LIST of PROKARYOTIC NAMES VALIDLY PUBLISHED in July 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1 -
Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. -
Genome Sequence of Kitasatospora Setae NBRC 14216T: an Evolutionary Snapshot of the Family Streptomycetaceae
DNA RESEARCH 17, 393–406, (2010) doi:10.1093/dnares/dsq026 Advance Access publication on November 8, 2010 Genome Sequence of Kitasatospora setae NBRC 14216T: An Evolutionary Snapshot of the Family Streptomycetaceae NATSUKO Ichikawa1,AKIO Oguchi 1,HARUO Ikeda 2,JUN Ishikawa3,SHIGERU Kitani 4,YUMI Watanabe 1, SANAE Nakamura 1,YOKO Katano 1,EMI Kishi 1,MACHI Sasagawa1,AKIHO Ankai 5,SHIGEHIRO Fukui5, YOSHIMI Hashimoto 1,SACHI Kamata1,MISA Otoguro 6,SATOSHI Tanikawa1,TAKUYA Nihira 4, SUEHARU Horinouchi 7,YASUO Ohnishi7,MASAYUKI Hayakawa8,TOMOHISA Kuzuyama 9,AKIRA Arisawa10, FUMIKI Nomoto 11,HIROMI Miura 12,YOKO Takahashi 12, and NOBUYUKI Fujita1,* NITE Bioresource Information Center, Department of Biotechnology, National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan1; Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan2; Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan3; International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan4; Tohoku Regional Office, National Institute of Technology and Evaluation, 4-5-18 Higashisendai, Miyagino-ku, Sendai, Miyagi 983-0833, Japan5; NITE Biological Resource Center (NBRC), Department of Biotechnology, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan6; Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan7; Division of Applied Biological Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda-4, Kofu, Yamanashi 400-8511, Japan8; Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan9; Bioresource Laboratories, Mercian Corp., 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan10; Nagase & Co. -
Plant-Derived Benzoxazinoids Act As Antibiotics and Shape Bacterial Communities
Supplemental Material for: Plant-derived benzoxazinoids act as antibiotics and shape bacterial communities Niklas Schandry, Katharina Jandrasits, Ruben Garrido-Oter, Claude Becker Contents Supplemental Tables 2 Supplemental Table 1. Phylogenetic signal lambda . .2 Supplemental Table 2. Syncom strains . .3 Supplemental Table 3. PERMANOVA . .6 Supplemental Table 4. PERMANOVA comparing only two treatments . .7 Supplemental Table 5. ANOVA: Observed taxa . .8 Supplemental Table 6. Observed diversity means and pairwise comparisons . .9 Supplemental Table 7. ANOVA: Shannon Diversity . 11 Supplemental Table 8. Shannon diversity means and pairwise comparisons . 12 Supplemental Table 9. Correlation between change in relative abundance and change in growth . 14 Figures 15 Supplemental Figure 1 . 15 Supplemental Figure 2 . 16 Supplemental Figure 3 . 17 Supplemental Figure 4 . 18 1 Supplemental Tables Supplemental Table 1. Phylogenetic signal lambda Class Order Family lambda p.value All - All All All All 0.763 0.0004 * * Gram Negative - Proteobacteria All All All 0.817 0.0017 * * Alpha All All 0 0.9998 Alpha Rhizobiales All 0 1.0000 Alpha Rhizobiales Phyllobacteriacae 0 1.0000 Alpha Rhizobiales Rhizobiacaea 0.275 0.8837 Beta All All 1.034 0.0036 * * Beta Burkholderiales All 0.147 0.6171 Beta Burkholderiales Comamonadaceae 0 1.0000 Gamma All All 1 0.0000 * * Gamma Xanthomonadales All 1 0.0001 * * Gram Positive - Actinobacteria Actinomycetia Actinomycetales All 0 1.0000 Actinomycetia Actinomycetales Intrasporangiaceae 0.98 0.2730 Actinomycetia Actinomycetales Microbacteriaceae 1.054 0.3751 Actinomycetia Actinomycetales Nocardioidaceae 0 1.0000 Actinomycetia All All 0 1.0000 Gram Positive - All All All All 0.421 0.0325 * Gram Positive - Firmicutes Bacilli All All 0 1.0000 2 Supplemental Table 2. -
Supplemental Tables for Plant-Derived Benzoxazinoids Act As Antibiotics and Shape Bacterial Communities
Supplemental Tables for Plant-derived benzoxazinoids act as antibiotics and shape bacterial communities Niklas Schandry, Katharina Jandrasits, Ruben Garrido-Oter, Claude Becker Contents Table S1. Syncom strains 2 Table S2. PERMANOVA 5 Table S3. ANOVA: observed taxa 6 Table S4. Observed diversity means and pairwise comparisons 7 Table S5. ANOVA: Shannon Diversity 9 Table S6. Shannon diversity means and pairwise comparisons 10 1 Table S1. Syncom strains Strain Genus Family Order Class Phylum Mixed Root70 Acidovorax Comamonadaceae Burkholderiales Betaproteobacteria Proteobacteria Root236 Aeromicrobium Nocardioidaceae Propionibacteriales Actinomycetia Actinobacteria Root100 Aminobacter Phyllobacteriaceae Rhizobiales Alphaproteobacteria Proteobacteria Root239 Bacillus Bacillaceae Bacillales Bacilli Firmicutes Root483D1 Bosea Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria Root342 Caulobacter Caulobacteraceae Caulobacterales Alphaproteobacteria Proteobacteria Root137 Cellulomonas Cellulomonadaceae Actinomycetales Actinomycetia Actinobacteria Root1480D1 Duganella Oxalobacteraceae Burkholderiales Gammaproteobacteria Proteobacteria Root231 Ensifer Rhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria Root420 Flavobacterium Flavobacteriaceae Flavobacteriales Bacteroidia Bacteroidetes Root268 Hoeflea Phyllobacteriaceae Rhizobiales Alphaproteobacteria Proteobacteria Root209 Hydrogenophaga Comamonadaceae Burkholderiales Gammaproteobacteria Proteobacteria Root107 Kitasatospora Streptomycetaceae Streptomycetales Actinomycetia Actinobacteria -
