Chapter 6 Hydrologic Processes and Watershed Response
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flow Regime Transition in Countercurrent Packed Column Monitored by ECT
Flow Regime Transition in Countercurrent Packed Column Monitored by ECT Zhigang Li, Yuan Chen, Yunjie Yang, Chang Liu, Mathieu Lucquiaud and Jiabin Jia* School of Engineering, The University of Edinburgh, Edinburgh, UK, EH9 3JL [email protected] Abstract Vertical packed columns are widely used in absorption, stripping and distillation processes. Flooding will occur in the vertical packed columns as a result of excessive liquid accumulation, which reduces mass transfer efficiency and causes a large pressure drop. Pressure drop measurements are typically used as the hydrodynamic parameter for predicting flooding. They are, however, only indicative of the occurrence of transition of the flow regime across the packed column. They offer limited spatial information to mass transfer packed column operators and designers. In this work, a new method using Electrical Capacitance Tomography (ECT) is implemented for the first time so that real-time flow regime monitoring at different vertical positions is achieved in a countercurrent packed bed column using ECT. Two normalisation methods are implemented to monitor the transition from pre-loading to flooding in a column of 200 mm diameter, 1200 mm height filled with plastic structured packing. Liquid distribution in the column can be qualitatively visualised via reconstructed ECT images. A flooding index is implemented to quantitatively indicate the progression of local flooding. In experiments, the degree of local flooding is quantified at various gas flow rates and locations of ECT sensor. ECT images were compared with pressure drop and visual observation. The experimental results demonstrate that ECT is capable of monitoring liquid distribution, identifying flow regime transitions and predicting local flooding. -
The Quantitative Importance of Stemflow: an Evaluation of Past Research and Results from a Study in Lodgepole Pine (Pinus Contorta Var
THE QUANTITATIVE IMPORTANCE OF STEMFLOW: AN EVALUATION OF PAST RESEARCH AND RESULTS FROM A STUDY IN LODGEPOLE PINE (PINUS CONTORTA VAR. LATIFOLIA) STANDS IN SOUTHERN BRITISH COLUMBIA by Adam Jon McKee B.A. Thompson Rivers University, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (ENVIRONMENTAL SCIENCE) Thesis examining committee: Darryl Carlyle-Moses (Ph.D.), Thesis Supervisor, Assistant Professor, Dept. of Geography, Thompson Rivers University Karl Larsen (Ph.D.), Committee Member, Associate Professor, Dept. of Natural Resource Sciences, Thompson Rivers University Rita Winkler (Ph.D., R.P.F.), Committee Member, Adjunct Professor, Dept. of Natural Resource Sciences and Research Hydrologist, BC Ministry of Forests and Range Delphis F. Levia (Ph.D.), External Examiner, Associate Professor, Depts. of Geography & Plant and Soil Science, University of Delaware Spring Convocation 2011 Thompson Rivers University © Adam Jon McKee, 2010 Thesis Supervisory Committee ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member This thesis by Adam Jon McKee was defended successfully in an oral examination on December 9, 2010 by a committee comprising: ________________________ Dr. Delphis F. Levia, External Examiner ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member ii ________________________ Dr. Lauchlan Fraser, Chair/Coordinator of Graduate Program Committee ________________________ Dr. Tom Dickinson, Dean of Science ________________________ Dr. Peter Tsigaris, Chair of the Examining Committee This thesis is accepted in its present form by the Office of the Associate Vice President, Research and Graduate Studies as satisfying the thesis requirements for the degree Master of Science, Environmental Science. -
Chapter 3. Hydrology
3 Hydrology Robert R. Ziemer and Thomas E. Lisle Overview transient snow packs during rain on snow events. l Streamflow is highly variable in mountainous l Removal of trees, which consume water, areas of the Pacific coastal ecoregion. The tends to increase soil moisture and base stream- timing and variability of streamflow is strongly flow in summer when rates of evapotranspira- influenced by form of precipitation (e.g., rain- tion are high. These summertime effects tend to fall, snowmelt, or rain on snow). disappear within several years. Effects of tree l High variability in runoff processes limits removal on soil moisture in winter are minimal the ability to detect and predict human-caused because of high seasonal rainfall and reduced changes in streamflow. Changes in flow are usu- rates of evapotranspiration. ally associated with changes in other watershed l The rate of recovery from land use processes that may be of equal concern. Studies depends on the type of land use and on the of how land use affects watershed responses are hydrologic processes that are affected. thus likely to be most useful if they focus on how runoff processes are affected at the site of disturbance and how these effects, hydrologic Introduction or otherwise, are propagated downstream. l Land use and other site factors affecting Streamflow is an essential variable in under- flows have less effect on major floods and in standing the functioning of watersheds and large basins than on smaller peak flows and in associated ecosystems because it supplies the small basins. Land use is more likely to affect primary medium and source of energy for the streamflow during rain on snow events, which movement of water, sediment, organic mate- usuallv produce larger floods in much of the rial, nutrients, and thermal energy. -
