Uncorrected Proof

Total Page:16

File Type:pdf, Size:1020Kb

Uncorrected Proof ARTICLE IN PRESS FEMS Microbiology Letters 11035 (2003) 1^6 www.fems-microbiology.org 1 Retron reverse transcriptase rrtT is ubiquitous in strains of 2 Salmonella enterica serovar Typhimurium 3 Jitka Matiasovicova a, Marcela Faldynova a, Martina Pravcova a, Renata Karpiskova b, 4 Ivana Kolackova b, Jiri Damborsky c, Ivan Rychlik a;Ã 5 a Veterinary Research Institute, Hudcova 70, 621 32 Brno, Czech Republic 6 b National Institute of Public Health, Center for Food Chain Hygiene, Palackeho 1-3, 612 42 Brno, Czech Republic 7 c National Centre for Biomolecular Research, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic 8 Received 19 March 2003; received in revised form 5 May 2003; accepted 5 May 2003 9 First published online 10 Abstract 11 Bacterial retron reverse transcriptases are unusual enzymes which utilise the same RNA molecule as a template and also as a primer for 12 initiation of the reverse transcription. Except for their relatively frequent presence in Myxococcus spp., they are considered as quite rare 13 proteins. However, in this study we proved that retron reverse transcriptase is frequently found in certain serovars of Salmonella enterica. 14 Using polymerase chain reaction (PCR), in strains of serovar Typhimurium, the rrtT (retron reverse transcriptase Typhimurium) gene was 15 detected in 158 out of 175 tested field strains. On the other hand, in none of the 18 tested serovar Enteritidis strains the rrtT was detected 16 in their genome. Detailed computer analysis allowed us to predict the sequence of msDNA and to propose that the final msDNA is free of 17 any RNA. Furthermore, we predict that there are at least three different classes of retron reverse transcriptases. 18 ß 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies. 19 20 Keywords: Retron reverse transcriptase; msDNA; Salmonella enterica serovar Typhimurium 21 22 1. Introduction inverted repeats designated as a1 and a2 play a central 38 role. Subsequently, the folded molecule is branched using 39 23 Certain bacterial species encode a speci¢c type of re- 2P-OH of guanosine residue at the 3P-end of the a2 repeat 40 24 verse transcriptases called retron reverse transcriptases and this branch is used as a primer for the initiation of 41 25 (RRTs). These have been frequently found in Myxococcus reverse transcription. As a result, cDNA complementary 42 26 sp. [6,19] while in Escherichia coli they are found in about to the loop between a1 and a2 inverted repeats is formed. 43 27 10% of ¢eld strains only [8,20]. In other bacteria, RRTs A typical end product of this process is single-stranded 44 28 have been reported very rarely. In Salmonella, RRT was cDNA (msDNA, multicopy single-stranded DNA) which 45 29 detected in four out of 70 strains of the SARB reference accumulates in bacterial cell cytoplasm [5,12]. The biolog- 46 30 collectionUNCORRECTED[30] and recently RRT (rrtE, retron reverse tran- ical role PROOF of RRT or msDNA is unknown [13]. Speculations 47 31 scriptase Enteritidis) encoded by low molecular mass plas- were presented that it may be mutagenic [26] or may con- 48 32 mid of S. Enteritidis was described [32]. Unlike retroviral trol gene expression by an antisense mechanism [27]. 49 33 reverse transcriptase, bacterial reverse transcriptases utilise RRTs are also suggested to be involved in generation of 50 34 the same RNA molecule as a template and also as a prim- promoterless cDNA of genes which can be inserted into 51 35 er for initiation of the reverse transcription. This occurs by the integron structures [29]. 