Is Stemflow a Vector for the Transport of Small Metazoans from Tree Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Is Stemflow a Vector for the Transport of Small Metazoans from Tree Surfaces Ptatscheck et al. BMC Ecol (2018) 18:43 https://doi.org/10.1186/s12898-018-0198-4 BMC Ecology RESEARCH ARTICLE Open Access Is stemfow a vector for the transport of small metazoans from tree surfaces down to soil? Christoph Ptatscheck* , Patrick Connor Milne and Walter Traunspurger Abstract Background: Stemfow is an essential hydrologic process shaping the soil of forests by providing a concentrated input of rainwater and solutions. However, the transport of metazoans by stemfow has yet to be investigated. This 8-week study documented the organisms (< 2 mm) present in the stemfow of diferent tree species. Because the texture of the tree bark is a crucial determination of stemfow, trees with smooth bark (Carpinus betulus and Fagus sylvatica) and rough bark (Quercus robur) were examined. Results: Up to 1170 individuals per liter of stemfow were collected. For rotifers and nematodes, a highly positive cor- relation between abundance and stemfow yield was determined. Both taxa were predominant (rotifers: up to 70%, nematodes: up to 13.5%) in the stemfow of smooth-barked trees whereas in that of the oak trees collembolans were the most abundant organisms (77.3%). The mean number of organisms collected per liter of stemfow from the two species of smooth-barked trees was very similar. A higher number of nematode species was found in the stemfow of these trees than in the stemfow of rough-barked oak and all were typical colonizers of soil- and bark-associated habitats. Conclusion: This pilot study showed for the frst time that stemfow is a transport vector for numerous small metazo- ans. By connecting tree habitats (e.g., bark, moss, lichens or water-flled tree holes) with soil, stemfow may infuence the composition of soil fauna by mediating intensive organismal dispersal. Keywords: Forest ecosystems, Forest soil, Canopy, Nematodes, Rotifers, Collembolans Background dormancy than during the growing season. Staelens et al. Stemfow is the proportion of rain water that is held [3] reported that the minimal amount of precipitation back by leaves or branches and drained by the stem. that is required for the generation of stemfow is lower By connecting the vegetative canopy with the soil, this during the growing season than during the dormant hydrologic process has an important impact on the bio- season. For example, in Fagus sylvatica, 6–16% of the geochemical cycles of forest ecosystems [1]. According to incoming precipitation is funneled during winter and Levia and Frost [2], stemfow accounts for approximately early spring, while only 1–2% runs down the tree dur- 3.5%, 11.3%, and 19.0% of the precipitation in tropical, ing the rest of the year [4]. Tis diference is explained by temperate, and (semi)arid ecoregions, respectively. Te the presence during the growing season of leaves, which quantity and quality of stemfow refect numerous fac- shield the rain and thereby reduce the stemfow yield, and tors. Tus, in temperate forests, seasonality has a super- by the higher amount of precipitation during the dor- ordinate impact, with more stemfow generated during mant season. In general, the stemfow yield increases with increas- ing precipitation although during intensive rain events *Correspondence: christoph.ptatscheck@uni‑bielefeld.de it decreases because water reaches the ground as Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, throughfall [1]. Conversely, when precipitation is low, Germany © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Ptatscheck et al. BMC Ecol (2018) 18:43 Page 2 of 11 there may be no stemfow at all because it occurs only Such dispersal could afect the genefow, population when the storage capacity of the tree is exceeded. Te stability, population dynamic, and thus, the organismal texture of the tree bark is a crucial determinant of diversity in soil. stemfow. Rough bark has a higher water storage capac- Terefore, in this study we examined the stemfow of ity than smooth bark such that a larger amount of pre- three species of middle European trees (Quercus robur, cipitation is necessary before the bark is saturated and Fagus sylvatica, and Carpinus betulus). Our main goals stemfow is generated [5]. For example, in one study, were: (1) to document the abundances of metazoan taxa stemfow along the trunk of rough-barked Quercus transported by stemfow, focusing on nematode diver- robur (rough bark) was generated following 5.4 mm sity, and (2) to document stemfow-mediated transport of precipitation whereas in