Amblypygi: Phrynidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event. -
NUEVA ESPECIE DE PHRYNUS (AMBLYPYGI: PHRYNIDAE) DE COSTA RICA Luis F
ARTÍCULO: NUEVA ESPECIE DE PHRYNUS (AMBLYPYGI: PHRYNIDAE) DE COSTA RICA Luis F. de Armas & Carlos Víquez Resumen Se describe de Costa Rica una especie nueva del género Phrynus Lamarck, 1801, la cual había sido previamente confundida con Phrynus parvulus Pocock, 1902, debido a que presenta en el cuerpo cerdas claviformes; sin embargo, la especie nueva presenta 29 subartejos tibiales en la pata I (25 en P. parvulus), el tritosternón más ancho y los gonópodos femeninos contiguos (moderadamente separados en P. parvulus). Palabras claves Amblypygi, Phrynidae, Phrynus, América Central, Costa Rica, Taxonomía. Taxonomía: Phrynus pseudoparvulus sp. n. A new species of Phrynus (Amblypygi: Phrynidae) from Costa Rica ARTÍCULO: Abstract Nueva especie de Phrynus A new species of the whip spider genus Phrynus Lamarck, 1801, is described from (Amblypygi: Phrynidae) de Costa Rica. It was previously misidentified as Phrynus parvulus Pocock, 1902, because Costa Rica its clubbed setae, but it has 29 instead 25 tibial articles on leg I, as well as wider tritosternum, and contiguous female gonopods. Luis F. de Armas Key words. Amblypygi, Phrynidae, Phrynus, Central America, Costa Rica, Taxonomy. Taxonomy: Phrynus pseudoparvulus sp. n. Apartado Postal 27, San Antonio de los Baños, La Habana 32500, Cuba. Carlos Víquez Introducción Instituto Nacional de Biodiversidad, Apartado Postal 22-3100, Santo El conocimiento sobre la fauna centroamericana de amblipígidos, y en particular la Domingo, Heredia, Costa Rica. del género Phrynus Latreille, 1801, se ha enriquecido durante la última década con la adición de tres especies nuevas (Armas, 1996) y la ampliación del área de distribución de otras (Armas & Ávila Calvo, 1993; Armas, 1999). -
Records of the Hawaii Biological Survey for 1996
Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J. -
Centruroides Thorellii (Scorpiones: Buthidae): Traveling from Guatemala to England Without a Passport
Centruroides thorellii (Scorpiones: Buthidae): Traveling from Guatemala to England Without a Passport Rony E. Trujillo, Luis F. de Armas & Darren Mansfield February 2017 – No. 239 Euscorpius Occasional Publications in Scorpiology EDITOR: Victor Fet, Marshall University, ‘[email protected]’ ASSOCIATE EDITOR: Michael E. Soleglad, ‘[email protected]’ Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology). Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome. Derivatio Nominis The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae). Euscorpius is located at: http://www.science.marshall.edu/fet/Euscorpius (Marshall University, Huntington, West Virginia 25755-2510, USA) ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS: Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives: • Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled) • Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/. (This website also archives all Euscorpius issues previously published on CD-ROMs.) Between 2000 and 2013, ICZN did not accept online texts as "published work" (Article 9.8). -
Howard Associate Professor of Natural History and Curator Of
INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM). -
Giant Whip Scorpion Mastigoproctus Giganteus Giganteus (Lucas, 1835) (Arachnida: Thelyphonida (=Uropygi): Thelyphonidae) 1 William H
EENY493 Giant Whip Scorpion Mastigoproctus giganteus giganteus (Lucas, 1835) (Arachnida: Thelyphonida (=Uropygi): Thelyphonidae) 1 William H. Kern and Ralph E. Mitchell2 Introduction shrimp can deliver to an unsuspecting finger during sorting of the shrimp from the by-catch. The only whip scorpion found in the United States is the giant whip scorpion, Mastigoproctus giganteus giganteus (Lucas). The giant whip scorpion is also known as the ‘vinegaroon’ or ‘grampus’ in some local regions where they occur. To encounter a giant whip scorpion for the first time can be an alarming experience! What seems like a miniature monster from a horror movie is really a fairly benign creature. While called a scorpion, this arachnid has neither the venom-filled stinger found in scorpions nor the venomous bite