Lasers : Applications and Safety
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fotonica Ed Elettronica Quantistica
Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A. -
‰M‰Mwm Cixþvi Cék² I Dîi
gBs‡iwRƒj eBGqi 1g cÎ AwZwiÚ Ask 275 ‰m‰mwm cixÞvi cÉk² I Dîi 1. Dhaka Board-2015 English (Compulsory) 1st Paper Read the passage. Then answer the questions below. The National Memorial at Savar is a symbol of the nation's respect for the martyrs of the War of Liberation. It is built with concrete, but made of blood. It stands 150 feet tall, but every martyr it stands for stands so much taller. It is an achievement the dimension of which can be measured, but it stands for an achievement, which is immeasurable. It stands upright for the millions of martyrs who laid down their lives so that we may stand upright, in honour and dignity, amongst the nations of the world. Most prominently visible is the 150 feet tower that stands on a base measuring 130 feet wide. There are actually a series of 7 towers that rise by stages to a height of 150 feet. The foundation was laid on the first anniversary of the Victory Day. There is actually a plan to build a huge complex in several phases. The entire complex will cover an area of 126 acres. The plan of this complex includes a mosque, a library and a museum. The relics of the Liberation War will be kept in the museum. They will ever remind our countrymen and all who would come to visit museum of the valiant struggle and supreme sacrifices of a freedom loving people. Here also will be a clear warning to all oppressors that the weapons of freedom need not be very big, and that oppression will always be defeated. -
Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN
Research evaluation REPORT ON THE RESEARCH UNIT: Kastler Brossel Laboratory LKB UNDER THE SUPERVISION OF THE FOLLOWING INSTITUTIONS AND RESEARCH BODIES: École Normale Supérieure Sorbonne Université Collège de France Centre National de la Recherche Scientifique - CNRS EVALUATION CAMPAIGN 2017-2018 GROUP D In the name of Hcéres1 : In the name of the expert committee2 : Michel Cosnard, President Vahid Sandoghdar, Chairman of the committee Under the decree No.2014-1365 dated 14 November 2014, 1 The president of HCERES "countersigns the evaluation reports set up by the expert committees and signed by their chairman." (Article 8, paragraph 5); 2 The evaluation reports "are signed by the chairman of the expert committee". (Article 11, paragraph 2). Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN This report is the sole result of the unit’s evaluation by the expert committee, the composition of which is specified below. The assessments contained herein are the expression of an independent and collegial reviewing by the committee. UNIT PRESENTATION Unit name: Laboratoire Kastler-Brossel Unit acronym: LKB Requested label: UMR Application type: Renewal Current number: UMR 8552 Head of the unit Mr Antoine HEIDMANN (2017-2018): Project leader Mr Antoine HEIDMANN (2019-2023): Number of teams: 12 COMMITTEE MEMBERS Chair: Mr Vahid SANDOGHDAR, Max Planck Institute, Germany Experts: Mr Jean-Claude BERNARD, CNRS (supporting personnel) Mr Benoît BOULANGER, Université Grenoble Alpes (representative -
Thesis Rests with Its Author
University of Bath PHD New vacuum solutions for quadratic metric–affine gravity Pasic, Vedad Award date: 2009 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 New Vacuum Solutions for Quadratic Metric–affine Gravity submitted by Vedad Pasiˇ c´ for the degree of Doctor of Philosophy of the University of Bath Department of Mathematical Sciences February 2009 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. -
From Theory to the First Working Laser Laser History—Part I
I feature_ laser history From theory to the first working laser Laser history—Part I Author_Ingmar Ingenegeren, Germany _The principle of both maser (microwave am- 19 US patents) using a ruby laser. Both were nom- plification by stimulated emission of radiation) inated for the Nobel Prize. Gábor received the 1971 and laser (light amplification by stimulated emis- Nobel Prize in Physics for the invention and devel- sion of radiation) were first described in 1917 by opment of the holographic method. To a friend he Albert Einstein (Fig.1) in “Zur Quantentheorie der wrote that he was ashamed to get this prize for Strahlung”, as the so called ‘stimulated emission’, such a simple invention. He was the owner of more based on Niels Bohr’s quantum theory, postulated than a hundred patents. in 1913, which explains the actions of electrons in- side atoms. Einstein (born in Germany, 14 March In 1954 at the Columbia University in New York, 1879–18 April 1955) received the Nobel Prize for Charles Townes (born in the USA, 28 July 1915–to- physics in 1921, and Bohr (born in Denmark, 7 Oc- day, Fig. 2) and Arthur Schawlow (born in the USA, tober 1885–18 November 1962) in 1922. 5 Mai 1921–28 April 1999, Fig. 3) invented the maser, using ammonia gas and microwaves which In 1947 Dennis Gábor (born in Hungarian, 5 led to the granting of a patent on March 24, 1959. June 1900–8 February 1972) developed the theory The maser was used to amplify radio signals and as of holography, which requires laser light for its re- an ultra sensitive detector for space research. -
