Chapter 6 Hydrologic Processes and Watershed Response

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6 Hydrologic Processes and Watershed Response Chapter 6 Hydrologic Processes and Watershed Response Rita D. Winkler, R.D. (Dan) Moore, Todd E. Redding, David L. Spittlehouse, Darryl E. Carlyle-Moses, and Brian D. Smerdon INTRODUCTION Streamflow reflects the complex interactions be- and watershed scales. Understanding how stream- tween the weather and the biophysical environ- flow is generated is vital in evaluating the effects of ment as water flows through the hydrologic cycle. It forest disturbance on hydrologic response and in represents the balance of water that remains after all identifying best management practices in a water- losses back to the atmosphere and storage opportu- shed. Chapter 7 (“The Effects of Forest Disturbance nities within a watershed have been satisfied. This on Hydrologic Processes and Watershed Response”) chapter describes the hydrologic processes that affect describes how forest disturbances, such as insects, the generation of streamflow in British Columbia’s fire, logging, or silviculture, alter both stand-scale watersheds. These processes include precipitation, processes and watershed response as streamflow. interception, evaporation, infiltration, soil mois- The discussion in the current chapter is organized ture storage and hillslope flow, overland flow, and by surface and subsurface processes, beginning with groundwater. The processes and their spatial and precipitation and ending with streamflow. temporal variability are described at both the stand SURFACE PROCESSES Forest vegetation directly affects the amount of water evaporation. Water also returns to the atmosphere available for streamflow through the interception of through transpiration and by evaporation from the rain and snow, the evaporation of intercepted water, forest floor, soil surface, and open water bodies, such and through transpiration. Altering forest vegetation as lakes and wetlands (Figure 6.1). Forest vegetation can have an important influence on water balances at reduces the rate at which snow melts and hence the the site and watershed scale. In the hydrologic cycle rate of soil moisture recharge and downslope flow (Figure 6.1), the forest canopy is the first surface that (Spittlehouse and Winkler 2002). intercepts and stores precipitation, resulting in some A water balance equation is often used to express amount (depending on canopy characteristics) re- the contributions of these processes to streamflow. turning to the atmosphere through sublimation and At the watershed scale, the water balance equation 133 Precipitation Precipitation Interception loss Evapotranspiration Transpiration Evaporation Depression Storage Overland Flow Infiltration Subsurface Return Flow Flow Evaporation Stream Through- Stem- Flow fall flow Groundwater Recharge Root Baseflow Infiltration Lateral Zone { Flow Drainage Groundwater Flow FIGURE 6.1 The hillslope hydrologic cycle and stand water balance. links streamfl ow R( ), precipitation (P), evaporation ∆W = F – Et – Es – D (2) (E), losses to regional groundwater (G), and changes in watershed storage (∆S): where ∆W is the change in soil water storage (mil- limetres) over time. During winter in areas where R = P – E – G ± ∆S (1) precipitation falls as snow, there is a delay in infi l- where the variables are measured in water depth tration until snowmelt: Es is zero when snow covers equivalent (millimetres) over time. Th e quantity G the ground, and water content change depends only represents water that leaves the watershed as ground- on drainage from the root zone except where tree water and thus does not contribute to streamfl ow. transpiration occurs during snowmelt (Spittlehouse Watershed storage includes water stored as snow, 2002). Th ese processes are discussed in detail in the surface water (lakes, ponds, depression storage), following sections. Equation 2 does not account for glacier ice, soil moisture, and groundwater. As water lateral downslope fl ow of soil water, and therefore fl ows through a watershed, it oft en moves between may not be applicable on hillslopes. these storage compartments before discharging to a stream or being lost through evaporation and Precipitation transpiration. For example, meltwater draining from a snowpack and infi ltrating the soil represents a loss Precipitation is defi ned as liquid (rain) or frozen of snowpack storage and a gain of soil moisture, but (sleet, hail, graupel, snow) water, or a combination with no net eff ect on total watershed storage. of both, falling from the sky. Water is also depos- At smaller spatial scales, the site or stand wa- ited at the land surface through condensation (e.g., ter balance equation links soil water storage (W), dew, fog, rime, and hoar frost) (UNESCO and World precipitation (P), interception (I), overland fl ow O( ), Meteorological Association, International Hydrology infi ltration F( = P – I – O), plant transpiration (Et), Program 1998). British Columbia’s precipitation re- evaporation from the soil surface (Es), and drainage gimes are a result of weather systems that are typical from the root zone (D): of