smooth-barked Fagus syl- by diferent middle European broad-leaved tree species. vatica only 2.8 mm was required [6]. Additional factors As stemfow may be a possible vector for the pas- infuencing the stemfow yield are wind, snowfall, and sive dispersal of organisms we hypothesized that it the morphometry of the tree (e.g., stem diameter and contains a diverse composition of typical colonizers of number of branches) [2]. bark, moss, lichens, and water-flled tree holes, espe- For soil, stemfow provides a concentrated input of cially, nematodes and rotifers (mainly bdelloidea) but rainwater containing solutes and microorganisms. Hence, also of other metazoans (< 2 mm) (hypothesis H1). We around the trunk both the amount of moisture and the also expected that trees difering in the texture of their concentrations of, e.g., Na+, K+, Ca++, and NH4+ will be bark would difer in the abundances and composition higher [1]. In addition, fungi and bacteria transported by of the associated organisms transported by stemfow. stemfow contribute to shaping the soil microfaunal com- Specifcally, trees with rough bark should generate less munity [1]. stemfow such that fewer organisms are washed from Over the last 30 years, there have been > 900 studies of the stem surface (hypothesis H2.1). Nonetheless, by stemfow, according to the Web of Science (September ofering a more structured habitat for organisms, more 2018; search term: stemfow). However, to our knowl- nematode taxa would be contained in the stemfow of edge, none of them examined the stemfow-mediated rough-barked (Q. robur) than of smooth-barked (F. syl- transport of multicellular organisms (metazoans) and the vatica and C. betulus) trees (hypothesis H2.2). Based ecological value of this process. Te stem surface is colo- on their predominance in water flled tree holes we nized by numerous metazoans, with bark, moss, lichens, expected especially bacterial and hyphal feeding nema- and water-flled tree holes serving as habitats for rotifers, todes in stemfow (hypothesis H2.3). nematodes, tardigrades, mites, and collembolans [7–10]. Tardigrades, mites, and collembolans can actively dis- perse along the stem [11–13]. For the reginal transport Methods of small organisms (< 2 mm), the wind is a crucial vec- Study setup tor [14]. Especially nematodes can represent > 44% of the Te investigation was conducted in the vicinity of aeroplancton and show dispersal rates of > 3000 individu- Bielefeld University for 8 weeks beginning in April als m−2 in 4 weeks [15]. Rough barked trees are impor- 2017. Te study site is part of the Teutoburg Forest, tant traps for such wind transported organisms [16]. Germany (52°02′N, 8°29′E), a lime-beech forest with a According to this, trees with a pronounced bark texture mean annual precipitation of 832 mm. Stemfow was and covered to varying extents by moss and lichens host collected from trees of three diferent species (Fagus a greater number and diversity of arthropods than trees sylvatica, Carpinus betulus, and Quercus robur). For with a smooth bark [8]. Ptatscheck and Traunspurger [17] each species, three trees located next to each other previously demonstrated that trees can be hotspots for (< 8 m) and whose crowns were in contact were chosen. the occurrence of rotifers (mainly bdelloidea) and nema- Te basal areas of the stems were 0.07–0.09 m2 for F. todes, whose densities may reach 500 individual’s cm−2. sylvatica, 0.09–0.13 m2 for C. betulus, and 0.26–0.46 m2 Te authors identifed several species occupying water- for Q. robur. Te trees were leafess at the beginning of flled tree holes at abundances more than twice as high as the investigation. those in forest soils [18–20]. Nematodes collected from Stemfow collectors were made of hoses (4 cm diam- the tree holes are typical colonizers of soil or connected eter) from which a section was cut lengthwise. Tese gut- ecosystems (e.g., moss, bark, and dead wood) and were ters were wound 1.5 times around the stem, beginning dominated by bacterial and hyphal feeders [10, 21]. at a height of ~ 1.3 m, and fxed with aquarium silicone. Tese observations suggested that, by linking stem and At the lower end of the hose, a smaller, intact hose was soil stemfow may be a vector for the passive dispersal of installed that drained the stemfow into a covered 10-L organisms between these two habitats. plastic bucket. Ptatscheck et al. BMC Ecol (2018) 18:43 Page 3 of 11 Data collection Results Depending on the duration of rain events, the buckets Stemfow funneling were sampled at least once a day, with the volume of During the study, the weekly rain volume was between the contained stemfow determined using a measur- 4 and 20 mm (Fig.
