The Use of Microbial Genome Mining for in Silico Discovery of Novel Secondary Metabolite Gene Clusters Copyright © Jafar Alawn

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Microbial Genome Mining for in Silico Discovery of Novel Secondary Metabolite Gene Clusters Copyright © Jafar Alawn THE USE OF MICROBIAL GENOME MINING FOR IN SILICO DISCOVERY OF NOVEL SECONDARY METABOLITE GENE CLUSTERS BY JAFAR ALAWNEH ADISSERTATION SUBMITTED TO RUTGERS-SCHOOL OF HEALTH PROFESSIONS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL INFORMATICS DEPARTMENT OF HEALTH INFORMATICS SCHOOL OF HEALTH PROFESSIONS RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY APRIL 2019 COPYRIGHT © JAFAR ALAWNEH 2019 I FINAL DISSERTATION DEFENSE APPROVAL FORM THE USE OF MICROBIAL GENOME MINING FOR THE IN SILICO DISCOVERY OF NOVEL ANTICANCER AGENTS AND NOVEL ANTIMICROBIAL COMPOUNDS BY JAFAR ALAWNEH DISSERTATION COMMITTEE: FREDERICK COFFMAN, PhD SHANKAR SRINIVASAN, PhD AMRO HANORA, PhD APPROVED BY THE DISSERTATION COMMITTEE: ______________________________________________ DATE: __________________ ______________________________________________ DATE: __________________ ______________________________________________ DATE: __________________ ______________________________________________ DATE: __________________ II TABLE OF CONTENTS ABSTRACT ...................................................................................................................... VI ACKNOWLEDGMENT.................................................................................................VIII DEDICATION .................................................................................................................. IX LIST OF FIGURE...............................................................................................................X LIST OF TABLES ............................................................................................................ XI CHAPTER 1: INTRODUCTION 1. Medically Relevant SMs ................................................................................................. 2 1.1 Antibacterial drugs .................................................................................................... 2 1.1.1 β-lactams ............................................................................................................. 2 1.1.2 Vancomycin ........................................................................................................ 3 1.1.3 Erythromycin ...................................................................................................... 3 1.1.4 Teicoplanin ......................................................................................................... 4 1.1.5 Tetracyclines ....................................................................................................... 4 1.1.6 Capreomycin ....................................................................................................... 5 1.1.7 Bleomycin ........................................................................................................... 5 1.1.8 Quinoxalines ....................................................................................................... 5 1.2 Antifungal compounds .................................................................................................. 6 1.2.1 Polyene antibiotics ................................................................................................. 6 1.2.2 Cispentacin ............................................................................................................. 6 1.3 Antiparasitic Compounds.............................................................................................. 7 1.3.1 Fumagillin .............................................................................................................. 7 1.3.2 Paromomycin ......................................................................................................... 7 1.4 Antiviral Drugs ............................................................................................................. 7 1.4.1 FK506 ..................................................................................................................... 7 1.4.2 RP 71955 ................................................................................................................ 8 1.5 Drugs acting on the immune system ............................................................................. 8 1.5.1 Rapamycin (Sirolimus) .......................................................................................... 8 III 1.5.2 Cyclosporin A ........................................................................................................ 8 1.6 Microbial SMs with Cytotoxic activity......................................................................... 9 1.6.1 Enediynes ............................................................................................................... 9 1.6.2 Actinomycins ......................................................................................................... 9 1.6.3 Anthracyclines ...................................................................................................... 10 1.6.4 Rapamycin ............................................................................................................ 10 1.6.5 Geldanamycin....................................................................................................... 11 1.6.6 Histone deacetylase inhibitors .............................................................................. 11 1.6.7 Bryostatins ............................................................................................................ 11 1.2 Genome mining for the discovery of novel secondary metabolites ............................ 14 1.2.1 Classical methods of genome mining................................................................... 