52 36 a mechanism during which the template RNA molecule is Interestingly, when an integron-encoded multidrug resis- 53 37 folded into a complex secondary structure in which two tance genomic island was sequenced in Salmonella enterica 54 serovar Typhimurium (S. Typhimurium), immediately 55 downstream from it, the rrtT gene was detected on a ge- 56 1 2 * Corresponding author. Tel.: +420 (5) 41321241; netic locus resembling a phage structure [2,3]. Using stan- 57 3 Fax: +420 (5) 41211229. dard BLAST analysis with the rrtT gene sequence encoded 58 4 E-mail address: [email protected] (I. Rychlik). by the multidrug-resistant S. Typhimurium we found this 59 1 0378-1097 / 03 / $22.00 ß 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies. 2 doi:10.1016/S0378-1097(03)00398-7 FEMSLE 11035 3-6-03 ARTICLE IN PRESS 2 J. Matiasovicova et al. / FEMS Microbiology Letters 11035 (2003) 1^6 60 gene also in the genome of the non-resistant completely ware was used also for primer design. The ¢rst primer pair 88 61 sequenced S. Typhimurium LT2 [28]. This suggested that (RTFor: 5P-GAA CTA TTG CTC ATC CTT CG-3P/ 89 62 the rrtT may not be a rare gene in Salmonella. We have RTRev: 5P-GTA ACG TGA CGG TTA TGT CC-3P) al- 90 63 therefore collected ¢eld strains of S. Typhimurium and lowed the detection of rrtT gene in di¡erent Salmonella 91 64 other serovars and detected the presence of rrtT by poly- serovars. The second primer pair (msDNAFor: 5P-GGA 92 65 merase chain reaction (PCR). In selected strains, produc- AGG AAG GTT ATC ATT GG-3P/msDNARev: 5P-GTC 93 66 tion of msDNA was tested. Obtained results together with TAT CCC TAA AAC TGG GG-3P) allowed for the am- 94 67 detailed sequence analysis allowed us to classify the rrtT, pli¢cation of the predicted msDNA locus and was used for 95 68 together with retrons of Vibrio cholerae, Vibrio parahae- generation of the probe used in DNA hybridisation. Sec- 96 69 molyticus, and E. coli Ec78 and Ec83, among a speci¢c ondary structure of the predicted msDNA was calculated 97 70 subclass of retron reverse transcriptases. using an algorithm available at http://www.bioinfo.rpi.e- 98 du/applications/mfold/. 99 The translated sequence of the rrtT gene from S. Typh- 100 71 2. Materials and methods imurium was searched against SWISS-PROT+TrEMBL 101 databases using BLAST P v2.0 algorithm [1] and BLO- 102 72 2.1. Bacterial strains and growth conditions SUM62 matrix. E-value threshold 0.001 was used for the 103 search. Protein sequences were aligned using Clustal X 104 73 Altogether 236 strains of S. enterica belonging to 12 v1.8 [14]. Duplicated, incomplete and non-conserved se- 105 74 serovars were included in this study. These strains be- quences were removed from the alignment (Table 1) and 106 75 longed to serovar Typhimurium (n = 175 strains), Enter- phylogenetic tree was constructed by the neighbour-join- 107 76 itidis (n = 18), Hadar (n = 13), Saintpaul (n = 10), Agona ing method [33]. Secondary elements of S. Typhimurium 108 77 (n = 5), Heidelberg (n = 6), Derby (n = 2), Stanley (n = 2), RrtT were predicted using PSI-PRED v2.4 [15]. 109 78 Schwarzengrund (n = 2), and individual strains of serovars 79 Indiana, Dublin and Gallinarum. Strains of S. Typhimuri- 2.3. Detection and initial characterisation of multicopy 110 80 um JD42 (rrtTþ, msDNAþ) and JD29 (rrtT3, msDNA3), single-stranded DNA 111 81 and serovar Enteritidis SE2159 (rrtEþ, sdsDNAþ) [32] 82 were used as controls in PCR. All the strains were grown The msDNA was isolated as described previously [19]. 112 83 in Luria Bertani (LB) broth or LB agar (Difco) at 37‡C. After electrophoresis in 13% polyacrylamide gel, the DNA 113 was visualised by staining with Sybr Gold £uorescent dye 114 84 2.2. Computer analysis and primer design (Molecular Probes, USA). To characterise the msDNA in 115 detail, it was treated with 10 U of DNase Iml 31 for 30 116 85 GeneCompar software (Applied Maths, Belgium) was min at 37‡C, 20 U of S1 nuclease for 30 min at 23‡C, 10 117 86 used for basic sequence analysis including cluster analysis Wg of RNase A ml31 for 30 min at 37‡C, 10 U of RNase 118 87 of nucleotide sequences of msDNA locus. The same soft- H for 30 min at 23‡C, and restriction endonuclease Sau3A 119 Table 1 Sequences of the retron reverse transcriptases retrieved from SWISS-PROT+TrEMBL and analysed in this study 1 SWISS-PROT Code Protein name Organism Ref. 2 Q9FDH6 RT_ST reverse transcriptase, RrtT S. Typhimurium [2] 3 Q9S1F2 RET_VC reverse transcriptase V. cholerae [34] 4 NAa RET_VP reverse transcriptase V. parahaemolyticus NPb 5 Q47526 RET_EC