Recommended publications
  • The Quantitative Importance of Stemflow: an Evaluation of Past Research and Results from a Study in Lodgepole Pine (Pinus Contorta Var
    THE QUANTITATIVE IMPORTANCE OF STEMFLOW: AN EVALUATION OF PAST RESEARCH AND RESULTS FROM A STUDY IN LODGEPOLE PINE (PINUS CONTORTA VAR. LATIFOLIA) STANDS IN SOUTHERN BRITISH COLUMBIA by Adam Jon McKee B.A. Thompson Rivers University, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (ENVIRONMENTAL SCIENCE) Thesis examining committee: Darryl Carlyle-Moses (Ph.D.), Thesis Supervisor, Assistant Professor, Dept. of Geography, Thompson Rivers University Karl Larsen (Ph.D.), Committee Member, Associate Professor, Dept. of Natural Resource Sciences, Thompson Rivers University Rita Winkler (Ph.D., R.P.F.), Committee Member, Adjunct Professor, Dept. of Natural Resource Sciences and Research Hydrologist, BC Ministry of Forests and Range Delphis F. Levia (Ph.D.), External Examiner, Associate Professor, Depts. of Geography & Plant and Soil Science, University of Delaware Spring Convocation 2011 Thompson Rivers University © Adam Jon McKee, 2010 Thesis Supervisory Committee ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member This thesis by Adam Jon McKee was defended successfully in an oral examination on December 9, 2010 by a committee comprising: ________________________ Dr. Delphis F. Levia, External Examiner ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member ii ________________________ Dr. Lauchlan Fraser, Chair/Coordinator of Graduate Program Committee ________________________ Dr. Tom Dickinson, Dean of Science ________________________ Dr. Peter Tsigaris, Chair of the Examining Committee This thesis is accepted in its present form by the Office of the Associate Vice President, Research and Graduate Studies as satisfying the thesis requirements for the degree Master of Science, Environmental Science.
    [Show full text]
  • Meteorological Influences on Stemflow Generation Across Diameter Size Classes of Two Morphologically Distinct Deciduous Species
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260683953 Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species Article in International Journal of Biometeorology · March 2014 DOI: 10.1007/s00484-014-0807-7 · Source: PubMed CITATIONS READS 13 52 3 authors, including: John Toland Van Stan Jarrad Van Stan Georgia Southern University Harvard Medical School, Massachusetts Gen… 64 PUBLICATIONS 398 CITATIONS 25 PUBLICATIONS 105 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Canopy influences over microbial processes in forest critical zones View project Effects of Urbanization on Forest Canopy Ecohydrology View project All content following this page was uploaded by John Toland Van Stan on 16 July 2015. The user has requested enhancement of the downloaded file. Int J Biometeorol (2014) 58:2059–2069 DOI 10.1007/s00484-014-0807-7 ORIGINAL PAPER Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species John T. Van Stan II & Jarrad H. Van Stan & Delphis F. Levia Jr. Received: 15 November 2013 /Revised: 11 February 2014 /Accepted: 19 February 2014 /Published online: 11 March 2014 # ISB 2014 Abstract Many tree species have been shown to funnel sub- meteorological conditions). Multiple regressions performed on stantial rainfall to their stem base as stemflow flux, given a leafless canopy stemflow resulted in an inverse relationship favorable stand structure and storm conditions. As stemflow is with wind speeds, likely decoupling stemflow sheltered solely a spatially concentrated flux, prior studies have shown its on bark surfaces from VPD influences.