mid-latitudes on the east side of the Pacifi c Ocean 134 and that interact with the mountain ranges and val- example, these events can have a significant effect leys paralleling the coast. Alternating sequences of on vegetation (e.g., dew facilitates the growth and eastward-flowing high- and low-pressure systems, spread of disease); however, the amount of water incursions of arctic air, and flows from the midwest- deposited during these events makes a negligible ern United States interact with topography to pro- contribution to the annual water balance. duce precipitation regimes including wet coastal, dry Ice storms are more damaging than rime. These interior, moist northern, and snow-dominated high storms occur when liquid precipitation freezes on elevations (Hare and Thomas 1974; Phillips 1990; also contact with a surface and forms a glaze (layer of see Chapter 3, “Weather and Climate”). ice) (Glickman [editor] 2000). The glaze has a much Precipitation and other climatic elements vary higher density than rime and hoar frost, and its seasonally because of the combined effects of solar weight can break branches or whole trees and cause radiation and weather patterns. For example, most widespread damage (Irland 1998, 2000). coastal locations are dominated by a wet-winter/dry- Fog drip is another form of condensation precipi- summer pattern. In the lee of the Coast Mountains tation. It occurs when wind moves clouds at ground and throughout much of the interior, seasonal differ- level (fog) so that water droplets collide with and ad- ences in precipitation are smaller than on the coast here to foliage, branches, stems, and other surfaces. (see Chapter 3, “Weather and Climate”). Variations Subsequently, individual droplets coalesce and drip in sea surface temperatures in the Pacific Ocean from the tree canopy or flow down the branches and (e.g., El Niño/La Niña and the Pacific Decadal Oscil- stems to the ground. Forests on windward slopes and lation [PDO]) also influence precipitation on annual ridge tops are most prone to fog drip because of the and decadal cycles, producing large between-year large canopy area that is exposed to the cloud. On variations superimposed on long-term trends flat terrain and leeward slopes, most of the fog drip (Rodenhuis et al. 2007). occurs at the edges of stands (clearcut edges, lake In general, rainfall volume and intensity are the edges, etc.). Fog drip can be a significant component highest during the winter in coastal British Colum- of the annual water balance in some ecosystems, pre- bia. Storms that produce over 100 mm of rain in a dominantly in coastal areas (Harr 1982; Schemenau- 24-hour period are common, as are intensities that er 1986; Ingraham and Matthews 1995). For example, reach 30 mm/h. Coastal winter rainstorms can last Harr (1982) reported that fog drip in a windward- for many days with long periods of light drizzle facing watershed in coastal Oregon resulted in an intermixed with periods of high rainfall intensi- approximate 30% increase in water reaching the soil ties. Summer storms on the coast are usually much surface, which makes an important contribution to shorter in duration and lower in total precipitation summer flows. Studies in coastal British Columbia than winter storms. In contrast, rainstorms in the (Beaudry and Sagar 1995; Spittlehouse 1998a, 1998b) province’s interior and north are usually of shorter show that fog drip is not a significant component duration (less than 1 day) and occur in late spring of the water balance. Fog drip generally results in a through early fall when temperatures are above 0°C. net gain in water to the land base. Fog drip can have Storms with higher rainfall volumes and intensities negative impacts where it is combined with acidic are often convective, with durations of a few hours. deposition (Schemenauer 1986; Schemenauer et al. In the province’s interior and north, infrequent 1995). This has not been reported as a problem in the warm frontal storms in the late winter can also de- province, although localized effects may occur near liver large amounts of rain. Further information on cities and certain industrial facilities. precipitation and intensity-duration-frequency data Snow forms in saturated air at subzero tempera- is provided in Chapter 17 (“Watershed Measurement tures when a water droplet containing a conden- Methods and Data Limitations”). sation nucleus (e.g., dust, or inorganic or organic Dew forms on surfaces above 0°C, whereas hoar matter) drops below some particle-specific tem- frost forms at or below this temperature (Glickman perature and freezes. The temperature at which the [editor] 2000). These condensation events occur water droplet freezes depends on its size and chemi- overnight and are facilitated by clear skies and low cal composition, and on the ice nucleation mecha- wind speeds that cool the condensation surfaces. nism by which it freezes (Wallace and Hobbs 1977; Rime is formed by the rapid cooling of water blown Schemenauer et al. 1981). Initially, all ice crystals onto exposed frozen surfaces. Condensation pre- are very small (< 75 µm) and have simple shapes; cipitation events can be important biologically.