15 1.2.2 Phylogeny-based genome mining ........................................................................ 16 1.2.3 Resistance and target based genome mining ........................................................ 16 1.2.4 Regulator-based genome mining .......................................................................... 17 1.2.5 Comparative genome mining ............................................................................... 17 1.3 Discovery of microbial SMs by genome mining ........................................................ 18 1.4 Statement of the problem ............................................................................................ 22 CHAPTER II: LITERATURE REVIEW 2. Nonribosomal peptides (NRPs) and polyketides (PKs) ................................................ 31 2.1 Historical View ....................................................................................................... 32 2.2 Natural Functions of SMs ....................................................................................... 33 2.3 Natural Functions of SMs in Fungi ......................................................................... 34 2.3 Natural Functions of SMs in Bacteria ..................................................................... 36 2.4 Characteristics of NRPSs and PKSs........................................................................ 38 2.4.1 Characteristics of Bacterial and Fungal PKSs...................................................... 39 2.4.2 Characteristics of Bacterial and Fungal NRPSs ................................................... 40 2.5 Biosynthesis Strategies of NRPs and PKs .................................................................. 40 2.5.1 Priming ................................................................................................................. 42 2.5.2 Initiation ............................................................................................................... 43 2.5.3 Elongation ............................................................................................................ 44 2.5.4 Termination .......................................................................................................... 44 2.6 Other Biosynthesis Strategies of NRPs....................................................................... 45 2.6.1 Heterocyclization ................................................................................................. 45 2.6.2 Epimerization and Amino Acid Racemization..................................................... 45 IV 2.6.3 Methylations ......................................................................................................... 46 2.6.4 Oxidation .............................................................................................................. 46 2.6.5 Reduction ............................................................................................................. 47 2.7 Regulation of NRPS Genes ......................................................................................... 47 2.8 Structure of NRPs ....................................................................................................... 49 2.8.1 Adenylation (A) domain....................................................................................... 49 2.8.3 Condensation (C) domain..................................................................................... 51 2.8.4 Thioesterase (TE) domain .................................................................................... 51 2.9 Production of novel NRPS through reconstruction and engineering .......................... 52 CHAPTER III : METHODS 3.1 Genes of S. sorangium’s Epothilone Gene Cluster ..................................................... 55 3.2 Finding EpoA-F Homologs (the EAFHs) ..................................................................
Recommended publications
  • Uncovering Production of Specialized Metabolites by Streptomyces Argillaceus: Activation of Cryptic Biosynthesis Gene Clusters U
    RESEARCH ARTICLE Uncovering production of specialized metabolites by Streptomyces argillaceus: Activation of cryptic biosynthesis gene clusters using nutritional and genetic approaches Adriana Becerril1,2, Susana A lvarez1, Alfredo F. Braña1,2, Sergio Rico3, Margarita DõÂaz3, a1111111111 RamoÂn I. SantamarõÂa3, Jose A. Salas1,2, Carmen MeÂndez1,2* a1111111111 a1111111111 1 Departamento de BiologõÂa Funcional e Instituto Universitario de OncologõÂa del Principado de Asturias (I.U. O.P.A), Universidad de Oviedo, Oviedo, Spain, 2 Instituto de InvestigacioÂn Sanitaria de Asturias (ISPA), a1111111111 Oviedo, Spain, 3 Departamento de MicrobiologõÂa y GeneÂtica, Instituto de BiologõÂa Funcional y GenoÂmica, a1111111111 Consejo Superior de Investigaciones CientõÂficas (CSIC)/Universidad de Salamanca, Salamanca, Spain * [email protected] OPEN ACCESS Abstract Citation: Becerril A, AÂlvarez S, Braña AF, Rico S, DõÂaz M, SantamarõÂa RI, et al. (2018) Uncovering Sequencing of Streptomyces genomes has revealed they harbor a high number of biosyn- production of specialized metabolites by thesis gene cluster (BGC), which uncovered their enormous potentiality to encode special- Streptomyces argillaceus: Activation of cryptic ized metabolites. However, these metabolites are not usually produced under standard biosynthesis gene clusters using nutritional and genetic approaches. PLoS ONE 13(5): e0198145. laboratory conditions. In this manuscript we report the activation of BGCs for antimycins, https://doi.org/10.1371/journal.pone.0198145 carotenoids, germicidins and desferrioxamine compounds in Streptomyces argillaceus, and Editor: Marie-Joelle Virolle, Universite Paris-Sud, the identification of the encoded compounds. This was achieved by following different strat- FRANCE egies, including changing the growth conditions, heterologous expression of the cluster and Received: March 23, 2018 inactivating the adpAa or overexpressing the abrC3 global regulatory genes.