    [Show full text]
  • Nutrient Cycling by Throughfall and Stemflow Precipitation in Three Coastal Oregon Forest Types
    NUTRIENT CYCLING BY THROUGHFALL AND STEMFLOW PRECIPITATION IN THREE COASTAL OREGON FOREST TYPES by ROBERT F. TARRANT, K. C. LU, W. B. BOLLEN, and C. S. CHEN PACIFIC NORTHWEST U.SD.A. FOREST SERVICE FOREST AND RANGE EXPERIMENT STATION RESEARCH PAPER PNW-54 U S. DEPARTMENT OF AGRICULTURE • FOREST SERVICE 1968 CONTENTS INTRODUCTION 1 EXPERIMENTAL PROCEDURES 2 RESULTS AND DISCUSSION 3 Nitrogen 3 Total Dissolved Solids 4 Acidity of Precipitation 5 CONCLUSIONS . .... ..... 6 LITERATURE CITED 7 Robert F. Tarrant and K C. Lu are, respect- ively, Principal Soil Scientist and Microbiolo- gist, Forestry Sciences Laboratory, Pacific Northwest Forest and Range Experiment Sta- tion, Corvallis, Oregon. W. B. Bollen and C. S. Chen are, respectively, Professor and Research Assistant, Department of Microbiology, Oregon State University, Corvallis, Oregon. This study was supported, in part, by the National Science Foundation, Grant No. GB- 3214. INTRODUCTION In the Pacific Northwest, where annual pre- cipitation ranges from about 40 to 120 inches per year in commercial forest areas, rainfall washing through the forest canopy returns a part of the nutrient capital of the ecosystem to the soil. Nitrogen is of special interest in this connection because it is the only nutrient ele- ment thus far found to appreciably stimulate growth of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) when applied as fertilizer (Gessel et al. 1965). A number of tree species throughout the world have been shown to contribute to the en- richment of throughfall and stemflow. 1 but in most studies of this phenomenon, only nonnitro- genous nutrient ions have been determined. Few investigators have determined N content in throughfall and stemflow (Voigt 1960b; Sviridova 1960; Mina 1965; Maruyama et al.
    [Show full text]
  • Rainfall Input, Throughfall and Stemflow of Nutrients in a Central
    Biogeochemistry 67: 73–91, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees G.B. CHUYONG1,2,4, D.M. NEWBERY2,3,* and N.C. SONGWE1 1Institute of Agronomic Research, Forest Research Station Kumba, PMB 29 Kumba, Cameroon; 2De- partment of Biological and Molecular Sciences, University of Stirling, Stirling, FK9 4LA, UK; 3Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, CH-3013, Switzerland; 4Current address: Department of Life Sciences, University of Buea, POB 63 Buea, Cameroon; *Author for correspon- dence (e-mail: [email protected]; phone: 0041-31-631-8815; fax: -31-332-2059) Received 5 March 2002; accepted in revised form 14 January 2003 Key words: Atmospheric input, Ectomycorrhizas, Korup, Leaching, Phosphorus, Priming effect Abstract. Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha−1, and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha−1 respectively.
    [Show full text]
  • Variability of Throughfall and Stemflow Deposition in Pine and Beech Stands ( Czarne Lake Catchment, Gardno Lake Catchment on Wolin Island )
    PrACE GEOGrAfICzNE, zeszyt 143 Instytut Geografii i Gospodarki Przestrzennej UJ Kraków 2015, 85 – 102 doi : 10.4467/20833113PG.15.027.4628 Variability of throughfall and stemflow deposition in pine and beech stands ( Czarne lake catchment, gardno lake catchment on wolin island ) Robert Kruszyk, Andrzej Kostrzewski, Jacek Tylkowski Abstract : The research sought to determine the range of conversion of the chemical composition of precipitation in a beech stand located in the Gardno Lake catchment ( Wolin Island ) and a pine stand in the Czarne Lake catchment ( Upper Parsęta catchment, West Pomerania Province ). The presented results cover three hydrological years : 2012, 2013 and 2014. The research focused on the chemical composition of bulk precipitation ( in the open ), throughfall and stemflow ( in a forest ). The obtained results confirm that after precipitation has had contact with plant surfaces there is an increase in its mineral content. This is due to the process of enrichment of throughfall and stemflow with elements leached out of needles + 2+ + – + 2+ 2– – and leaves ( K , Mg ) and coming from dry deposition ( NH 4, Cl , Na , Mg , SO 4 , NO 3 ) washed out from plant surfaces. The research, based on the canopy budget model, indicates that in the case of potassium, its load leached out of needles and leaves accounted for 75.6 % and 73 %, respectively, of its total deposition on the forest floor. Calcium leaching was not detected in either of the two stands. In comparison with potassium, the range of magnesium leaching was smaller and amounted to 34 % under beech and 26.5 % under pine. As to loads of potassium and magnesium in the beech stand, they were more than twice as large as the ones observed in the pine stand.
