unreal as discussed by van Regenmortel (2016), who organisms and even use of viral genes, have been tried to improve mentions that “the phenotypic and biological properties of members of resistance in some crops, against viral infection. But only few of new species taxa proposed on the basis of metagenomic data must be those transgenic plants are being used commercially, for they still face known before it becomes feasible to try to incorporate such hypothetical strong resistance by some sectors of the society (Hull, 2014; Rezende species in the current official system of virus classification”. & Kitajima, 2018). Because the intimate relationship of viruses in the biology and Brazil, being one of the most important world producer of animal evolution of cellular organisms, common sense and the ever-increasing and plant-derived commodities, has special interest in understanding evidences strongly suggest that viruses must be part of the living plant viral diseases to properly manage them. Presently about 100 world. Theories about the origin of viruses are speculative but we researchers and graduate students are involved in investigations can roughly list three main lines (Forterre, 2006; Garcia-Arenal et al., of many different plant viruses, to identify, characterize them and 2003; Koonin & Dolja, 2006; Lefeuvre et al., 2019; Krupovic et al., develop suitable management programs to reduce the hazards 2019; Simmonds, 2009): (1) involution of a parasitic prokaryote, which resulting from viral infection. The main problem is the vast extension gradually lost most of their genes, for the redundancy with those of of the country (8.5 square million kilometers) spanning from the host, keeping only those demanded for its own replication. Poxviruses equator to the subtropics, and presenting very diverse weather and soil and Mimiviruses are natural candidates for such possibility; (2) an conditions. The hot to milder climate favor the permanent presence aggroupment and reorganization of normal cell mRNAs containing of spontaneous vegetation, several of them potential host for a large information which led to their self-replication. The origin of most of number of crop affecting viruses, and worse, the continuous presence RNA viruses would fit in this scenario; (3) a relic of the precellular, of all kind of vectors (arthropods, fungus, nematodes). Also, the lack RNA world, when ribozymes permitted the self replication of RNA of a rigorous and efficient quarantine system results in the continuous molecules. The existence of some viroids could be explained by introduction of living part of plants and together, all sort of pests and this possibility. On the other hand, viruses, as molecular parasites, pathogens, including viruses. have been exerting important role in the evolution of living beings Historically, plant virology in Brazil began in two distinct centers throughout the time. It is a well documented fact that gene swapping in the years 1930’s. One, at the Instituto Biológico, at São Paulo (SP), between organisms of the same or different species can be mediated with A.A. Bittancourt and K.M. Silberschmidt, the last just arriving by viruses. Recent works have shown a large variety of viruses, whose from Germany. The second, at the Instituto Agronomico, Campinas- genome (integer or part) have been found integrated in the genome a IAC (SP) with A.S. Costa, with training at Princeton, US. Both groups large number of organisms of unrelated kingdom. Viral infection may developed important and pioneer researchs on plant viruses, mostly
Recommended publications
  • Systematic, Genome-Wide Identification of Host Genes Affecting Replication of a Positive-Strand RNA Virus
    Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus David B. Kushner*†, Brett D. Lindenbach*‡§, Valery Z. Grdzelishvili*, Amine O. Noueiry*, Scott M. Paul*¶, and Paul Ahlquist*‡ʈ *Institute for Molecular Virology and ‡Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706 Contributed by Paul Ahlquist, October 23, 2003 Positive-strand RNA viruses are the largest virus class and include serves as a template for synthesis of a subgenomic (sg) mRNA, many pathogens such as hepatitis C virus and the severe acute RNA4, which encodes the viral coat protein (Fig. 1A). respiratory syndrome coronavirus (SARS). Brome mosaic virus The yeast Saccharomyces cerevisiae has proven a valuable (BMV) is a representative positive-strand RNA virus whose RNA model for normal and disease processes in human and other replication, gene expression, and encapsidation have been repro- cells. The unusual ability of BMV to direct its genomic RNA duced in the yeast Saccharomyces cerevisiae. By using traditional replication, gene expression, encapsidation, and other processes yeast genetics, host genes have been identified that function in in this yeast (7, 8) has allowed traditional yeast mutagenic controlling BMV translation, selecting BMV RNAs as replication analyses that have identified host genes involved in multiple steps templates, activating the replication complex, maintaining a lipid of BMV RNA replication and gene expression. Such host genes composition required for membrane-associated RNA replication, encode a wide variety of functions and contribute to diverse and other steps. To more globally and systematically identify such replication steps, including supporting and regulating viral trans- host factors, we used engineered BMV derivatives to assay viral lation, selecting and recruiting viral RNAs as replication RNA replication in each strain of an ordered, genome-wide set of templates, activating the RNA replication complex through yeast single-gene deletion mutants.
