One Year with the Académie Des Sciences 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fotonica Ed Elettronica Quantistica
Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A. -
Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN
Research evaluation REPORT ON THE RESEARCH UNIT: Kastler Brossel Laboratory LKB UNDER THE SUPERVISION OF THE FOLLOWING INSTITUTIONS AND RESEARCH BODIES: École Normale Supérieure Sorbonne Université Collège de France Centre National de la Recherche Scientifique - CNRS EVALUATION CAMPAIGN 2017-2018 GROUP D In the name of Hcéres1 : In the name of the expert committee2 : Michel Cosnard, President Vahid Sandoghdar, Chairman of the committee Under the decree No.2014-1365 dated 14 November 2014, 1 The president of HCERES "countersigns the evaluation reports set up by the expert committees and signed by their chairman." (Article 8, paragraph 5); 2 The evaluation reports "are signed by the chairman of the expert committee". (Article 11, paragraph 2). Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN This report is the sole result of the unit’s evaluation by the expert committee, the composition of which is specified below. The assessments contained herein are the expression of an independent and collegial reviewing by the committee. UNIT PRESENTATION Unit name: Laboratoire Kastler-Brossel Unit acronym: LKB Requested label: UMR Application type: Renewal Current number: UMR 8552 Head of the unit Mr Antoine HEIDMANN (2017-2018): Project leader Mr Antoine HEIDMANN (2019-2023): Number of teams: 12 COMMITTEE MEMBERS Chair: Mr Vahid SANDOGHDAR, Max Planck Institute, Germany Experts: Mr Jean-Claude BERNARD, CNRS (supporting personnel) Mr Benoît BOULANGER, Université Grenoble Alpes (representative -
Laser Spectroscopy to Resolve Hyperfine Structure of Rubidium
Laser spectroscopy to resolve hyperfine structure of rubidium Hannah Saddler, Adam Egbert, and Will Weigand (Dated: 12 November 2015) This experiment had two main goals: to create an absorption spectrum for rubidium using the technique of absorption spectroscopy and to resolve the hyperfine structures for the two rubidium isotopes using saturation absorption spectroscopy. The absorption spectrum was used to determine the frequency difference between the ground state and first excited state for both isotopes. The calculated frequency difference was 6950 MHz ± 90 MHz for rubidium 87 and 3060 MHz ± 60 MHz for rubidium 85. Both values agree with the literature values. The hyperfine structure for rubidium 87 was able to be resolved using this experimental setup. The energy differences were determined to be 260 MHz ± 10 MHz and 150 MHz ± 10 Mhz MHz. The hyperfine structure for rubidium 85 was unable to be resolved using this experimental setup. Additionally the theory of doppler broadening was used to make measurements of the full width half maximum. These values were used to calculate a temperature of 310K ± 40 K which makes sense because the experiments were performed at room temperature. I. INTRODUCTION in the theory section and how they were manipulated and used to derive the results from the recorded data. Addi- tionally there is an explanation of experimental error and The era of modern spectroscopy began with the in- uncertainty associated the results. Section V is a conclu- vention of the laser. The word laser was originally an sion that ties the results of the experiment we performed acronym that stood for light amplification by stimulated to the usefulness of the technique of laser spectroscopy. -
Nobel 2012: Trapped Ions and Photons
FEATURES Nobel 2012: Trapped ions and photons l Michel Brune1, Jean-Michel Raimond1, Claude Cohen-Tannoudji 1,2 - DOI: 10.1051/epn/2012601 l 1 Laboratoire Kastler Brossel, ENS, CNRS, UMPC Paris 6, 24 rue Lhomond, 75005 Paris, France l 2 Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France m This colorized The 2012 Nobel prize in physics has been awarded jointly to Serge Haroche image shows the fluorescence from three (Collège de France and Ecole Normale Supérieure) and David Wineland (National trapped beryllium ions illuminated with Institute for Standards and Technology, USA) “for ground-breaking experimental an ultraviolet laser methods that enable measuring and manipulation of individual quantum systems”. beam. Black and blue areas indicate lower intensity, and red and white higher intensity. hat are these methods, why are they For instance, Einstein and Bohr once imagined weighing NIST physicists used jointly recognized? a photon trapped forever in a box, covered by perfect three beryllium ions to demonstrate a crucial The key endeavour in the last century mirrors. These gedankenexperiments and their “ridicu- step in a procedure that of quantum physics has been the explo- lous consequences”, as Schrödinger once stated, played could enable future ration of the coupling between matter and electromag- a considerable role in the genesis of quantum physics quantum computers W to break today's netic radiation. For a long time, the available experimental interpretation. The technical progress made these most commonly used techniques were limited to a large number of atoms and experiments possible. One can now realize some of the encryption codes. -