reverse transcriptase, retron Ec83 E. coli [23] 6 Q46666 RET_EC2 reverse transcriptase, retron Ec78 E. coli [25] 7 P23070 RT86_EC RNA-directed DNA polymerase, retron EC86 E. coli [24] 8 Q99S60UNCORRECTED SAV2209_SA hypothetical protein SAV2209 PROOFStaphylococcus aureus [17] 9 Q8TP23 MA2102_MA hypothetical protein MA2102 Methanosarcina acetivorans [7] 10 P23071 RT65_MX RNA-directed DNA polymerase, retron MX65 Myxococcus xanthus [10] 11 P23072 RT16_MX RNA-directed DNA polymerase, retron MX162 M. xanthus [11] 12 Q53751 RT163_SA reverse transcriptase Stigmatella aurantiaca [9] 13 Q50210 RT_ML reverse transcriptase Melittangium lichenicola [31] 14 Q8RGW6 FN0161_FN RNA-directed DNA polymerase Fusobacterium nucleatum [16] 15 Q05804 RT107_EC RNA-directed DNA polymerase, retron EC107 E. coli [21] 16 Q8P4T0 XCC3626_XC RNA-directed DNA polymerase Xanthomonas campestris [4] 17 P21325 RT67_EC RNA-directed DNA polymerase, retron EC67 E. coli [21] 18 Q8VRM1 RET_NE reverse transcriptase RT-Ne144 Nannocystis exedens NP 19 Q9L7Z6 RRT_SE retron reverse transcriptase, RrtE S. Enteritidis [32] 20 aSWISS-PROT code not available (BAC06578). 21 bNP, not published. FEMSLE 11035 3-6-03 ARTICLE IN PRESS J. Matiasovicova et al. / FEMS Microbiology Letters 11035 (2003) 1^6 3 120 for 30 min at 37‡C.
Recommended publications
  • First Genomic Insights Into Members of a Candidate Bacterial Phylum Responsible for Wastewater Bulking
    First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking Yuji Sekiguchi1, Akiko Ohashi1, Donovan H. Parks2, Toshihiro Yamauchi3, Gene W. Tyson2,4 and Philip Hugenholtz2,5 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan 2 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia 3 Administrative Management Department, Kubota Kasui Corporation, Minato-ku, Tokyo, Japan 4 Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, Australia 5 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia ABSTRACT Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using diVerential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of
    [Show full text]
  • The Myxocoumarins a and B from Stigmatella Aurantiaca Strain MYX-030
    The myxocoumarins A and B from Stigmatella aurantiaca strain MYX-030 Tobias A. M. Gulder*1, Snežana Neff2, Traugott Schüz2, Tammo Winkler2, René Gees2 and Bettina Böhlendorf*2 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 2579–2585. 1Kekulé Institute of Organic Chemistry and Biochemistry, University of doi:10.3762/bjoc.9.293 Bonn, Gerhard-Domagk-Straβe 1, 53121 Bonn, Germany and 2Syngenta Crop Protection AG, CH-4002 Basel, Switzerland Received: 21 August 2013 Accepted: 01 November 2013 Email: Published: 20 November 2013 Tobias A. M. Gulder* - [email protected]; Bettina Böhlendorf* - [email protected] This article is part of the Thematic Series "Natural products in synthesis and biosynthesis" and is dedicated to Prof. Dr. Gerhard Höfle on the * Corresponding author occasion of his 74th birthday. Keywords: Guest Editor: J. S. Dickschat antifungal activity; myxobacteria; natural products; Stigmatella aurantiaca; structure elucidation © 2013 Gulder et al; licensee Beilstein-Institut. License and terms: see end of document. Abstract The myxobacterial strain Stigmatella aurantiaca MYX-030 was selected as promising source for the discovery of new biologically active natural products by our screening methodology. The isolation, structure elucidation and initial biological evaluation of the myxocoumarins derived from this strain are described in this work. These compounds comprise an unusual structural framework and exhibit remarkable antifungal properties. Introduction Despite declining interest of most big R&D-driven chemical epothilones A (1), Figure 1), microtubule-stabilizing macrolac- companies in recent years, natural products continue to serve as tones that are clinically used in cancer therapy [16-20]. one of the most important sources of new bioactive chemical entities, both in the pharmaceutical [1-4] as well as in the agro- But also from an agrochemical point of view, myxobacteria chemical industry [5-8].