P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium
International Journal of Molecular Sciences Article More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium Fanele Cabangile Mnguni 1, Tiara Padayachee 1 , Wanping Chen 2 , Dominik Gront 3 , Jae-Hyuk Yu 4,5 , David R. Nelson 6,* and Khajamohiddin Syed 1,* 1 Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; [email protected] (F.C.M.); [email protected] (T.P.) 2 Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; [email protected] 3 Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; [email protected] 4 Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA; [email protected] 5 Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea 6 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA * Correspondence: [email protected] (D.R.N.); [email protected] (K.S.) Received: 18 January 2020; Accepted: 13 February 2020; Published: 7 July 2020 Abstract: Unraveling the role of cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins present in living and non-living entities, in secondary metabolite synthesis is gaining momentum. In this direction, in this study, we analyzed the genomes of 203 Streptomyces species for P450s and unraveled their association with secondary metabolism. Our analyses revealed the presence of 5460 P450s, grouped into 253 families and 698 subfamilies. The CYP107 family was found to be conserved and highly populated in Streptomyces and Bacillus species, indicating its key role in the synthesis of secondary metabolites. -
Review Article
International Journal of Systematic and Evolutionary Microbiology (2001), 51, 797–814 Printed in Great Britain The taxonomy of Streptomyces and related REVIEW genera ARTICLE 1 Natural Products Drug Annaliesa S. Anderson1 and Elizabeth M. H. Wellington2 Discovery Microbiology, Merck Research Laboratories, PO Box 2000, RY80Y-300, Rahway, Author for correspondence: Annaliesa Anderson. Tel: j1 732 594 4238. Fax: j1 732 594 1300. NJ 07065, USA e-mail: liesaIanderson!merck.com 2 Department of Biological Sciences, University of The streptomycetes, producers of more than half of the 10000 documented Warwick, Coventry bioactive compounds, have offered over 50 years of interest to industry and CV4 7AL, UK academia. Despite this, their taxonomy remains somewhat confused and the definition of species is unresolved due to the variety of morphological, cultural, physiological and biochemical characteristics that are observed at both the inter- and the intraspecies level. This review addresses the current status of streptomycete taxonomy, highlighting the value of a polyphasic approach that utilizes genotypic and phenotypic traits for the delimitation of species within the genus. Keywords: streptomycete taxonomy, phylogeny, numerical taxonomy, fingerprinting, bacterial systematics Introduction trait of producing whorls were the only detectable differences between the two genera. Witt & Stacke- The genus Streptomyces was proposed by Waksman & brandt (1990) concluded from 16S and 23S rRNA Henrici (1943) and classified in the family Strepto- comparisons that the genus Streptoverticillium should mycetaceae on the basis of morphology and subse- be regarded as a synonym of Streptomyces. quently cell wall chemotype. The development of Kitasatosporia was also included in the genus Strepto- numerical taxonomic systems, which utilized pheno- myces, despite having differences in cell wall com- typic traits helped to resolve the intergeneric relation- position, on the basis of 16S rRNA similarities ships within the family Streptomycetaceae and resulted (Wellington et al., 1992). -
Extremophilic Actinomycetes Isolated from Soil in Kazakhstan