    [Show full text]
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Detection of Infectious Brome Mosaic Virus in Irrigation Ditches and Draining Strands in Poland
    Eur J Plant Pathol https://doi.org/10.1007/s10658-018-1531-7 Detection of infectious Brome mosaic virus in irrigation ditches and draining strands in Poland Małgorzata Jeżewska & Katarzyna Trzmiel & Aleksandra Zarzyńska-Nowak Accepted: 29 June 2018 # The Author(s) 2018 Abstract Environmental waters, e.g. rivers, lakes Results confirmed the highest amino acid sequence and irrigation water, are a good source of many homology in the fragment of polymerase 2a (99.2% plant viruses. The pathogens can infect plants get- – 100%) and the most divergence in CP (96.2% - ting through damaged root hairs or small wounds 100%). This is the first report on the detection of an that appear during plant growth. First results dem- infective cereal virus in aqueous environment. onstrated common incidence of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in Keywords BMV. Water-borne virus . Cereals . RT-PCR water samples collected from irrigation ditches and drainage canals surrounding fields in Southern Greater Poland. Principal objective of this work The occurrence of plant viruses in aqueous environment was to examine if environmental water might be was studied less intensively than other water-borne vi- the source of viruses infective to cereals. The in- ruses having impact on human health. Mehle and vestigation was focused on mechanically transmit- Ravnikar (2012) thoroughly reviewed the reports and ted pathogens. Virus identification was performed listed 16 plant virus species isolated from different water by biological, electron microscopic, serological and sources, mainly from Europe, but not from Poland. molecular methods. Preliminary assays demonstrat- The main objective of our work was to fulfil this gap ed Bromemosaicvirus(BMV) infections in symp- with special attention focused on infective cereal viruses.
    [Show full text]
  • Beet Necrotic Yellow Vein Virus (Benyvirus)
    EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 7/30 (2) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Diagnostics1 Diagnostic Beet necrotic yellow vein virus (benyvirus) Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Beet necrotic This Standard was developed under the EU DIAGPRO Project yellow vein virus (benyvirus). (SMT 4-CT98-2252) through a partnership of contractor laboratories and intercomparison laboratories in European countries. Approved as an EPPO Standard in 2003-09. Revision approved in 2006-09. Introduction Identity Rhizomania disease of sugar beet was first reported in Italy Name: Beet necrotic yellow vein virus (Canova, 1959) and has since been reported in more than Acronym: BNYVV 25 countries. The disease causes economic loss to sugar beet Taxonomic position: Viruses, Benyvirus (Beta vulgaris var. saccharifera) by reducing yield. Rhizomania EPPO computer code: BNYVV0 is caused by Beet necrotic yellow vein virus (BNYVV), which Phytosanitary categorization: EPPO A2 list no. 160; EU is transmitted by the soil protozoan, Polymyxa betae (family Annex designation I/B. Plasmodiophoraceae). The virus can survive in P. betae cystosori for more than 15 years. The symptoms of rhizomania, Detection also known as ‘root madness’, include root bearding, stunting, chlorosis of leaves, yellow veining and necrosis of leaf veins. The disease affects all subspecies of Beta vulgaris, including The virus is spread by movement of soil, primarily on machinery, sugar beet (Beta vulgaris subsp. maritime), fodder beet (Beta sugar beet roots, stecklings, other root crops, such as potato, vulgaris subsp. vulgaris), red beet (Beta vulgaris subsp. cicla), and in composts and soil.