    [Show full text]
  • Inactivation of Stigmatella Aurantiaca Csga Gene Impares Rippling Formation- Genetika, Vol 47, No
    UDC 575 DOI: 10.2298/GENSR1501119M Original scientific paper INACTIVATION OF Stigmatella aurantiaca csg A GENE IMPARES RIPPLING FORMATION Ana MILOSEVIC-DJERIC 1, Susanne MÜLLER 2, and Hans URLICH SCHAIRER 3 1 Department of Gynaecology and Obstetrics, Hospital Centre Uzice, Uzice, Serbia 2 Univeristy of Iowa, Iowa City, USA 3Zentrum fur Molekulare Biologie, ZMBH, Heidelberg, Germany Milosevic-Djeric A., S. Müller, and H. Urlich Schairer (2015): Inactivation of Stigmatella aurantiaca csgA gene impares rippling formation- Genetika, Vol 47, No. 1, 119-130. Stigmatella aurantiaca fruiting body development depends on cell-cell interactions. One type of the signaling molecule stigmolone isolated from S. aurantiaca cells acts to help cells to stay together in the aggregation phase. Another gene product involved in intercellular signaling in S. aurantiaca is the csg A homolog of Myxococcus xanthus . In close relative M. xanthus C signal the product of the csg A gene is required for rippling, aggregation and sporulation. Isolation of homologous gene in S. aurantiaca implicates a probable role of CsgA in intercellular communication. Inactivation of the gene by insertion mutagenesis caused alterations in S. aurantiaca fruiting. The motility behavior of the cells during development was changed as well as their ability to stay more closely together in the early stages of development. Inactivation of the csg A gene completely abolished rippling of the cells. This indicates the crucial role of the CsgA protein in regulating this rhythmic behavior. Key words: cell-cell signaling, development, fruiting body formation, myxobacteria, Stigmatella aurantiaca INTRODUCTION Stigmatella aurantiaca belongs to the myxobacteria famous for their ability to form multicellular structures fruiting bodies in response to the starvation conditions ( SHIMKETS et al ., 2006; ZHANG et al., 2012; CLAESSEN et al ., 2014).
    [Show full text]
  • Perspectives
    Copvright 0 1999 bv the Genetics Society of Anlerica Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove ROLANDTHAXTER’S Legacy and the Origins of Multicellular Development Dale Kaiser Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, Calijornia 94305 OLAND THAXTER published a bombshell in R December,1892. He reported that Chondro- myces crocatus, before then considered an imperfect fungus because of its complex fruiting bodv, was ac- tually a bacterium (Figure 1). THAXTERhad discov- ered theunicellular vegetative stage of C. crocatus; the cells he found were relatively short and they divided by binary fission. C. crocatus was, heconcluded, a “communal bacterium.” THAXTERdescribed the lo- comotion, swarming, aggregation and process of fruit- ing body formation of C. crocatus and its relatives, which are collectively called myxobacteria, with an accuracy that has survived 100 years of scrutiny. He recognized the behavioral similarity to the myxomv- cetes and the cellular slime molds, drawing attention in all three to the transition from single cells to an integrated multicellular state. He described the be- havior of myxobacteria in fructification in terms of a “course of development” because it was “a definitely recurring aggregation of individuals capable of con- certed action toward a definiteend” (THAXI‘ER1892). This essay will emphasize some implications of THAX- TER’S demonstrations, often apparently unrecognized. The striking similarities to cellular slime mold de- velopment probably led JOHN TYLERBONNER and KENNETHB. RAPER,50 years after THAXTER’Sdiscov- ery, to take independent forays into myxobacterial development. RAPER,an eminent mycologist, had in FIGURE1 .“Chondromyces crocatus fruiting bodv.