found in some spiders. One very distinct and curious feature of whip scorpions is its long thin caudal appendage, which is directly related to their common name “whip-scorpion.” The common name ‘vinegaroon’ is related to their ability to give off a spray of concentrated (85%) acetic acid from the base of the whip-like tail. This produces that tell-tale vinegar-like scent. The common name ‘grampus’ may be related to the mantis shrimp, also called the grampus. The mantis shrimp Figure 1. The giant whip scorpion or ‘vingaroon’, Mastigoproctus is a marine crustacean that can deliver a painful wound giganteus giganteus (Lucas). Credits: R. Mitchell, UF/IFAS with its mantis-like, raptorial front legs. Often captured with shrimp during coastal trawling, shrimpers dislike this creature because of the lightning fast slashing cut mantis 1. -
Occasional Papers
NUMBER 120, 17 pages 25 May 2017 BISHOP MUSEUM OCCASIONAL PAPERS THE SPIDERS OF RAPA NUI (E ASTER ISLAND ) R EVISITED DARKO D. C OTORAS , J. J UDSON WYNNE , LUIS FLORES -P RADO & C RISTIAN VILLAGRA BISHOP MUSEUM PRESS HONOLULU Cover image: The potentially endemic and undescribed Tetragnatha sp., believed restricted to the totora reeds lin - ing the shores of Rano Raraku crater lake. Photo: Darko Cortoras. Bishop Museum Press has been publishing scholarly books on the natu - ESEARCH ral and cultural history of Hawai‘i and the Pacific since 1892. The R Bishop Museum Occasional Papers (eISSN 2376-3191) is a series of short papers describing original research in the natural and cultural sci - PUBLICATIONS OF ences. BISHOP MUSEUM The Bishop Museum Press also publishes the Bishop Museum Bulletin series. It was begun in 1922 as a series of monographs presenting the results of research throughout the Pacific in many scientific fields. In 1987, the Bulletin series was separated into the Museum’s five current monographic series, issued irregularly and, since 2017, electronically: Bishop Museum Bulletins in Anthropology (eISSN 2376-3132) Bishop Museum Bulletins in Botany (eISSN 2376-3078) Bishop Museum Bulletins in Entomology (eISSN 2376-3124) Bishop Museum Bulletins in Zoology (eISSN 2376-3213) Bishop Museum Bulletins in Cultural and Environmental Studies (eISSN 2376-3159) To subscribe to any of the above series, or to purchase individual publi - cations, please write to: Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA. Phone: (808) 848-4135. Email: [email protected]. BERNICE PAUAHI BISHOP MUSEUM ISSN 0893-1348 (print) The State Museum of Natural and Cultural History ISSN 2376-3191 (online) 1525 Bernice Street Copyright © by Bishop Museum Honolulu, Hawai‘i 96817-2704, USA Published online: 25 May 2017 ISSN (online): 2376-3191 Spiders of Rapa Nui (Easter Island) Revisted . -
Tipos De Amblypygi (Arachnida: Pedipalpi) Depositados En El Instituto De Ecología Y Sistemática, La Habana, Cuba
NOVITATES CARIBAEA 7: 117-125, 2014 117 TIPOS DE AMBLYPYGI (ARACHNIDA: PEDIPALPI) DEPOSITADOS EN EL INSTITUTO DE ECOLOGÍA Y SISTEMÁTICA, LA HABANA, CUBA Luis F. de Armas Apartado Postal 4327, San Antonio de los Baños, Artemisa 32500, Cuba. [email protected] RESUMEN Se listan los tipos porta-nombre (14 holotipos y tres lectotipos), así como 167 paratipos y tres paralectotipos de 21 especies de amblipigios neotropicales depositados en el Instituto de Ecología y Sistemática, La Habana. La mayoría corresponde a especies antillanas (Cuba, República Dominicana, Puerto Rico) y pertenecen a los géneros Charinus Simon, 1892 (Charinidae), Paraphrynus Moreno, 1940 y Phrynus Lamarck, 1801 (Phrynidae). También hay un holotipo de México (Phrynus garridoi Armas, 1995), tres paratipos de Brasil (dos especies de Charinus) y varios paratipos de Costa Rica (Phrynus pseudoparvulus Armas y Víquez, 2001). Palabras clave: Charinidae, Phrynidae, Charinus, Paraphrynus, Phrynus, taxonomía, Antillas, Región Neotropical. Title: Types of Amblypygi (Arachnida: Pedipalpi) deposited in the Institute of Ecology and Systematics, Havana, Cuba. ABSTRACT The name-bearing types (14 holotypes, 3 lectotypes), as well as 167 paratypes and 3 paralectotypes belonging to 21 species of Neotropical whip spiders deposited in the Institute of Ecology and Systematics, Havana, are listed. Most of them correspond to Antillean species from Cuba, Dominican Republic, and Puerto Rico, and belong to the genera Charinus Simon, 1892 (Charinidae), Paraphrynus Moreno, 1940 and Phrynus Lamarck, 1801 (Phrynidae). There is also one holotype from Mexico (Phrynus garridoi Armas, 1995), three paratypes from Brazil (two species of Charinus) and several paratypes from Costa Rica (Phrynus pseudoparvulus Armas and Víquez, 2001). Keywords: Charinidae, Phrynidae, Charinus, Paraphrynus, Phrynus, taxonomy, Antilles, Neotropical Region. -