    [Show full text]
  • Diseases of Sugar Beet
    Molecular Characterization of Beet Necrotic Yellow Vein Virus in Greece and Transgenic Approaches towards Enhancing Rhizomania Disease Resistance Ourania I. Pavli Thesis committee Thesis supervisor Prof.dr. J.M. Vlak Personal Chair at the Laboratory of Virology Wageningen University Prof.dr. G.N. Skaracis Head of Plant Breeding and Biometry Department of Crop Science Agricultural University of Athens, Greece Thesis co-supervisors Dr.ir. M. Prins Program Scientist KeyGene, Wageningen Prof.dr. N.J. Panopoulos Professor of Biotechnology and Applied Biology Department of Biology University of Crete, Greece Other members Prof.dr. R.G.F. Visser, Wageningen University Prof.dr.ir. L.C. van Loon, Utrecht University Dr.ir. R.A.A. van der Vlugt, Plant Research International, Wageningen Prof.dr. M. Varrelmann, Göttingen University, Germany This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. 2 Molecular Characterization of Beet Necrotic Yellow Vein Virus in Greece and Transgenic Approaches towards Enhancing Rhizomania Disease Resistance Ourania I. Pavli Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof.dr. M.J. Kropff in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Monday 11 January 2010 at 1.30 PM in the Aula 3 Pavli, O.I. Molecular characterization of beet necrotic yellow vein virus in Greece and transgenic approaches towards enhancing rhizomania
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Deciphering the Virome of Culex Vishnui Subgroup Mosquitoes, the Major Vectors of Japanese Encephalitis, in Japan
    viruses Article Deciphering the Virome of Culex vishnui Subgroup Mosquitoes, the Major Vectors of Japanese Encephalitis, in Japan Astri Nur Faizah 1,2 , Daisuke Kobayashi 2,3, Haruhiko Isawa 2,*, Michael Amoa-Bosompem 2,4, Katsunori Murota 2,5, Yukiko Higa 2, Kyoko Futami 6, Satoshi Shimada 7, Kyeong Soon Kim 8, Kentaro Itokawa 9, Mamoru Watanabe 2, Yoshio Tsuda 2, Noboru Minakawa 6, Kozue Miura 1, Kazuhiro Hirayama 1,* and Kyoko Sawabe 2 1 Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] (A.N.F.); [email protected] (K.M.) 2 Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; [email protected] (D.K.); [email protected] (M.A.-B.); k.murota@affrc.go.jp (K.M.); [email protected] (Y.H.); [email protected] (M.W.); [email protected] (Y.T.); [email protected] (K.S.) 3 Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan 4 Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan 5 Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan 6 Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; [email protected]
    [Show full text]
  • Viral Diversity in Tree Species
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família.
    [Show full text]
  • Characterization of P1 Leader Proteases of the Potyviridae Family
    Characterization of P1 leader proteases of the Potyviridae family and identification of the host factors involved in their proteolytic activity during viral infection Hongying Shan Ph.D. Dissertation Madrid 2018 UNIVERSIDAD AUTONOMA DE MADRID Facultad de Ciencias Departamento de Biología Molecular Characterization of P1 leader proteases of the Potyviridae family and identification of the host factors involved in their proteolytic activity during viral infection Hongying Shan This thesis is performed in Departamento de Genética Molecular de Plantas of Centro Nacional de Biotecnología (CNB-CSIC) under the supervision of Dr. Juan Antonio García and Dr. Bernardo Rodamilans Ramos Madrid 2018 Acknowledgements First of all, I want to express my appreciation to thesis supervisors Bernardo Rodamilans and Juan Antonio García, who gave the dedicated guidance to this thesis. I also want to say thanks to Carmen Simón-Mateo, Fabio Pasin, Raquel Piqueras, Beatriz García, Mingmin, Zhengnan, Wenli, Linlin, Ruiqiang, Runhong and Yuwei, who helped me and provided interesting suggestions for the thesis as well as technical support. Thanks to the people in the greenhouse (Tomás Heras, Alejandro Barrasa and Esperanza Parrilla), in vitro plant culture facility (María Luisa Peinado and Beatriz Casal), advanced light microscopy (Sylvia Gutiérrez and Ana Oña), photography service (Inés Poveda) and proteomics facility (Sergio Ciordia and María Carmen Mena). Thanks a lot to all the assistance from lab313 colleagues. Thanks a lot to the whole CNB. Thanks a lot to the Chinese Scholarship Council. Thanks a lot to all my friends. Thanks a lot to my family. Madrid 20/03/2018 Index I CONTENTS Abbreviations………………………………………….……………………….……...VII Viruses cited…………………………………………………………………..……...XIII Summary…………………………………………………………………...….…….XVII Resumen…………………………………………………………......…...…………..XXI I.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Tically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0526.v1 Review Towards the forest virome: next-generation-sequencing dras- tically expands our understanding on virosphere in temperate forest ecosystems Artemis Rumbou 1,*, Eeva J. Vainio 2 and Carmen Büttner 1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Ber- lin, Germany; [email protected], [email protected] 2 Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland; [email protected] * Correspondence: [email protected] Abstract: Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic mi- crobiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technol- ogies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is ex- tremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drasti- cally affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protec- tion based on endophytes and mycovirus biocontrol agents.
    [Show full text]