Particle Detectors Lecture Notes
Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2! -
Shs-17-2018-14.Pdf
Science beyond borders Nobukata Nagasawa ORCID 0000-0002-9658-7680 Emeritus Professor of University of Tokyo [email protected] On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics Abstract Possible reasons are studied why Ladislas (Władysław) Natanson’s paper on the statistical theory of radiation, published in 1911 both in English and in the German translation, was not cited properly in the early history of quantum statistics by outstanding scientists, such as Arnold Sommerfeld, Paul Ehrenfest, Satyendra Nath Bose and Albert Einstein. The social and psychological aspects are discussed as back- ground to many so far discussions on the academic evaluation of his theory. In order to avoid in the future such Natansonian cases of very limited reception of valuable scientific works, it is pro- posed to introduce a digital tag in which all the information of PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Nagasawa, Nobukata 2018: On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics. Studia Historiae Scientiarum 17, pp. 391–419. Available online: https://doi.org/10.4467/2543702XSHS.18.014.9334. ARCHIVE RECEIVED: 13.06.2017 LICENSE POLICY ACCEPTED: 12.09.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Nobukata Nagasawa On social and psychological aspects of a negligible reception... relevant papers published so far should be automatically accu- mulated and updated. -
Nobel Lectures™ 2001-2005
World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of -
Discerned and Non-Discerned Particles in Classical Mechanics and Convergence of Quantum Mechanics to Classical Mechanics
Annales de la Fondation Louis de Broglie, Volume 36, 2011 117 Discerned and non-discerned particles in classical mechanics and convergence of quantum mechanics to classical mechanics Michel Gondrana, Alexandre Gondranb aUniversity Paris Dauphine, Lamsade, 75016 Paris, France email: [email protected] bEcole Nationale de l’Aviation Civile, 31000 Toulouse, France email: [email protected] ABSTRACT. We introduce into classical mechanics the concept of non- discerned particles for particles that are identical, non-interacting and prepared in the same way. The non-discerned particles correspond to an action and a density which satisfy the statistical Hamilton-Jacobi equations and allow to explain the Gibbs paradox. On the other hand, a discerned particle corresponds to a particular action that satisfies the special Hamilton-Jacobi equations. We then study the convergence of quantum mechanics to classical mechanics when ~ tends to 0 by considering two cases : the convergence to non-discerned classical par- ticles and the convergence to a classical discerned particle. Based on these convergences, we propose an updated interpretation of quantum mechanics. RÉSUMÉ. Nous introduisons en mécanique classique le concept de par- ticules indiscernées pour des particules qui sont identiques, sans in- teraction et préparées de la même façon. Ces particules indiscernées correspondent à une action et une densité qui satisfassent les équa- tions d’Hamilton-Jacobi statistiques et qui permettent d’expliquer le paradoxe de Gibbs. Par ailleurs, une particule discernée correspond à une action particulière qui satisfait les équations spéciales d’Hamilton- Jacobi. L’étude de la convergence de la mécanique quantique vers la mécnique classique quand ~ → 0 se fait alors simplement en considé- rant deux cas : la convergence vers des particules classiques indiscernées et la convergence vers des particules classiques discernées. -
Nobel Prize Physicists Meet at Lindau