    [Show full text]
  • Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes
    Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes Diego Javier Jime´nez1,5*, Fernando Dini Andreote3, Diego Chaves1, Jose´ Salvador Montan˜ a1,2, Cesar Osorio-Forero1,4, Howard Junca1,4, Marı´a Mercedes Zambrano1,4, Sandra Baena1,2 1 Colombian Center for Genomic and Bioinformatics from Extreme Environments (GeBiX), Bogota´, Colombia, 2 Departamento de Biologı´a, Unidad de Saneamiento y Biotecnologı´a Ambiental, Pontificia Universidad Javeriana, Bogota´, Colombia, 3 Department of Soil Science, ‘‘Luiz de Queiroz’’ College of Agriculture, University of Sao Paulo, Piracicaba, Brazil, 4 Molecular Genetics and Microbial Ecology Research Groups, Corporacio´n CorpoGen, Bogota´, Colombia, 5 Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands Abstract A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes.
    [Show full text]
  • The Soil Microbial Food Web Revisited: Predatory Myxobacteria As Keystone Taxa?
    The ISME Journal https://doi.org/10.1038/s41396-021-00958-2 ARTICLE The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? 1 1 1,2 1 1 Sebastian Petters ● Verena Groß ● Andrea Söllinger ● Michelle Pichler ● Anne Reinhard ● 1 1 Mia Maria Bengtsson ● Tim Urich Received: 4 October 2018 / Revised: 24 February 2021 / Accepted: 4 March 2021 © The Author(s) 2021. This article is published with open access Abstract Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5–9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized fi 1234567890();,: 1234567890();,: predatory bacteria af liated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition.
    [Show full text]
  • The Correlation Between Morphological and Phylogenetic Classification of Myxobacteria
    International Journal of Systematic Bacteriology (1 999), 49, 1255-1 262 Printed in Great Britain The correlation between morphological and phylogenetic classification of myxobacteria Cathrin Sproer,’ Hans Reichenbach’ and Erko Stackebrandtl Author for correspondence: Erko Stackebrandt.Tel: +49 531 2616 352. Fax: +49 531 2616 418. e-mail : [email protected] DSMZ-Deutsche Sammlung In order to determine whether morphological criteria are suitable to affiliate von Mikroorganismen und myxobacterial strains to species, a phylogenetic analysis of 16s rDNAs was Zellkulturen GmbH1 and G BF-Gesel Isc haft fur performed on 54 myxobacterial strains that represented morphologically 21 Biotechnologische species of the genera Angiococcus, Archangium, Chondromyces, Cystobacter, Forschung mbH*, 381 24 Melittangium, Myxococcus, Polyangium and Stigmatella, five invalid species Braunschweig, Germany and three unclassified isolates. The analysis included 12 previously published sequences. The branching pattern confirmed the deep trifurcation of the order Myxococcales. One lineage is defined by the genera Cystobacter, Angiococcus, Archangium, Melittangium, Myxococcus and Stigmatella. The study confirms the genus status of Corallococcus’, previously ‘Chondrococcus’,within the family Myxococcaceae. The second lineage contains the genus Chondromyces and the species Polyangium (‘Sorangium’) cellulosum, while the third lineage is comprised of Nannocystis and a strain identified as Polyangium vitellinum. With the exception of a small number of strains that did not cluster phylogenetically with members of the genus to which they were assigned by morphological criteria (‘Polyangium thaxteri’ PI t3, Polyangium cellulosum ATCC 25531T, Melittangium lichenicola ATCC 25947Tand Angiococcus disciformis An dl), the phenotypic classification should provide a sound basis for the description of neotype species in those cases where original strain material is not available or is listed as reference material.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,405,775 Inouye Et Al