    [Show full text]
  • The Interception Process in Tropical Rain Forests: a Literature Review and Critique (*)
    THE INTERCEPTION PROCESS IN TROPICAL RAIN FORESTS: A LITERATURE REVIEW AND CRITIQUE (*) . R. T. Clarke (**) SÜMMARY A noviw oi tht tLtQJioJuAn on m&aAuKem&ntò o{ naln mtzn. íntzucdptÁon ptiocçAòzA by ^oheAtis i& madt. ln{)OtwiaXÁ.on on A^nÁca, C2.ntn.0l and South AmztvLca, and A&ia ÃJ> QÒJ&I. A gene.Aal anatgòLt, lò made. and thz me.d to kun.tho.h. tko.. mimuAomuntò undoA ^toXd condÁ. - txonò ÍÁ òtAQAòzd. BACKGROVm In temperate latitudes, interception as a component of the total evaporative loss from forests has been intensívely studíed (see, for example, Helvey & Patrick, 1965; HeJvey, 1967; Lawson, 7967; BJake, 1975; Calder, 1976, 1978) and its importance welj_ established. Field studies of the interception process have given results which, in rnany cases, have been expressed as empirical regression equations of the form I = aP + b G where I is the depth of water intercepted and lost by evaporaiion, P. is the gross rain b — fali incident upon the forest canopy, and a, b are regression coefficrents; see, for example, Penman (1963)- Many authors, however, Blake (1975) being one, expressed the relation in the alternative form (l/P„) = b/P+a expressing the fact that the percen- G G tage interception loss tends to be hyperbolically related to gross rainfall. In con - trast to this empirical approach, Rutter et ai. (1970, Gash & Morton have constructed physically-based computer models using as inputs rainfal? and the meteorológica! varia- bles controlling evaporation to compute a running water balance of a forest canopy with known structure, thereby producing estimates of interception losses.
    [Show full text]
  • Canopy Interception, Stemflow and Streamflow on a Small Drainage in the Missouri Ozarks
    RESEARCH BULLETIN 951 APRIL, 1969 UNIVERSITY OF MISSOURI - COLUMBIA COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION ELMER R. KIEHL, Director Canopy Interception, Stemflow and Streamflow on a Small Drainage in the Missouri Ozarks DAVID R. DEWALLE & LEE K. PAULSELL (Publication authorized April 12, 1969) COLUMBIA, MISSOURI TABLE OF CONTENTS Page Introduction ........ ... ........ ... ... ... .... ... ... .... 3 Canopy Interception .. ........... .. ........... .. ........... 3 Study Areas and Design ........... ..... .......... ... .. ... 4 Results .. .. .. ..... .. .... .... .. ...... .. .. ... .. ..... 5 Stemflow ... .. .. .. .. .. ... .. ... .. .. ... .. .. .... ... ... ... 8 Methods .. .. .... .. .. .. .. ...... ... ..... .......... 9 Results ...... .. .. , .. ......... ... ... .... .... ..... ... 11 Streamflow ... .... .... ..... ... ... .. .. .. ... ... .. ... .. 13 Gaging Installation D escription .. ... ... ....... ........ ..... 14 Results .... .. .... .. ................ .. ..... ..... ........... 14 H ydrologic Budget .. .. ..... ......... ... .. .... .... .. .......... 20 Methods . .. ... ....... ... ............. ..... .... .. .... 21 Results . .............................. .. ... ... ... ... ... 22 Summary ........... ... .. ... .. ...... .. ... .. .. .. .. ..... ... 25 Literature Cited .... .. .. ...... .. ........ ....... .. .. .. ... ...... 26 Canopy Interception, Stemflow and Streamflow on a Small Drainage in the Missouri Ozarks DAVID R. DEWALLE & LEE K. P AULSELL * INTRODUCTION This report presents an analysis