Recommended publications
  • Flow Regime Transition in Countercurrent Packed Column Monitored by ECT
    Flow Regime Transition in Countercurrent Packed Column Monitored by ECT Zhigang Li, Yuan Chen, Yunjie Yang, Chang Liu, Mathieu Lucquiaud and Jiabin Jia* School of Engineering, The University of Edinburgh, Edinburgh, UK, EH9 3JL [email protected] Abstract Vertical packed columns are widely used in absorption, stripping and distillation processes. Flooding will occur in the vertical packed columns as a result of excessive liquid accumulation, which reduces mass transfer efficiency and causes a large pressure drop. Pressure drop measurements are typically used as the hydrodynamic parameter for predicting flooding. They are, however, only indicative of the occurrence of transition of the flow regime across the packed column. They offer limited spatial information to mass transfer packed column operators and designers. In this work, a new method using Electrical Capacitance Tomography (ECT) is implemented for the first time so that real-time flow regime monitoring at different vertical positions is achieved in a countercurrent packed bed column using ECT. Two normalisation methods are implemented to monitor the transition from pre-loading to flooding in a column of 200 mm diameter, 1200 mm height filled with plastic structured packing. Liquid distribution in the column can be qualitatively visualised via reconstructed ECT images. A flooding index is implemented to quantitatively indicate the progression of local flooding. In experiments, the degree of local flooding is quantified at various gas flow rates and locations of ECT sensor. ECT images were compared with pressure drop and visual observation. The experimental results demonstrate that ECT is capable of monitoring liquid distribution, identifying flow regime transitions and predicting local flooding.
    [Show full text]
  • The Quantitative Importance of Stemflow: an Evaluation of Past Research and Results from a Study in Lodgepole Pine (Pinus Contorta Var
    THE QUANTITATIVE IMPORTANCE OF STEMFLOW: AN EVALUATION OF PAST RESEARCH AND RESULTS FROM A STUDY IN LODGEPOLE PINE (PINUS CONTORTA VAR. LATIFOLIA) STANDS IN SOUTHERN BRITISH COLUMBIA by Adam Jon McKee B.A. Thompson Rivers University, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (ENVIRONMENTAL SCIENCE) Thesis examining committee: Darryl Carlyle-Moses (Ph.D.), Thesis Supervisor, Assistant Professor, Dept. of Geography, Thompson Rivers University Karl Larsen (Ph.D.), Committee Member, Associate Professor, Dept. of Natural Resource Sciences, Thompson Rivers University Rita Winkler (Ph.D., R.P.F.), Committee Member, Adjunct Professor, Dept. of Natural Resource Sciences and Research Hydrologist, BC Ministry of Forests and Range Delphis F. Levia (Ph.D.), External Examiner, Associate Professor, Depts. of Geography & Plant and Soil Science, University of Delaware Spring Convocation 2011 Thompson Rivers University © Adam Jon McKee, 2010 Thesis Supervisory Committee ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member This thesis by Adam Jon McKee was defended successfully in an oral examination on December 9, 2010 by a committee comprising: ________________________ Dr. Delphis F. Levia, External Examiner ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member ii ________________________ Dr. Lauchlan Fraser, Chair/Coordinator of Graduate Program Committee ________________________ Dr. Tom Dickinson, Dean of Science ________________________ Dr. Peter Tsigaris, Chair of the Examining Committee This thesis is accepted in its present form by the Office of the Associate Vice President, Research and Graduate Studies as satisfying the thesis requirements for the degree Master of Science, Environmental Science.
    [Show full text]
  • Chapter 3. Hydrology
    3 Hydrology Robert R. Ziemer and Thomas E. Lisle Overview transient snow packs during rain on snow events. l Streamflow is highly variable in mountainous l Removal of trees, which consume water, areas of the Pacific coastal ecoregion. The tends to increase soil moisture and base stream- timing and variability of streamflow is strongly flow in summer when rates of evapotranspira- influenced by form of precipitation (e.g., rain- tion are high. These summertime effects tend to fall, snowmelt, or rain on snow). disappear within several years. Effects of tree l High variability in runoff processes limits removal on soil moisture in winter are minimal the ability to detect and predict human-caused because of high seasonal rainfall and reduced changes in streamflow. Changes in flow are usu- rates of evapotranspiration. ally associated with changes in other watershed l The rate of recovery from land use processes that may be of equal concern. Studies depends on the type of land use and on the of how land use affects watershed responses are hydrologic processes that are affected. thus likely to be most useful if they focus on how runoff processes are affected at the site of disturbance and how these effects, hydrologic Introduction or otherwise, are propagated downstream. l Land use and other site factors affecting Streamflow is an essential variable in under- flows have less effect on major floods and in standing the functioning of watersheds and large basins than on smaller peak flows and in associated ecosystems because it supplies the small basins. Land use is more likely to affect primary medium and source of energy for the streamflow during rain on snow events, which movement of water, sediment, organic mate- usuallv produce larger floods in much of the rial, nutrients, and thermal energy.