    USOO5405775A United States Patent (19) 11 Patent Number: 5,405,775 Inouye et al. 45 Date of Patent: Apr. 11, 1995 54 RETRONS CODING FORHYBRID ATCC Catalog (1985), pp. 66-79. DNA/RNAMOLECULES Yee et al. Multicopy Single-Stranded DNA. Isolated from a Gram-Negative Bacterium ... etc. Cell 38, pp. 75 Inventors: Masayori Inouye; Sumiko Inouye, 203-209 (1984). both of Bridgewater, N.J. Dhundale et al. Distribution of Multicopy Single-S- 73) Assignee: The University of Medicine and tranded DNA amoung Myxobacterial and Related Spe Dentistry of New Jersey, Piscataway, cies J. Bacteriol. 164, pp. 914-917 (1985). N.J. Furuichi T. et al. Biosynthesis and Structure of Stable 21 Appl. No.: 518,749 Branched RNA Covalently . etc. Cell 48, pp.55-62 (1987). 22 Filed: May 2, 1990 Dhundale et al. Structure of msDNA from M. xanthus ... etc. Cell 51, pp. 1105-1112 (1987). Related U.S. Application Data Dhundale et al. Mutations that Affect Production of 63 Continuation-in-part of Ser. No. 315,432, Feb. 24, 1989, Branched RNA-Linked msDNA.M. xanthus ... etc. J. abandoned, Ser. No. 315,427, Feb. 24, 1989, Pat. No. Bacteriol., pp. 5620–5624 (1988). 5,079,151, Ser. No. 315,316, Feb. 24, 1989, Pat. No. Lin and Maas, Reverse Transcriptase-Dependent Syn 5,320,958, and Ser. No. 517,946, May 2, 1990. thesis of a Covalently Linked . etc. Cell 56, pp. 51. Int. Cl. ....................... C12N 1/21; C12N 15/70, 891-904 (Mar. 1989). C12N 15/52 Primary Examiner-Richard A. Schwartz 52 U.S.C. ............................ 435/252.33; 435/320.1; Assistant Examiner-James Ketter 536/23.2; 536/25.2 Attorney, Agent, or Firm-Weiser & Associates 58) Field of Search ......................
    [Show full text]
  • Absolute Chemical Structure of the Myxobacterial Pheromone Of
    FEMS Microbiology Letters 165 (1998) 29^34 Absolute chemical structure of the myxobacterial pheromone of Stigmatella aurantiaca that induces the formation of its fruiting body Downloaded from https://academic.oup.com/femsle/article/165/1/29/623856 by guest on 24 September 2021 Yuka Morikawa a, Seiji Takayama a, Ryosuke Fudo b, Shigeru Yamanaka b, Kenji Mori c, Akira Isogai a;* a Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan b Central Research Laboratories, Ajinomoto Co. Ltd., Suzuki 1-1, Kawasaki, Kanagawa 210-0801, Japan c Department of Chemistry, Science University of Tokyo, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan Received 6 May 1998; revised 3 June 1998; accepted 4 June 1998 Abstract Stigmatella aurantiaca, a species of myxobacteria, produces a novel extracellular signaling molecule, 8-hydroxy-2,5,8- trimethyl-4-nonanone, which promotes its developmental cycle. To determine the absolute configuration of this pheromone, which contains one asymmetric carbon, we prepared the R- and S-enantiomers by stereoselective synthesis. The synthesized R- and S-enantiomers each showed nearly the same fruiting body-inducing activities as the natural pheromone. Gas chromatography-mass spectrometry (GC-MS) analysis using a chiral capillary column revealed that the naturally-produced pheromone is a mixture of both enantiomers. z 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved. Keywords: Myxobacterium; Stigmatella aurantiaca; Fruiting body; Pheromone; Absolute structure 1. Introduction ing body formation process of S. aurantiaca may be regarded as a model of photomorphogenesis. Myxobacteria are a class of Gram-negative bacte- In addition to environmental factors, an extracel- ria which show a social behavior and complex devel- lular signaling molecule, or pheromone, is known to opmental cycle [1,2].