    [Show full text]
  • Throughfall and Temporal Trends of Rainfall Redistribution in an Open Tropical Rainforest, South-Western Amazonia (Rondônia, Brazil) S
    Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil) S. Germer, H. Elsenbeer, J. M. Moraes To cite this version: S. Germer, H. Elsenbeer, J. M. Moraes. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil). Hydrology and Earth System Sciences Discussions, European Geosciences Union, 2006, 10 (3), pp.383-393. hal-00304865 HAL Id: hal-00304865 https://hal.archives-ouvertes.fr/hal-00304865 Submitted on 2 Jun 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hydrol. Earth Syst. Sci., 10, 383–393, 2006 www.hydrol-earth-syst-sci.net/10/383/2006/ Hydrology and © Author(s) 2006. This work is licensed Earth System under a Creative Commons License. Sciences Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondonia,ˆ Brazil) S. Germer1, H. Elsenbeer1, and J. M. Moraes2 1Institute of Geoecology, University of Potsdam, Potsdam, Germany 2CENA, University of Sao˜ Paulo, Piracicaba, S.P., Brazil Received: 9 November 2005 – Published in Hydrol. Earth Syst. Sci. Discuss.: 19 December 2005 Revised: 9 March 2006 – Accepted: 17 March 2006 – Published: 2 June 2006 Abstract.
    [Show full text]
  • Double-Funneling of Trees: Stemflow and Root-Induced Preferential Flow1
    Double-funneling of trees: Stemflow and root-induced preferential flow1 Mark S. JOHN SON^, Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 148.50, USA, and Department of Geography, Simon Fraser University, Burnaby, British Columbia V5A 1 S6, Canada, e-mail: [email protected] Johannes LEHMANN, Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14850, USA. Abstract: Trees partition rainfall into throughfall and stemflow, resulting in a spatial distribution of nutrient and water fluxes reaching the soil centred on the trunks of trees. Stemflow fluxes of water and nutrients are then funneled preferentially belowground along tree roots and other preferential flow paths, bypassing much of the bulk soil. This double funneling leads to increased soil chemical, biological, and hydrological heterogeneity, which has been shown to persist for decades. In this paper, we review nutrient fluxes of stemflow water for a variety of tree species and climates. The amount of precipitation partitioned by trees to stemflow ranges over more than three orders of magnitude, accounting for 0.07-22% of incident rainfall in a range of precipitation regimes (600-7100 mm.y-i). Stemflow fluxes of NO3- and K were found to be larger for species with greater stemflow partitioning, regardless of climate type. While sternflow volumes may increase in relation to increasing precipitation, stemflow nutrient concentrations tend to become more dilute. On an annual basis, however, it appears that plant canopy morphology is strongly related to stemflow fluxes for plant-mobile nutrients such as K (r2= 0.64) and NO3- (r2= 0.61). Root-induced preferential flow provides an additional feedback mechanism in nutrient cycling by which stemflow-derived nutrient fluxes are delivered to the rhizosphere.