    [Show full text]
  • By Mary Katherine Matella a Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree of Doctor of Philo
    Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits by Mary Katherine Matella A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Adina M. Merenlender, Chair Professor Maggi Kelly Professor G. Mathias Kondolf Spring 2013 Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits Copyright 2013 by Mary Katherine Matella ABSTRACT Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits by Mary Katherine Matella Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Adina M. Merenlender, Chair This dissertation addresses the role that dynamic flow characteristics play in shaping the potential for significant ecosystem benefits from floodplain restoration. Mediterranean-climate river systems present challenges for restoring healthy floodplains because of the inter and intra- annual variability in stream flow, which has been dramatically reduced in an effort to control flooding and to provide a more consistent year-round water supply for human use. Habitat restoration efforts require that this reduced stream flow be altered in order to recover more naturally dynamic flow patterns and reconnect floodplains. This thesis defines and takes advantage of an eco-hydrology modeling framework to reveal how the ecological returns of different hydrologic alterations or restoration scenarios—including changes to the physical landscape and flow dynamics—influence habitat connectivity for freshwater biota. A method for quantifying benefits of expanding floodplain connectivity can highlight actions that might simultaneously reduce flood risk and restore ecological functions, such as supporting fish habitat benefits, food web productivity, and riparian vegetation establishment.
    [Show full text]
  • Meteorological Influences on Stemflow Generation Across Diameter Size Classes of Two Morphologically Distinct Deciduous Species
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260683953 Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species Article in International Journal of Biometeorology · March 2014 DOI: 10.1007/s00484-014-0807-7 · Source: PubMed CITATIONS READS 13 52 3 authors, including: John Toland Van Stan Jarrad Van Stan Georgia Southern University Harvard Medical School, Massachusetts Gen… 64 PUBLICATIONS 398 CITATIONS 25 PUBLICATIONS 105 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Canopy influences over microbial processes in forest critical zones View project Effects of Urbanization on Forest Canopy Ecohydrology View project All content following this page was uploaded by John Toland Van Stan on 16 July 2015. The user has requested enhancement of the downloaded file. Int J Biometeorol (2014) 58:2059–2069 DOI 10.1007/s00484-014-0807-7 ORIGINAL PAPER Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species John T. Van Stan II & Jarrad H. Van Stan & Delphis F. Levia Jr. Received: 15 November 2013 /Revised: 11 February 2014 /Accepted: 19 February 2014 /Published online: 11 March 2014 # ISB 2014 Abstract Many tree species have been shown to funnel sub- meteorological conditions). Multiple regressions performed on stantial rainfall to their stem base as stemflow flux, given a leafless canopy stemflow resulted in an inverse relationship favorable stand structure and storm conditions. As stemflow is with wind speeds, likely decoupling stemflow sheltered solely a spatially concentrated flux, prior studies have shown its on bark surfaces from VPD influences.
    [Show full text]
  • Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas Kathryn Lea Mccoy University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas Kathryn Lea McCoy University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Hydraulic Engineering Commons Recommended Citation McCoy, Kathryn Lea, "Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas" (2012). Theses and Dissertations. 650. http://scholarworks.uark.edu/etd/650 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. COMPREHENSIVE DRAINAGE STUDY OF THE UPPER REACH OF COLLEGE BRANCH IN FAYETTEVILLE, ARKANSAS COMPREHENSIVE DRAINAGE STUDY OF THE UPPER REACH OF COLLEGE BRANCH IN FAYETTEVILLE, ARKANSAS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering By Kathryn Lea McCoy University of Arkansas Bachelor of Science in Biological Engineering, 2009 December 2012 University of Arkansas ABSTRACT College Branch is a stream with headwaters located on the University of Arkansas campus. The stream flows through much of the west side of campus, gaining discharge and enlarging its channel as it meanders to the south. College Branch has experienced erosion and flooding issues in recent years due to increased urbanization of its watershed and increased runoff volume. The purpose of this project was to develop a comprehensive drainage study of College Branch on the University of Arkansas campus.