Microbiology Research 2020; volume 11:8356 Extremophilic actinomycetes isolated from soil in Introduction Correspondence: Azliyati Azizan, Nazarbayev Kazakhstan: Classification and Antibiotics, first time discovered in University School of Medicine (NUSOM), 5/1 1928 by Alexander Fleming,1 have become Kerey and Zhanibek Khans Street, Nur- antimicrobial activities excellent chemotherapeutic agents effective Sultan, 010000, Republic of Kazakhstan in treating human infections caused by E-mail: [email protected] Tel.: +7-7172- 69-4633 Ainur Zhulamanova,1,2 many dangerous pathogenic bacteria. Even though it was unexpectedly discovered, Zhanat Koshenov,1,2,3 Key words: Extremophiles; antibiotics; natu- antibiotics and search for newer more effec- Saikal Shamkeeva,1,4 ral products; ESKAPE pathogens. 1 tive antimicrobial agents brought science Zhannur Markhametova, and medicine to an extensive research in 1 Acknowledgements: The authors would like Diyora Abdukhakimova, this field. As a result, many more antibi- 5 to acknowledge the Research and Production Lyudmila Trenozhnikova, otics, such as vancomycin, tetracycline, Center for Microbiology and Virology, as well 1 Azliyati Azizan ampicillin and others were discovered with- as the Republican Diagnostic Center for sup- 2 1Nazarbayev University School of in a short period of time. porting us through this project. We also want Natural sources of antibiotics can be Medicine (NUSOM), Nur-Sultan, to thank Nazarbayev University for funding 2 bacteria and fungi. The most prevalent this research. -
Bioactive Actinobacteria Associated with Two South African Medicinal Plants, Aloe Ferox and Sutherlandia Frutescens
Bioactive actinobacteria associated with two South African medicinal plants, Aloe ferox and Sutherlandia frutescens Maria Catharina King A thesis submitted in partial fulfilment of the requirements for the degree of Doctor Philosophiae in the Department of Biotechnology, University of the Western Cape. Supervisor: Dr Bronwyn Kirby-McCullough August 2021 http://etd.uwc.ac.za/ Keywords Actinobacteria Antibacterial Bioactive compounds Bioactive gene clusters Fynbos Genetic potential Genome mining Medicinal plants Unique environments Whole genome sequencing ii http://etd.uwc.ac.za/ Abstract Bioactive actinobacteria associated with two South African medicinal plants, Aloe ferox and Sutherlandia frutescens MC King PhD Thesis, Department of Biotechnology, University of the Western Cape Actinobacteria, a Gram-positive phylum of bacteria found in both terrestrial and aquatic environments, are well-known producers of antibiotics and other bioactive compounds. The isolation of actinobacteria from unique environments has resulted in the discovery of new antibiotic compounds that can be used by the pharmaceutical industry. In this study, the fynbos biome was identified as one of these unique habitats due to its rich plant diversity that hosts over 8500 different plant species, including many medicinal plants. In this study two medicinal plants from the fynbos biome were identified as unique environments for the discovery of bioactive actinobacteria, Aloe ferox (Cape aloe) and Sutherlandia frutescens (cancer bush). Actinobacteria from the genera Streptomyces, Micromonaspora, Amycolatopsis and Alloactinosynnema were isolated from these two medicinal plants and tested for antibiotic activity. Actinobacterial isolates from soil (248; 188), roots (0; 7), seeds (0; 10) and leaves (0; 6), from A. ferox and S. frutescens, respectively, were tested for activity against a range of Gram-negative and Gram-positive human pathogenic bacteria. -
Phylogenetic Study of the Species Within the Family Streptomycetaceae
Antonie van Leeuwenhoek DOI 10.1007/s10482-011-9656-0 ORIGINAL PAPER Phylogenetic study of the species within the family Streptomycetaceae D. P. Labeda • M. Goodfellow • R. Brown • A. C. Ward • B. Lanoot • M. Vanncanneyt • J. Swings • S.-B. Kim • Z. Liu • J. Chun • T. Tamura • A. Oguchi • T. Kikuchi • H. Kikuchi • T. Nishii • K. Tsuji • Y. Yamaguchi • A. Tase • M. Takahashi • T. Sakane • K. I. Suzuki • K. Hatano Received: 7 September 2011 / Accepted: 7 October 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract Species of the genus Streptomyces, which any other microbial genus, resulting from academic constitute the vast majority of taxa within the family and industrial activities. The methods used for char- Streptomycetaceae, are a predominant component of acterization have evolved through several phases over the microbial population in soils throughout the world the years from those based largely on morphological and have been the subject of extensive isolation and observations, to subsequent classifications based on screening efforts over the years because they are a numerical taxonomic analyses of standardized sets of major source of commercially and medically impor- phenotypic characters and, most recently, to the use of tant secondary metabolites. Taxonomic characteriza- molecular phylogenetic analyses of gene sequences. tion of Streptomyces strains has been a challenge due The present phylogenetic study examines almost all to the large number of described species, greater than described species (615 taxa) within the family Strep- tomycetaceae based on 16S rRNA gene sequences Electronic supplementary material The online version and illustrates the species diversity within this family, of this article (doi:10.1007/s10482-011-9656-0) contains which is observed to contain 130 statistically supplementary material, which is available to authorized users.