    [Show full text]
  • Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria
    Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria A Major Qualifying Report Submitted to the Faculty of Worcester Polytechnic Institute In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science By: __________________________ Courtney McCann Date Approved: _______________________ Professor José M. Argüello Biochemistry WPI Project Advisor 1 Abstract Copper homeostasis is achieved in bacteria through a combination of copper chaperones and transporting and chelating proteins. Bioinformatic analyses were used to identify which of these proteins are present in Deltaproteobacteria. The genetic environment of the bacteria is affected by its lifestyle, as those that live in higher concentrations of copper have more of these proteins. Two major transport proteins, CopA and CusC, were found to cluster together frequently in the genomes and appear integral to copper homeostasis in Deltaproteobacteria. 2 Acknowledgements I would like to thank Professor José Argüello for giving me the opportunity to work in his lab and do some incredible research with some equally incredible scientists. I need to give all of my thanks to my supervisor, Dr. Teresita Padilla-Benavides, for having me as her student and teaching me not only lab techniques, but also how to be scientist. I would also like to thank Dr. Georgina Hernández-Montes and Dr. Brenda Valderrama from the Insituto de Biotecnología at Universidad Nacional Autónoma de México (IBT-UNAM), Campus Morelos for hosting me and giving me the opportunity to work in their lab. I would like to thank Sarju Patel, Evren Kocabas, and Jessica Collins, whom I’ve worked alongside in the lab. I owe so much to these people, and their support and guidance has and will be invaluable to me as I move forward in my education and career.
    [Show full text]
  • Myxobacterium Stigmatella Aurantiaca
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Selective AmpliGfi atLon of DNA Fragments Coding for the n of Factors IF2 and EF-Tu, Two G Proteins from the Myxobacterium Stigmatella aurantiaca L. Bremaud, B. Derijard, 1 and Y. Cenatiempo Institut de Biologie Mol~culaire et d'Ing~nierie G6n~tique, Centre National de la Recherche Scientifique (CNRS) URA1172, Universit~ de Poitiers, 86022 Poitiers Cedex, France Two DNA fragments of the genome of Selective amplification of DNA frag- bacterial species, because under starva- the myxobacterlum $tigmotella au- ments is desired as the first step in gene tion these prokaryotic cells undergo a rantlaca were selectively amplified by cloning experiments, especially when developmental cycle leading to the for- PCR. These fragments encode a seg- the use of homologous probe is required. mation of particular structures termed ment of the G domain of transla- This situation occurs when dealing with fruiting bodies. (7'8) Multicellular devel- tional initiation factor IF2 and elon- a family of proteins with members that opment of myxobacteria is sustained by gation factor EF-Tu, two GTP-binding display strong similarities in their pri- signal exchanges presumably transduced proteins. This was made possible by mary structure. In this respect, an inter- by G proteins, as in most eukaryotes. (9'1~ carefully designing the primers for esting example is provided by the widely Two soluble G proteins, translational ini- this reaction to avoid the amplifica- spread GTP-binding proteins (G pro- tiation IF2 and elongation factor EF-Tu, tion of every G-domain-encoding re- teins).
    [Show full text]
  • Current Trends in Myxobacteria Research
    Ann Microbiol (2016) 66:17–33 DOI 10.1007/s13213-015-1104-3 REVIEW ARTICLE Current trends in myxobacteria research Wioletta Wrótniak-Drzewiecka1 & Anna Joanna Brzezińska1 & Hanna Dahm1 & Avinash P. Ingle 2 & Mahendra Rai 2 Received: 5 March 2015 /Accepted: 19 May 2015 /Published online: 12 June 2015 # Springer-Verlag Berlin Heidelberg and the University of Milan 2015 Abstract Myxobacteria are fascinating Gram-negative bacte- Keywords Myxobacteria . Ecology . Cytology . Enzymatic ria whose life cycle includes the formation of multicellular activity . Secondary metabolism . Social interactions fruiting bodies that contain about 100,000 cells differentiated as asexual spores for their long-term survival. They move by gliding on surfaces, an activity that helps them carry out their Introduction primitive kind of multicellular development. Myxobacteria have multiple traits that are clearly social in nature; they move Myxobacteria (slime bacteria) are rod-shaped Gram-negative and feed socially. These processes require specific intercellu- bacteria that move by gliding. They typically travel in swarms, lar signals, thereby exhibiting a sophisticated level of the inter- containing many cells kept together by intercellular molecular organismal communication. Myxobacteria are predators. signals. Bacterial gliding is a process whereby a bacterium can Predation is social not only with respect to searching for prey move under its own power. For many bacteria, the mechanism (motility) but also in the killing of prey. Swarming groups of of gliding is unknown or only partially known, and different cells secrete antibiotics and bacteriolytic compounds that kill bacteria (cyanobacteria, cytophaga-flavobacteria) have dis- and lyse their prey, and food is thereby released. Since the last tinct mechanisms of movement.
    [Show full text]