    [Show full text]
  • Nutrient Cycling by Throughfall and Stemflow Precipitation in Three Coastal Oregon Forest Types
    NUTRIENT CYCLING BY THROUGHFALL AND STEMFLOW PRECIPITATION IN THREE COASTAL OREGON FOREST TYPES by ROBERT F. TARRANT, K. C. LU, W. B. BOLLEN, and C. S. CHEN PACIFIC NORTHWEST U.SD.A. FOREST SERVICE FOREST AND RANGE EXPERIMENT STATION RESEARCH PAPER PNW-54 U S. DEPARTMENT OF AGRICULTURE • FOREST SERVICE 1968 CONTENTS INTRODUCTION 1 EXPERIMENTAL PROCEDURES 2 RESULTS AND DISCUSSION 3 Nitrogen 3 Total Dissolved Solids 4 Acidity of Precipitation 5 CONCLUSIONS . .... ..... 6 LITERATURE CITED 7 Robert F. Tarrant and K C. Lu are, respect- ively, Principal Soil Scientist and Microbiolo- gist, Forestry Sciences Laboratory, Pacific Northwest Forest and Range Experiment Sta- tion, Corvallis, Oregon. W. B. Bollen and C. S. Chen are, respectively, Professor and Research Assistant, Department of Microbiology, Oregon State University, Corvallis, Oregon. This study was supported, in part, by the National Science Foundation, Grant No. GB- 3214. INTRODUCTION In the Pacific Northwest, where annual pre- cipitation ranges from about 40 to 120 inches per year in commercial forest areas, rainfall washing through the forest canopy returns a part of the nutrient capital of the ecosystem to the soil. Nitrogen is of special interest in this connection because it is the only nutrient ele- ment thus far found to appreciably stimulate growth of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) when applied as fertilizer (Gessel et al. 1965). A number of tree species throughout the world have been shown to contribute to the en- richment of throughfall and stemflow. 1 but in most studies of this phenomenon, only nonnitro- genous nutrient ions have been determined. Few investigators have determined N content in throughfall and stemflow (Voigt 1960b; Sviridova 1960; Mina 1965; Maruyama et al.
    [Show full text]
  • Image Analysis Techniques to Estimate River Discharge Using Time-Lapse Cameras in Remote Locations
    Image analysis techniques to estimate river discharge using time-lapse cameras in remote locations David S. Young1, Jane K. Hart2, Kirk Martinez1 1 – Electronics and Computer Science, 2 – Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK email: [email protected], [email protected], [email protected] NOTICE: This is the authors’ version of a work that was accepted for publication in Computers & Geosciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Geosciences, 76, 1-10 (2015) doi: 10.1016/j.cageo.2014.11.008 Abstract Cameras have the potential to provide new data streams for environmental science. Improvements in image quality, power consumption and image processing algorithms mean that it is now possible to test camera-based sensing in real-world scenarios. This paper presents an 8-month trial of a camera to monitor discharge in a glacial river, in a situation where this would be difficult to achieve using methods requiring sensors in or close to the river, or human intervention during the measurement period. The results indicate diurnal changes in discharge throughout the year, the importance of subglacial winter water storage, and rapid switching from a “distributed” winter system to a “channelised” summer drainage system in May. They show that discharge changes can be measured with an accuracy that is useful for understanding the relationship between glacier dynamics and flow rates.
    [Show full text]
  • State Standard for Hydrologic Modeling Guidelines
    ARIZONA DEPARTMENT OF WATER RESOURCES FLOOD MITIGATION SECTION State Standard For Hydrologic Modeling Guidelines Under the authority outlined in ARS 48-3605(A) the Director of the Arizona Department of Water Resources establishes the following standard for Hydrologic Modeling Guidelines in Arizona. State Standard for Hydrologic Modeling, or “guidelines for the experienced modeler”, has been developed to address hydrologic conditions for a variety of statewide watersheds. Included are problems and situations identified by the State Standard Work Group (SSWG) and floodplain managers. The intended audience is statewide; engineers, professionals and Floodplain Administrators. The following topics are included: • Hydrologic Model comparison and recommendation • Guidelines and parameters • Model application for specific situations, and associated hydrologic parameters • Precipitation values (NOAA 14) • Storm duration • Unique conditions, such as wildfire burn, overgrazing, logging, drought, rapid snowmelt, urbanization. The State Standard includes examples addressing the above key issues. This requirement is effective August, 2007. Copies of this State Standard and the State Standard Technical Supplement can be obtained by contacting the Department’s Water Engineering Section at (602) 771-8652. SS10-07 1 August 2007 TABLE OF CONTENTS 1.0 Introduction.......................................................................................................5 1.1 Purpose and Background .......................................................................5
    [Show full text]
  • Rainfall Input, Throughfall and Stemflow of Nutrients in a Central
    Biogeochemistry 67: 73–91, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees G.B. CHUYONG1,2,4, D.M. NEWBERY2,3,* and N.C. SONGWE1 1Institute of Agronomic Research, Forest Research Station Kumba, PMB 29 Kumba, Cameroon; 2De- partment of Biological and Molecular Sciences, University of Stirling, Stirling, FK9 4LA, UK; 3Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, CH-3013, Switzerland; 4Current address: Department of Life Sciences, University of Buea, POB 63 Buea, Cameroon; *Author for correspon- dence (e-mail: [email protected]; phone: 0041-31-631-8815; fax: -31-332-2059) Received 5 March 2002; accepted in revised form 14 January 2003 Key words: Atmospheric input, Ectomycorrhizas, Korup, Leaching, Phosphorus, Priming effect Abstract. Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha−1, and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha−1 respectively.