Slides for 1920 and 1928)
Quantum Theory Matters with thanks to John Clarke Slater (1900{1976), Per-Olov L¨owdin(1916{2000), and the many members of QTP (Gainesville, FL, USA) and KKUU (Uppsala, Sweden) Nelson H. F. Beebe Research Professor University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Email: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe Telephone: +1 801 581 5254 FAX: +1 801 581 4148 Nelson H. F. Beebe (University of Utah) QTM 11 November 2015 1 / 1 11 November 2015 The periodic table of elements All from H (1) to U (92), except Tc (43) and Pm (61), are found on Earth. Nelson H. F. Beebe (University of Utah) QTM 11 November 2015 2 / 1 Correcting a common misconception Scientific Theory: not a wild @$$#% guess, but rather a mathematical framework that allows actual calculation for known systems, and prediction for unknown ones. Nelson H. F. Beebe (University of Utah) QTM 11 November 2015 3 / 1 Scientific method Theories should be based on minimal sets of principles, and be free of preconceived dogmas, no matter how widely accepted. [Remember Archimedes, Socrates, Hypatia, Galileo, Tartaglia, Kepler, Copernicus, Lavoisier, . ] Open publication and free discussion of physical theories and experimental results, so that others can criticize them, improve them, and reproduce them. Know who pays for the work, and judge accordingly! Science must have public support. History shows that such support is paid back many times over. If it ain't repeatable, it ain't science! Nelson H. -
The Innovation Mindset Through Real-World Lessons from Inventors
BUILDING THE INNOVATION MINDSET THROUGH REAL-WORLD LESSONS FROM INVENTORS Before STEM (science, technology, engineering and COLLABORATION mathematics) and invention education became widely recognized as effective methods of teaching 21st-century skills, the National Inventors Hall of Fame® (NIHF) began crafting education programs that promote creativity. For more than 30 years, we have collaborated with our NIHF Inductees to develop meaningful opportunities for children to engage in hands-on innovation. Informed by lessons and stories from our Inductees’ professional lives, we have identified nine essential skills and traits that turn creative potential into tangible results. We call this the Innovation Mindset. Each year, while developing new curricula, our education team uses the Innovation Mindset as a guide to ensure that all participants in our in-person and at-home programs are developing the vital skills they need to succeed. Because many COLLABORATION of today’s students will likely enter a workforce filled with jobs that do not yet exist,1 we believe that one of the best ways to her life, she made the decision to do whatever it took to lead a prepare them is to teach them how to adapt and innovate when productive and active life. faced with challenges and adversity. She started learning Braille at age 15 and became so proficient By exploring the stories of NIHF Inductees, children can learn at reading English Braille that she earned a degree in English from real-world examples of the Innovation Mindset in action. literature from Otemon Gakuin University in Osaka, Japan, in 1982. As she considered what type of career she wanted to pursue, she came across an article that changed her life. -
Sterns Lebensdaten Und Chronologie Seines Wirkens
Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete. -
Laser Spectroscopy to Resolve Hyperfine Structure of Rubidium
Laser spectroscopy to resolve hyperfine structure of rubidium Hannah Saddler, Adam Egbert, and Will Weigand (Dated: 12 November 2015) This experiment had two main goals: to create an absorption spectrum for rubidium using the technique of absorption spectroscopy and to resolve the hyperfine structures for the two rubidium isotopes using saturation absorption spectroscopy. The absorption spectrum was used to determine the frequency difference between the ground state and first excited state for both isotopes. The calculated frequency difference was 6950 MHz ± 90 MHz for rubidium 87 and 3060 MHz ± 60 MHz for rubidium 85. Both values agree with the literature values. The hyperfine structure for rubidium 87 was able to be resolved using this experimental setup. The energy differences were determined to be 260 MHz ± 10 MHz and 150 MHz ± 10 Mhz MHz. The hyperfine structure for rubidium 85 was unable to be resolved using this experimental setup. Additionally the theory of doppler broadening was used to make measurements of the full width half maximum. These values were used to calculate a temperature of 310K ± 40 K which makes sense because the experiments were performed at room temperature. I. INTRODUCTION in the theory section and how they were manipulated and used to derive the results from the recorded data. Addi- tionally there is an explanation of experimental error and The era of modern spectroscopy began with the in- uncertainty associated the results. Section V is a conclu- vention of the laser. The word laser was originally an sion that ties the results of the experiment we performed acronym that stood for light amplification by stimulated to the usefulness of the technique of laser spectroscopy. -