By Mary Katherine Matella a Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree of Doctor of Philo
Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits by Mary Katherine Matella A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Adina M. Merenlender, Chair Professor Maggi Kelly Professor G. Mathias Kondolf Spring 2013 Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits Copyright 2013 by Mary Katherine Matella ABSTRACT Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits by Mary Katherine Matella Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Adina M. Merenlender, Chair This dissertation addresses the role that dynamic flow characteristics play in shaping the potential for significant ecosystem benefits from floodplain restoration. Mediterranean-climate river systems present challenges for restoring healthy floodplains because of the inter and intra- annual variability in stream flow, which has been dramatically reduced in an effort to control flooding and to provide a more consistent year-round water supply for human use. Habitat restoration efforts require that this reduced stream flow be altered in order to recover more naturally dynamic flow patterns and reconnect floodplains. This thesis defines and takes advantage of an eco-hydrology modeling framework to reveal how the ecological returns of different hydrologic alterations or restoration scenarios—including changes to the physical landscape and flow dynamics—influence habitat connectivity for freshwater biota. A method for quantifying benefits of expanding floodplain connectivity can highlight actions that might simultaneously reduce flood risk and restore ecological functions, such as supporting fish habitat benefits, food web productivity, and riparian vegetation establishment. -
Meteorological Influences on Stemflow Generation Across Diameter Size Classes of Two Morphologically Distinct Deciduous Species
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260683953 Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species Article in International Journal of Biometeorology · March 2014 DOI: 10.1007/s00484-014-0807-7 · Source: PubMed CITATIONS READS 13 52 3 authors, including: John Toland Van Stan Jarrad Van Stan Georgia Southern University Harvard Medical School, Massachusetts Gen… 64 PUBLICATIONS 398 CITATIONS 25 PUBLICATIONS 105 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Canopy influences over microbial processes in forest critical zones View project Effects of Urbanization on Forest Canopy Ecohydrology View project All content following this page was uploaded by John Toland Van Stan on 16 July 2015. The user has requested enhancement of the downloaded file. Int J Biometeorol (2014) 58:2059–2069 DOI 10.1007/s00484-014-0807-7 ORIGINAL PAPER Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species John T. Van Stan II & Jarrad H. Van Stan & Delphis F. Levia Jr. Received: 15 November 2013 /Revised: 11 February 2014 /Accepted: 19 February 2014 /Published online: 11 March 2014 # ISB 2014 Abstract Many tree species have been shown to funnel sub- meteorological conditions). Multiple regressions performed on stantial rainfall to their stem base as stemflow flux, given a leafless canopy stemflow resulted in an inverse relationship favorable stand structure and storm conditions. As stemflow is with wind speeds, likely decoupling stemflow sheltered solely a spatially concentrated flux, prior studies have shown its on bark surfaces from VPD influences. -
Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas Kathryn Lea Mccoy University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas Kathryn Lea McCoy University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Hydraulic Engineering Commons Recommended Citation McCoy, Kathryn Lea, "Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas" (2012). Theses and Dissertations. 650. http://scholarworks.uark.edu/etd/650 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. COMPREHENSIVE DRAINAGE STUDY OF THE UPPER REACH OF COLLEGE BRANCH IN FAYETTEVILLE, ARKANSAS COMPREHENSIVE DRAINAGE STUDY OF THE UPPER REACH OF COLLEGE BRANCH IN FAYETTEVILLE, ARKANSAS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering By Kathryn Lea McCoy University of Arkansas Bachelor of Science in Biological Engineering, 2009 December 2012 University of Arkansas ABSTRACT College Branch is a stream with headwaters located on the University of Arkansas campus. The stream flows through much of the west side of campus, gaining discharge and enlarging its channel as it meanders to the south. College Branch has experienced erosion and flooding issues in recent years due to increased urbanization of its watershed and increased runoff volume. The purpose of this project was to develop a comprehensive drainage study of College Branch on the University of Arkansas campus. -