I.—On the Discovery of a New and Very Perfect Arachnide from The
THE GEOLOGICAL MAGAZINE. No. EXXXVH—SEPTEMBER, 1871. ABTICLES. I.—ON THE DISCOVERT OF A NEW AND VERY PERFECT AHACHNIDE FROM THE IRONSTONE OE THE DUDLEY COAL-FIELD.1 By HENRY WOODWARD, F.G.S., F.Z.S., of the British Museum. (PLATE XL) rilHE "Pennystone Ironstone" Nodules of the Coalbrook-dale Coal- J_ field have long been celebrated for their fossil contents yielding, when split open, impressions of Fern-leaves, fruits of Lepidodendron, King-crabs, and the more rare remains of Insects. Nor have the similar concretions of the Dudley, Manchester, and Glasgow Coal-fields proved less productive; whilst the recent in- vestigations of Messrs. Meek and Worthen in the Coal-measures of Grundy Co., Illinois, U.S., have brought to light an even larger series of new and interesting forms. A short time since I was favoured by receiving from E. Hollier, Esq., of Dudley, a series of these nodules containing examples of Bellinurus trilobitoides, and one specimen, which proved upon examina- tion to be a most beautiful and perfect insect inclosed in the centre of a nodule of clay Ironstone, which, happily, had split at exactly the right spot, and, what is not a little singular, has exposed two entire views—one of the upper or dorsal surface (Plate XI. Pig. 1), the other of the under and ventral aspect (Plate XL Fig. 2)—of the very same insect, each view being as nearly perfect as it is possible to conceive. Turning to " Buckland's Bridgewater Treatise," I at once identified Mr. Hollier's beautiful specimen with an insect figured on pi. -
The Phylogeny of Fossil Whip Spiders Russell J
Garwood et al. BMC Evolutionary Biology (2017) 17:105 DOI 10.1186/s12862-017-0931-1 RESEARCH ARTICLE Open Access The phylogeny of fossil whip spiders Russell J. Garwood1,2*, Jason A. Dunlop3, Brian J. Knecht4 and Thomas A. Hegna4 Abstract Background: Arachnids are a highly successful group of land-dwelling arthropods. They are major contributors to modern terrestrial ecosystems, and have a deep evolutionary history. Whip spiders (Arachnida, Amblypygi), are one of the smaller arachnid orders with ca. 190 living species. Here we restudy one of the oldest fossil representatives of the group, Graeophonus anglicus Pocock, 1911 from the Late Carboniferous (Duckmantian, ca. 315 Ma) British Middle Coal Measures of the West Midlands, UK. Using X-ray microtomography, our principal aim was to resolve details of the limbs and mouthparts which would allow us to test whether this fossil belongs in the extant, relict family Paracharontidae; represented today by a single, blind species Paracharon caecus Hansen, 1921. Results: Tomography reveals several novel and significant character states for G. anglicus; most notably in the chelicerae, pedipalps and walking legs. These allowed it to be scored into a phylogenetic analysis together with the recently described Paracharonopsis cambayensis Engel & Grimaldi, 2014 from the Eocene (ca. 52 Ma) Cambay amber, and Kronocharon prendinii Engel & Grimaldi, 2014 from Cretaceous (ca. 99 Ma) Burmese amber. We recovered relationships of the form ((Graeophonus (Paracharonopsis + Paracharon)) + (Charinus (Stygophrynus (Kronocharon (Charon (Musicodamon + Paraphrynus)))))). This tree largely reflects Peter Weygoldt’s 1996 classification with its basic split into Paleoamblypygi and Euamblypygi lineages; we were able to score several of his characters for the first time in fossils. -
Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case
Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst. -
Geological History and Phylogeny of Chelicerata
Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while