    [Show full text]
  • In Vitro Antagonistic Activity of Soil Streptomyces Collinus Dpr20 Against Bacterial Pathogens
    IN VITRO ANTAGONISTIC ACTIVITY OF SOIL STREPTOMYCES COLLINUS DPR20 AGAINST BACTERIAL PATHOGENS Pachaiyappan Saravana Kumar1, Michael Gabriel Paulraj1, Savarimuthu Ignacimuthu1,3*, Naif Abdullah Al-Dhabi2, Devanathan Sukumaran4 Address(es): Dr. Savarimuthu Ignacimuthu, 1Division of Microbiology, Entomology Research Institute, Loyola College, Chennai, India-600 034. 2Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. 3International Scientific Program Partnership (ISPP), King Saud University, Riyadh11451, Saudi Arabia 4Vector Management Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2017/18.7.3.317-324 ARTICLE INFO ABSTRACT Received 20. 9. 2017 Actinomycetes are one of the most important groups that produce useful secondary metabolites. They play a great role in pharmaceutical Revised 2. 11. 2017 and industrial uses. The search for antibiotic producing soil actinomycetes to inhibit the growth of pathogenic microorganisms has Accepted 6. 11. 2017 become widespread due to the need for newer antibiotics. The present work was aimed to isolate soil actinomycetes from pinus tree Published 1. 12. 2017 rhizosphere from Doddabetta, Western Ghats, Tamil Nadu, India. Thirty one actinomycetes were isolated based on heterogeneity and stability in subculturing; they were screened against 5 Gram positive and 7 Gram negative bacteria in an in vitro antagonism assay. In the preliminary screening, out of 31 isolates, 12.09% showed good antagonistic activity; 25.08% showed moderate activity; 19.35% Regular article showed weak activity and 41.93% showed no activity against the tested bacteria. Among the isolates tested, DPR20 showed good antibacterial activity against both Gram positive and Gram negative bacteria.
    [Show full text]
  • First Genomic Insights Into Members of a Candidate Bacterial Phylum Responsible for Wastewater Bulking
    First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking Yuji Sekiguchi1, Akiko Ohashi1, Donovan H. Parks2, Toshihiro Yamauchi3, Gene W. Tyson2,4 and Philip Hugenholtz2,5 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan 2 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia 3 Administrative Management Department, Kubota Kasui Corporation, Minato-ku, Tokyo, Japan 4 Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, Australia 5 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia ABSTRACT Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using diVerential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of
    [Show full text]
  • DDDC 2019 Organizing Committee
    Conference Sponsors 2 Drug Discovery and Development Colloquium 2018 VI Annual Conference June 13 - 15, 2019 DDDC 2019 Organizing Committee Skylar Connor, Conference Co-chair, SHraddHa THakkar, PH.D., Conference Co-chair, UAMS AAPS Student CHapter President, Student UAMS AAPS Student CHapter Sponsor, Faculty University of Arkansas for Medical Sciences • FDA National Center for Toxicological Research University of Arkansas Little Rock Ujwani Nukala, Organizing Committee, UAMS Cesar M. Compadre, PH.D., Conference Co-chair, AAPS Student CHapter Past-President, Student UAMS AAPS Student CHapter Co-Sponsor, University of Arkansas for Medical Sciences Faculty University of Arkansas Little Rock University of Arkansas for Medical Sciences Ting Lee, Organizing Committee, UAMS AAPS David Mery, Organizing Committee, UAMS Student CHapter Treasurer, Student AAPS Student CHapter CHair Elect, Student University of Arkansas for Medical Sciences. University of Arkansas for Medical Sciences University of Arkansas Little Rock Cord Carter, Organizing Committee, UAMS AAPS Pankaj Patyal, Organizing Committee, UAMS Student CHapter Secretary, Student AAPS Student CHapter Vice President, Student University of Arkansas for Medical Sciences University of Arkansas for Medical Sciences Taylor Connor, Organizing Committee, UAMS Nemu Saumyadip, Organizing Committee, AAPS Student Chapter Member, Student UAMS AAPS Student CHapter Member, Student University of Arkansas for Medical Sciences University of Arkansas for Medical Sciences PHuc Tran, Organizing Committee, UAMS AAPS Edward Selvik, Organizing Committee, UAMS Student CHapter Member, Student AAPS Student CHapter Member, Student University of Arkansas for Medical Sciences University of Arkansas for Medical Sciences University of Arkansas Little Rock Table of Contents DDDC 2019 Agenda 5 List of Poster Presenters 10 Speakers and Organizers Bios 11 Abstracts 23 3 Drug Discovery and Development Colloquium 2019 University of Arkansas for Medical Sciences I.