Nutrient Cycling by Throughfall and Stemflow Precipitation in Three Coastal Oregon Forest Types
NUTRIENT CYCLING BY THROUGHFALL AND STEMFLOW PRECIPITATION IN THREE COASTAL OREGON FOREST TYPES by ROBERT F. TARRANT, K. C. LU, W. B. BOLLEN, and C. S. CHEN PACIFIC NORTHWEST U.SD.A. FOREST SERVICE FOREST AND RANGE EXPERIMENT STATION RESEARCH PAPER PNW-54 U S. DEPARTMENT OF AGRICULTURE • FOREST SERVICE 1968 CONTENTS INTRODUCTION 1 EXPERIMENTAL PROCEDURES 2 RESULTS AND DISCUSSION 3 Nitrogen 3 Total Dissolved Solids 4 Acidity of Precipitation 5 CONCLUSIONS . .... ..... 6 LITERATURE CITED 7 Robert F. Tarrant and K C. Lu are, respect- ively, Principal Soil Scientist and Microbiolo- gist, Forestry Sciences Laboratory, Pacific Northwest Forest and Range Experiment Sta- tion, Corvallis, Oregon. W. B. Bollen and C. S. Chen are, respectively, Professor and Research Assistant, Department of Microbiology, Oregon State University, Corvallis, Oregon. This study was supported, in part, by the National Science Foundation, Grant No. GB- 3214. INTRODUCTION In the Pacific Northwest, where annual pre- cipitation ranges from about 40 to 120 inches per year in commercial forest areas, rainfall washing through the forest canopy returns a part of the nutrient capital of the ecosystem to the soil. Nitrogen is of special interest in this connection because it is the only nutrient ele- ment thus far found to appreciably stimulate growth of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) when applied as fertilizer (Gessel et al. 1965). A number of tree species throughout the world have been shown to contribute to the en- richment of throughfall and stemflow. 1 but in most studies of this phenomenon, only nonnitro- genous nutrient ions have been determined. Few investigators have determined N content in throughfall and stemflow (Voigt 1960b; Sviridova 1960; Mina 1965; Maruyama et al. -
Image Analysis Techniques to Estimate River Discharge Using Time-Lapse Cameras in Remote Locations
Image analysis techniques to estimate river discharge using time-lapse cameras in remote locations David S. Young1, Jane K. Hart2, Kirk Martinez1 1 – Electronics and Computer Science, 2 – Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK email: [email protected], [email protected], [email protected] NOTICE: This is the authors’ version of a work that was accepted for publication in Computers & Geosciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Geosciences, 76, 1-10 (2015) doi: 10.1016/j.cageo.2014.11.008 Abstract Cameras have the potential to provide new data streams for environmental science. Improvements in image quality, power consumption and image processing algorithms mean that it is now possible to test camera-based sensing in real-world scenarios. This paper presents an 8-month trial of a camera to monitor discharge in a glacial river, in a situation where this would be difficult to achieve using methods requiring sensors in or close to the river, or human intervention during the measurement period. The results indicate diurnal changes in discharge throughout the year, the importance of subglacial winter water storage, and rapid switching from a “distributed” winter system to a “channelised” summer drainage system in May. They show that discharge changes can be measured with an accuracy that is useful for understanding the relationship between glacier dynamics and flow rates. -
State Standard for Hydrologic Modeling Guidelines
ARIZONA DEPARTMENT OF WATER RESOURCES FLOOD MITIGATION SECTION State Standard For Hydrologic Modeling Guidelines Under the authority outlined in ARS 48-3605(A) the Director of the Arizona Department of Water Resources establishes the following standard for Hydrologic Modeling Guidelines in Arizona. State Standard for Hydrologic Modeling, or “guidelines for the experienced modeler”, has been developed to address hydrologic conditions for a variety of statewide watersheds. Included are problems and situations identified by the State Standard Work Group (SSWG) and floodplain managers. The intended audience is statewide; engineers, professionals and Floodplain Administrators. The following topics are included: • Hydrologic Model comparison and recommendation • Guidelines and parameters • Model application for specific situations, and associated hydrologic parameters • Precipitation values (NOAA 14) • Storm duration • Unique conditions, such as wildfire burn, overgrazing, logging, drought, rapid snowmelt, urbanization. The State Standard includes examples addressing the above key issues. This requirement is effective August, 2007. Copies of this State Standard and the State Standard Technical Supplement can be obtained by contacting the Department’s Water Engineering Section at (602) 771-8652. SS10-07 1 August 2007 TABLE OF CONTENTS 1.0 Introduction.......................................................................................................5 1.1 Purpose and Background .......................................................................5 -