Lect. 20: Lasers
Lect. 20: Lasers Optical Amplifier E2 Pin Pout = G Pin E1 Light source based on stimulated emission? - Use photons produced by spontaneous emission as initial seeds - Recycle output photons as seeds for further stimulated emission - Use mirror for recycling output photons LASER: Light Amplification by Stimulated Emission Radiation Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers LASER: Optical Amplifier + Mirror Pump Gain Medium R R L Optical property of gain medium: n, g Imaginary part for k ? g g is due to absorption and stimulated emission knk0 j 2 g depends on material property, , amount of pumping factor of 2 because g is often defined for power Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers Pump g Gain Medium knkj 0 2 R R Z=L Assume initially there is one photon moving in z-direction inside gain medium What is the condition that this this photon can be maintained within? No loss after one round trip. jkL jkL Ee00 re r E 11 re22 jkL1 e jkL2 rR2 1 1 ee jnkL2 0 gL eegL and jnkL2 0 1 R R Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers 1 Pump eegL and jnkL2 0 1 R Gain Medium gL 111 From eg, th ln R LR R R L ==> Sufficient gain to compensate mirror loss 2L Frome jnkL2 0 1, 22nk L m or Lm 0 nm 2n cavity length should be multiples of half wavelength: mode Photons are in phase after one round trip Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers 11 2L Two conditions for lasing: (1) g ln and (2) th L Rnm In real lasers, gain is function of wavelength gth λ λ Lasing spectrum Lasing modes has non-zero linewidth λ Laser length determines mode wavelength Optoelectronics (16/2) W.-Y. -
Nobel 2012: Trapped Ions and Photons
FEATURES Nobel 2012: Trapped ions and photons l Michel Brune1, Jean-Michel Raimond1, Claude Cohen-Tannoudji 1,2 - DOI: 10.1051/epn/2012601 l 1 Laboratoire Kastler Brossel, ENS, CNRS, UMPC Paris 6, 24 rue Lhomond, 75005 Paris, France l 2 Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France m This colorized The 2012 Nobel prize in physics has been awarded jointly to Serge Haroche image shows the fluorescence from three (Collège de France and Ecole Normale Supérieure) and David Wineland (National trapped beryllium ions illuminated with Institute for Standards and Technology, USA) “for ground-breaking experimental an ultraviolet laser methods that enable measuring and manipulation of individual quantum systems”. beam. Black and blue areas indicate lower intensity, and red and white higher intensity. hat are these methods, why are they For instance, Einstein and Bohr once imagined weighing NIST physicists used jointly recognized? a photon trapped forever in a box, covered by perfect three beryllium ions to demonstrate a crucial The key endeavour in the last century mirrors. These gedankenexperiments and their “ridicu- step in a procedure that of quantum physics has been the explo- lous consequences”, as Schrödinger once stated, played could enable future ration of the coupling between matter and electromag- a considerable role in the genesis of quantum physics quantum computers W to break today's netic radiation. For a long time, the available experimental interpretation. The technical progress made these most commonly used techniques were limited to a large number of atoms and experiments possible. One can now realize some of the encryption codes. -
Today Nov/Dec
LIALIA TODAY TODAY The Official Newsletter of the Laser Institute of America The professional society dedicated to fostering lasers, laser applications, and laser safety worldwide. Volume 13, Number 6 November/December 2005 In ICALEO® 2005 Meets International Challenge The by Jack Dyer, Contributing Editor he 24th International Congress on The very large international presence had News... Applications of Lasers & Electro- participants from Europe, Asia, the United Laser-Etching TOptics (ICALEO®) in Miami, Fla. Kingdom, Canada and the United States. In Promotes Egg Safety starting Oct. 31, began just days after Hurricane addition to over 400 from the U.S., Germany Eggs that are laser-etched Wilma tore through the southern part of Florida. had 47, Japan 31, United Kingdom 23, Finland with an expiration date and a All attendees, nevertheless, showed great inter- 14, Canada 19, France 6, Netherlands 7, and code that traces the egg back est in overview presentations on laser diodes, Ukraine, Poland, Australia and several other to where it was packaged are fiber lasers and new market opportunities. countries made up the balance. now available in the U.S., The commercial advent of many new laser reported the Sept. 30 issue of General Congress systems has dominated the laser world the past Optics.org. Developed by General Congress Chair Andreas Ostendorf, several years, and Dr. Ostendorf said, the ple- EggFusion, the laser system CEO of Laser Zentrum Hannover e.V. in nary session showed how these sources can be etches a permanent, easy-to- Germany, opened with “ICALEO over these 24 used for new applications. read and tamper-proof mark years has fulfilled exceptionally well the LIA on the eggshell that allows mission of fostering lasers, laser applications, Plenary: New Lasers – New Markets consumers to see when the and laser safety worldwide.