    [Show full text]
  • Technical Manual on Dry Deposition Flux Estimation in East Asia
    Technical Manual on Dry Deposition Flux Estimation in East Asia Endorsed by Scientific Advisory Committee of EANET at its Tenth Session Adopted by Intergovernmental Meeting of EANET at its Twelfth Session November 2010 Network Center for EANET Table of Contents 1. Introduction ------------------------------------------------------------------------------ 1 1.1. Background 1.2. Objectives 1.3. Outline of the manual 2. Fundamental items for dry deposition flux estimation -------------------------- 4 2.1. Air quality measurements 2.1.1. Siting of air quality monitoring 2.1.2. Priority chemical species for dry deposition monitoring in EANET 2.1.3. Instrumentation 2.1.4. Sampling period 2.2. Meteorological measurements 2.2.1. Siting of meteorological instruments 2.2.2. Meteorological parameters necessary for dry deposition flux estimation 2.2.3. Instrumentation 2.2.4. Monitoring period 2.2.5. Atmospheric stability 2.3. Land use information 3. Data reporting --------------------------------------------------------------------------- 16 3.1. Classification of data 3.1.1. Reporting data 3.1.2. Local circumstances information 3.2. Data checking 3.2.1. Statistical tests 3.2.2. Data completeness 3.2.3. Analytical precision 3.3. Data flags and invalid data 3.4. Data reporting form 3.4.1. Information about sites, sampling, shipping, laboratory operation 3.4.2. Analytical condition for filter pack samples 3.4.3. Measurement results and flags 4. Methodology for dry deposition flux estimation in EANET -------------------- 23 4.1. Fundamental items of the inferential method in EANET i 4.2. Parameterization of dry deposition velocity 4.2.1. Gaseous species 4.2.2. Particulate matter 4.3. Computation of dry deposition flux 4.3.1.
    [Show full text]
  • Ii. Guidance on Mapping Concentrations Levels and Deposition Levels
    Informal document n° 5 DRAFT DOCUMENT (August 2014) Prepared by AC Le Gall (ICP M&M), To be reviewed by ICP M&M NFCs II. GUIDANCE ON MAPPING CONCENTRATIONS LEVELS AND DEPOSITION LEVELS Updated by Anne Christine Le Gall, Chairwoman of the Task Force on Modelling and Mapping, from initial text edited by D. Fowler and R. Smith, Mapping Manual 2004 Please refer to this document as: CLRTAP, 2014. Guidance on mapping concentrations levels and deposition levels, Chapter II of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution; accessed on [date of consultation] on Web at www.icpmapping.org .” Chapter II – Guidance on mapping concentrations levels and deposition levels Page II - 3 TABLE OF CONTENT II. GUIDANCE ON MAPPING CONCENTRATIONS LEVELS AND DEPOSITION LEVELS ...................................................................................................................... 1 II.1 INTRODUCTION ................................................................................................. 5 II.2 INFORMATION RELATIVE TO MODELLING AND MAPPING CONCENTRATION AND DEPOSITION ............................................................ 5 II.2.1 General remarks and objectives ........................................................................... 5 II.2.2 UN-ECE EMEP model: A LRTAP chemistry-transport model ............................... 6 II.2.3 Mapped items in long range chemistry-transport models
    [Show full text]
  • Predicting Recovery from Acid Rain Using the Micro-Spatial Heterogeneity of Soil Columns Downhill the Infiltration Zone of Beech Stemflow: Introduction of a Hypothesis
    Model. Earth Syst. Environ. (2016) 2:154 DOI 10.1007/s40808-016-0205-8 ORIGINAL ARTICLE Predicting recovery from acid rain using the micro-spatial heterogeneity of soil columns downhill the infiltration zone of beech stemflow: introduction of a hypothesis 1 1 Torsten W. Berger • Alexander Muras Received: 25 July 2016 / Accepted: 26 July 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Release of stored sulfur may delay the recovery Grerup 2000). Enhanced soil acidification around beech of soil pH from Acid Rain. It is hypothesized that analyzing stems was also observed by Koch and Matzner (1993)in the micro-spatial heterogeneity of soil columns downhill of the Solling area (Germany) and by Sonderegger (1981) a beech stem enables predictions of soil recovery as a and Kazda (1983) in the Vienna Woods. Comparison function of historic acid loads and time. We demonstrated in between chemical parameters of soil from the infiltra- a very simplified approach, how these two different factors tionszoneofstemflownearthebaseofthestemand may be untangled from each other using synthetic data. from the between tree area in old beech stands by Lin- Thereafter, we evaluated the stated hypothesis based upon debner (1990; sample collection in 1984) and Rampazzo chemical soil data with increasing distance from the stem of and Blum (1992) in the Vienna Woods proved a sig- beech trees. It is predicted that the top soil will recover from nificant impact of deposition of atmospheric pollutants: acid deposition, as already recorded in the infiltration zone soil acidification, heavy metal accumulation, increased of stemflow near the base of the stem.
    [Show full text]