Rainfall Input, Throughfall and Stemflow of Nutrients in a Central
Biogeochemistry 67: 73–91, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees G.B. CHUYONG1,2,4, D.M. NEWBERY2,3,* and N.C. SONGWE1 1Institute of Agronomic Research, Forest Research Station Kumba, PMB 29 Kumba, Cameroon; 2De- partment of Biological and Molecular Sciences, University of Stirling, Stirling, FK9 4LA, UK; 3Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, CH-3013, Switzerland; 4Current address: Department of Life Sciences, University of Buea, POB 63 Buea, Cameroon; *Author for correspon- dence (e-mail: [email protected]; phone: 0041-31-631-8815; fax: -31-332-2059) Received 5 March 2002; accepted in revised form 14 January 2003 Key words: Atmospheric input, Ectomycorrhizas, Korup, Leaching, Phosphorus, Priming effect Abstract. Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha−1, and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha−1 respectively. -
Subsurface Drainage Processes, by Elizabeth Keppeler, and David Brown
Subsurface Drainage Processes and Management Impacts1 Elizabeth Keppeler2 and David Brown3 Abstract: Storm-induced streamflow in forested upland watersheds is linked to he hydrologic response of forested watersheds to rain events rainfall by transient, variably saturated flow through several different flow Toccurs through several interrelated flow processes. Soil surface paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or conditions determine whether rainfall will run off as surface flow or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream whether it will infiltrate and travel through the subsurface. as subsurface flow. Subsurface runoff can occur within micropores (voids between Infiltration capacities for soils in the coastal redwood region exceed soil grains), various types of macropores (structural voids between aggregates, plant and animal-induced biopores), and through fractures in weathered and maximum rainfall intensities common in the region. Exceptions consolidated bedrock. In addition to generating flow through the subsurface, occur in isolated areas where bedrock is exposed at the land surface. transient rain events can also cause large increases in fluid pressures within a More widespread are infiltration limitations resulting from soil hillslope. If pore pressures exceed stability limits of soils and shallow geologic compaction associated with road building, landings, and other materials, landslides and debris flows may result. Subsurface monitoring of constructed surfaces. Over the great majority of forested landscapes, pipeflows and pore pressures in unchanneled swales at North Fork Caspar Creek rainfall infiltrates into the soil and flows through the subsurface to in the Jackson Demonstration State Forest began in 1985. Four sites have been streams, rivers, and lakes. -
Variability of Throughfall and Stemflow Deposition in Pine and Beech Stands ( Czarne Lake Catchment, Gardno Lake Catchment on Wolin Island )
PrACE GEOGrAfICzNE, zeszyt 143 Instytut Geografii i Gospodarki Przestrzennej UJ Kraków 2015, 85 – 102 doi : 10.4467/20833113PG.15.027.4628 Variability of throughfall and stemflow deposition in pine and beech stands ( Czarne lake catchment, gardno lake catchment on wolin island ) Robert Kruszyk, Andrzej Kostrzewski, Jacek Tylkowski Abstract : The research sought to determine the range of conversion of the chemical composition of precipitation in a beech stand located in the Gardno Lake catchment ( Wolin Island ) and a pine stand in the Czarne Lake catchment ( Upper Parsęta catchment, West Pomerania Province ). The presented results cover three hydrological years : 2012, 2013 and 2014. The research focused on the chemical composition of bulk precipitation ( in the open ), throughfall and stemflow ( in a forest ). The obtained results confirm that after precipitation has had contact with plant surfaces there is an increase in its mineral content. This is due to the process of enrichment of throughfall and stemflow with elements leached out of needles + 2+ + – + 2+ 2– – and leaves ( K , Mg ) and coming from dry deposition ( NH 4, Cl , Na , Mg , SO 4 , NO 3 ) washed out from plant surfaces. The research, based on the canopy budget model, indicates that in the case of potassium, its load leached out of needles and leaves accounted for 75.6 % and 73 %, respectively, of its total deposition on the forest floor. Calcium leaching was not detected in either of the two stands. In comparison with potassium, the range of magnesium leaching was smaller and amounted to 34 % under beech and 26.5 % under pine. As to loads of potassium and magnesium in the beech stand, they were more than twice as large as the ones observed in the pine stand.