From 28 June to 2 July 1971 the German island town of Lindau in Nobel Prize Physicists Lake Constance close to the Austrian and Swiss borders was host to a gathering of illustrious men of meet at Lindau science when, for the 21st time, Nobel Laureates held their reunion there. The success of the first Lindau reunion (1951) of Nobel Prize win ners in medicine had inspired the organizers to invite the chemists and W. S. Newman the physicists in turn in subsequent years. After the first three-year cycle the United Kingdom, and an audience the dates of historical events. These it was decided to let students and of more than 500 from 8 countries deviations in the radiocarbon time young scientists also attend the daily filled the elegant Stadttheater. scale are due to changes in incident meetings so they could encounter The programme consisted of a num cosmic radiation (producing the these eminent men on an informal ber of lectures in the mornings, two carbon isotopes) brought about by and personal level. For the Nobel social functions, a platform dis variations in the geomagnetic field. Laureates too the Lindau gatherings cussion, an informal reunion between Thus chemistry may reveal man soon became an agreeable occasion students and Nobel Laureates and, kind’s remote past whereas its long for making or renewing acquain on the last day, the traditional term future could well be shaped by tances with their contemporaries, un steamer excursion on Lake Cons the developments mentioned by trammelled by the formalities of the tance to the island of Mainau belong Mössbauer, viz. -
The Concept of the Photon—Revisited
The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser. -
Georges Charpak (1924-2010) Physicist Who Transformed the Measurement of High-Energy Particles
COMMENT OBITUARY Georges Charpak (1924-2010) Physicist who transformed the measurement of high-energy particles. S hysicist and campaigner, past few decades have used detec- I B OR Georges Charpak has tors developed or greatly improved C / left an enduring mark on by Charpak and his team. A Pscience, technology and education. From the moment Charpak His invention of a type of particle began working on detectors, he detector — the multiwire propor- was interested in the their medi- tional chamber — revolutionized the cal applications. Although a long- BRUCELLE/SYGM A. collection of data from high-energy time proponent of nuclear energy, physics experiments. The device he was horrified by the radiation allowed physicists to detect new doses that children were exposed to particles and so test fundamental during routine medical X-rays. He theories about the nature of matter. helped co-found several companies Modern variants of the detector are that applied his multiwire detectors still used in high-energy particle to medical imaging, to reduce the accelerators. exposure of patients to radioactive Charpak, who died on 29 Sep- tracers. He also worked closely with tember, was born in eastern Poland surgeons and radiologists to bring to a poor Jewish family. When he was seven, gas-filled box containing a large number these techniques to clinical settings. the family moved to Paris, lured by France’s of parallel detector wires, each connected Influenced by his experiences in wartime healthier economy. After France surren- to individual amplifiers. It recorded the Europe, Charpak’s deep concern for social dered to Germany in 1940, Charpak refused electronic pulses resulting from charged issues led him to apply his knowledge to to wear the yellow Star of David, required particles passing through the gas. -
Madiba, a Inforum Model for Cameroon
Madiba, a Inforum Model for Cameroon The story of the project Paul Salmon Faculté des Sciences économiques Université de Rennes 1 Inforum World Conference 2012 Firenze Introduction • The idea which conducts this presentation, comes from an interview of two French « Nobel Prize » in Physics. • They are Gilles de Gennes and Charpak, respectively Nobel Prize in 1991 and in 1992 The « Nobel Prize » Pierre-Gilles de Gennes Georges Charpak Anecdote • The reporter asked them which Professor has fascinated them ? Is a very famous mathematics professor, a physics one ? • They unanimously answered Frédéric Jolio- Curie (also Nobel Prize in Physics) • The reporter asked them why him? • They answered for his course on missed experiments. Anecdote • The main idea of the course was to explain to the students what to do or not to do to obtain results in an experiment. • You can remark they have not chosen the person for his capacities to find a solution to a theorical problem. The presentation’s target • This presentation will deliver through the Madiba project some good advices and bad examples in the way to manage a project in which an Inforum model is implied. The presentation’s target • I am not so young but not so old. • What I have learned till 1985. Contents • Things to know about Cameroon • Problems and solutions • Important persons for the project • The context • Our conditions • To build the model • Usual work • The target Madiba’s project THINGS TO KNOW ABOUT CAMEROON Things to know about Cameroon (1) • From developping country to an emerging country • All Africa, in one country.