    [Show full text]
  • Streptomyces As a Prominent Resource of Future Anti-MRSA Drugs
    REVIEW published: 24 September 2018 doi: 10.3389/fmicb.2018.02221 Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs Hefa Mangzira Kemung 1,2, Loh Teng-Hern Tan 1,2,3, Tahir Mehmood Khan 1,2,4, Kok-Gan Chan 5,6*, Priyia Pusparajah 3*, Bey-Hing Goh 1,2,7* and Learn-Han Lee 1,2,3,7* 1 Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 2 Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia, 4 The Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan, 5 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 6 International Genome Centre, Jiangsu University, Zhenjiang, China, 7 Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as Edited by: they tend to cause severe infections in vulnerable populations and are difficult to treat Miklos Fuzi, due to a limited range of effective antibiotics and also their ability to form biofilm. These Semmelweis University, Hungary organisms were once limited to hospital acquired infections but are now widely present Reviewed by: Dipesh Dhakal, in the community and even in animals. Furthermore, these organisms are constantly Sun Moon University, South Korea evolving to develop resistance to more antibiotics.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
    1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1
    [Show full text]
  • The Myxocoumarins a and B from Stigmatella Aurantiaca Strain MYX-030
    The myxocoumarins A and B from Stigmatella aurantiaca strain MYX-030 Tobias A. M. Gulder*1, Snežana Neff2, Traugott Schüz2, Tammo Winkler2, René Gees2 and Bettina Böhlendorf*2 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 2579–2585. 1Kekulé Institute of Organic Chemistry and Biochemistry, University of doi:10.3762/bjoc.9.293 Bonn, Gerhard-Domagk-Straβe 1, 53121 Bonn, Germany and 2Syngenta Crop Protection AG, CH-4002 Basel, Switzerland Received: 21 August 2013 Accepted: 01 November 2013 Email: Published: 20 November 2013 Tobias A. M. Gulder* - [email protected]; Bettina Böhlendorf* - [email protected] This article is part of the Thematic Series "Natural products in synthesis and biosynthesis" and is dedicated to Prof. Dr. Gerhard Höfle on the * Corresponding author occasion of his 74th birthday. Keywords: Guest Editor: J. S. Dickschat antifungal activity; myxobacteria; natural products; Stigmatella aurantiaca; structure elucidation © 2013 Gulder et al; licensee Beilstein-Institut. License and terms: see end of document. Abstract The myxobacterial strain Stigmatella aurantiaca MYX-030 was selected as promising source for the discovery of new biologically active natural products by our screening methodology. The isolation, structure elucidation and initial biological evaluation of the myxocoumarins derived from this strain are described in this work. These compounds comprise an unusual structural framework and exhibit remarkable antifungal properties. Introduction Despite declining interest of most big R&D-driven chemical epothilones A (1), Figure 1), microtubule-stabilizing macrolac- companies in recent years, natural products continue to serve as tones that are clinically used in cancer therapy [16-20]. one of the most important sources of new bioactive chemical entities, both in the pharmaceutical [1-4] as well as in the agro- But also from an agrochemical point of view, myxobacteria chemical industry [5-8].