    [Show full text]
  • Subsurface Drainage Processes, by Elizabeth Keppeler, and David Brown
    Subsurface Drainage Processes and Management Impacts1 Elizabeth Keppeler2 and David Brown3 Abstract: Storm-induced streamflow in forested upland watersheds is linked to he hydrologic response of forested watersheds to rain events rainfall by transient, variably saturated flow through several different flow Toccurs through several interrelated flow processes. Soil surface paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or conditions determine whether rainfall will run off as surface flow or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream whether it will infiltrate and travel through the subsurface. as subsurface flow. Subsurface runoff can occur within micropores (voids between Infiltration capacities for soils in the coastal redwood region exceed soil grains), various types of macropores (structural voids between aggregates, plant and animal-induced biopores), and through fractures in weathered and maximum rainfall intensities common in the region. Exceptions consolidated bedrock. In addition to generating flow through the subsurface, occur in isolated areas where bedrock is exposed at the land surface. transient rain events can also cause large increases in fluid pressures within a More widespread are infiltration limitations resulting from soil hillslope. If pore pressures exceed stability limits of soils and shallow geologic compaction associated with road building, landings, and other materials, landslides and debris flows may result. Subsurface monitoring of constructed surfaces. Over the great majority of forested landscapes, pipeflows and pore pressures in unchanneled swales at North Fork Caspar Creek rainfall infiltrates into the soil and flows through the subsurface to in the Jackson Demonstration State Forest began in 1985. Four sites have been streams, rivers, and lakes.
    [Show full text]
  • Variability of Throughfall and Stemflow Deposition in Pine and Beech Stands ( Czarne Lake Catchment, Gardno Lake Catchment on Wolin Island )
    PrACE GEOGrAfICzNE, zeszyt 143 Instytut Geografii i Gospodarki Przestrzennej UJ Kraków 2015, 85 – 102 doi : 10.4467/20833113PG.15.027.4628 Variability of throughfall and stemflow deposition in pine and beech stands ( Czarne lake catchment, gardno lake catchment on wolin island ) Robert Kruszyk, Andrzej Kostrzewski, Jacek Tylkowski Abstract : The research sought to determine the range of conversion of the chemical composition of precipitation in a beech stand located in the Gardno Lake catchment ( Wolin Island ) and a pine stand in the Czarne Lake catchment ( Upper Parsęta catchment, West Pomerania Province ). The presented results cover three hydrological years : 2012, 2013 and 2014. The research focused on the chemical composition of bulk precipitation ( in the open ), throughfall and stemflow ( in a forest ). The obtained results confirm that after precipitation has had contact with plant surfaces there is an increase in its mineral content. This is due to the process of enrichment of throughfall and stemflow with elements leached out of needles + 2+ + – + 2+ 2– – and leaves ( K , Mg ) and coming from dry deposition ( NH 4, Cl , Na , Mg , SO 4 , NO 3 ) washed out from plant surfaces. The research, based on the canopy budget model, indicates that in the case of potassium, its load leached out of needles and leaves accounted for 75.6 % and 73 %, respectively, of its total deposition on the forest floor. Calcium leaching was not detected in either of the two stands. In comparison with potassium, the range of magnesium leaching was smaller and amounted to 34 % under beech and 26.5 % under pine. As to loads of potassium and magnesium in the beech stand, they were more than twice as large as the ones observed in the pine stand.
    [Show full text]