    [Show full text]
  • Polyphasic Classification of the Gifted Natural Product Producer Streptomyces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC © Van der Aart, L.T., Nouioui, I., Kloosterman, A., Igual, J.M., Willemse, J., Goodfellow, M., van Wezel, J.P. 2019. The definitive peer reviewed, edited version of this article is published in International Journal of Systematic and Evolutionary Microbiology, 69, 4, 2019, http://dx.doi.org/10.1099/ijsem.0.003215 Polyphasic classification of the gifted natural product producer Streptomyces roseifaciens sp. nov. Lizah T. van der Aart 1, Imen Nouioui 2, Alexander Kloosterman 1, José Mariano Ingual 3, Joost Willemse 1, Michael Goodfellow 2, *, Gilles P. van Wezel 1,4 *. 1 Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands 2 School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK. 3 Instituto de Recursos Naturales y Agrobiologia de Salamanca, Consejo Superior de Investigaciones Cientificas (IRNASACSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain 4: Department of Microbial Ecology, Netherlands, Institute of Ecology (NIOO-KNAW) Droevendaalsteeg 10, Wageningen 6708 PB, The Netherlands *Corresponding authors. Michael Goodfellow: [email protected], Tel: +44 191 2087706. Gilles van Wezel: Email: [email protected], Tel: +31 715274310. Accession for the full genome assembly: GCF_001445655.1 1 Abstract A polyphasic study was designed to establish the taxonomic status of a Streptomyces strain isolated from soil from the QinLing Mountains, Shaanxi Province, China, and found to be the source of known and new specialized metabolites. Strain MBT76 T was found to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces .
    [Show full text]
  • Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
    Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr.
    [Show full text]
  • Inactivation of Stigmatella Aurantiaca Csga Gene Impares Rippling Formation- Genetika, Vol 47, No
    UDC 575 DOI: 10.2298/GENSR1501119M Original scientific paper INACTIVATION OF Stigmatella aurantiaca csg A GENE IMPARES RIPPLING FORMATION Ana MILOSEVIC-DJERIC 1, Susanne MÜLLER 2, and Hans URLICH SCHAIRER 3 1 Department of Gynaecology and Obstetrics, Hospital Centre Uzice, Uzice, Serbia 2 Univeristy of Iowa, Iowa City, USA 3Zentrum fur Molekulare Biologie, ZMBH, Heidelberg, Germany Milosevic-Djeric A., S. Müller, and H. Urlich Schairer (2015): Inactivation of Stigmatella aurantiaca csgA gene impares rippling formation- Genetika, Vol 47, No. 1, 119-130. Stigmatella aurantiaca fruiting body development depends on cell-cell interactions. One type of the signaling molecule stigmolone isolated from S. aurantiaca cells acts to help cells to stay together in the aggregation phase. Another gene product involved in intercellular signaling in S. aurantiaca is the csg A homolog of Myxococcus xanthus . In close relative M. xanthus C signal the product of the csg A gene is required for rippling, aggregation and sporulation. Isolation of homologous gene in S. aurantiaca implicates a probable role of CsgA in intercellular communication. Inactivation of the gene by insertion mutagenesis caused alterations in S. aurantiaca fruiting. The motility behavior of the cells during development was changed as well as their ability to stay more closely together in the early stages of development. Inactivation of the csg A gene completely abolished rippling of the cells. This indicates the crucial role of the CsgA protein in regulating this rhythmic behavior. Key words: cell-cell signaling, development, fruiting body formation, myxobacteria, Stigmatella aurantiaca INTRODUCTION Stigmatella aurantiaca belongs to the myxobacteria famous for their ability to form multicellular structures fruiting bodies in response to the starvation conditions ( SHIMKETS et al ., 2006; ZHANG et al., 2012; CLAESSEN et al ., 2014).
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]