View Or Print PDF Version of All Sections

Total Page:16

File Type:pdf, Size:1020Kb

View Or Print PDF Version of All Sections Red Pine Management Guide A handbook to red pine management in the North Central Region This guide is also available online at: http://ncrs.fs.fed.us/fmg/nfgm/rp A cooperative project of: North Central Research Station Northeastern Area State & Private Forestry Department of Forest Resources, University of Minnesota Contributors The North Central Region Red Pine Management Guide is produced in corporation between the USDA Forest Service and the University of Minnesota. The following individuals have contributed to the conduct and development of the guide (in alphabetical order): Project Leaders Alan R. Ek - Professor and Head, University of Minnesota Department of Forest Resources Steve A. Katovich - Entomologist with with USDA Forest Service, Northeastern Area State and Private Forestry Michael A. Kilgore - Assistant Professor with the University of Minnesota, Department of Forest Resources Brian J. Palik - Project Leader and Research Ecologist with the USDA Forest Service, North Central Research Station Project Participants Andrew David - North Central Research & Outreach Center, University of Minnesota Grant Domke - Department of Forest Resources, University of Minnesota Sarah Finley - Department of Forest Resources, University of Minnesota Denys A. Goychuck - Department of Forest Resources, University of Minnesota Mike Ostry - USDA Forest Service, North Central Research Station Eric K. Zenner - Department of Forest Resources, University of Minnesota i Contributors Table of Contents Introduction to Red Pine Management Guide . .1 Ecology . .5 Silviculture . .11 Forest Health . .51 Economics . .67 Management Examples . .71 ii Table of Contents Introduction to the Red Pine Management Guide 1 Introduction Introduction to the Red Pine Management Guide This Red Pine Management Guide provides essential and optional information for managing stands that are predominately red pine and also stands that may contain a mix of other species as well. This section further provides diagnostics to help in describing the actual conditions of your stand and in choosing the appropriate management examples for the subject stand given your management objectives. This site also contains numerous links to basic information about forest management, options in management, habitat benefits, treatment costs, and economic returns. Why the interest in red pine? Extent across the region: Nearly 1.9 million acres of this covertype exist in the Lake States, much of it in pole and sawtimber size classes. The existing acreage is 44% private and 56% public. Stands are typically 5-20 acres in size, larger stands are found on public and industry lands. Recreation and wildlife habitat: Accessibility (via roads and seasonally) is generally very good. This tree species and covertype is highly valued from an aesthetic standpoint. Value as wildlife habitat varies considerably with stand age, density, and mix of other tree species provides thermal cover, protection and nesting habitat for wildlife though dense stands provide low food values. older and more open stands allow for understory development, increased biodiversity, and increased overall habitat value. Pole-size red pine stand, Central Red pine dominated forests can be managed for WI (2005, A. Ek University of increased habitat value and species biodiversity Minnesota) through greater use of ecological management techniques such as legacy retention, mixed- species and multi-age management, variable density thinning, and long rotations. Economics: Most of the red pine covertype volume is from the dominant species. There is considerable red pine volume in other covertypes as well. Volumes per acre are high compared to other cover types. Harvesting is facilitated by regular spacings typical of plantations. Many existing stands in the pole and larger size classes have already been thinned. Most stands and trees have very few defects. Few stands have been pruned (although pruning can lead to improved sawlog quality which can increase financial returns by 15-20%). 2 Introduction Management: It is the most commonly planted species...people know how to grow it and it has relatively few problems in terms of insects, diseases, wind, snow, ice. Tree improvement research has led to numerous improved red pine seed orchards across the region and considerable knowledge of species genetics. Maximum fiber yields per acre per year are obtained over rotations of 90-110 years with 2-3+ thinnings (roughly). More agressive thinning strategies are possible and would begin at early ages. Economic rotations are 60-90 years (roughly). Long life and ability to thin repeatedly reduces public concerns about harvesting and provides options to manage red pine forests for increased habitat and biodiversity values. History of the red pine management guides Red pine (Pinus resinosa Ait.), also known as Norway pine, is the most widely planted tree species in the Lake States Region of North America. During the past 70 years the red pine cover type in the Lake States has increased more than five-fold to an area of 1.875 million acres. This increase is due in a large part to planting programs. In 1914, Theodore S. Woolsey Jr., and Herman H. Chapman published a 42-page U.S. Department of Agriculture Bulletin management guide entitled, Norway Pine in the Lake States. This early guide was based on the careful observations and measurements of field foresters and served as the primary guide for managing red pine stands for more than 30 years. During the latter two thirds of the 20th century long-term studies on red pine management were installed and repeatedly measured by the USDA Forest Service, state governments, universities, the Canadian government, and Red pine stand planted in 1939 others. As results from these studies became available, red near Moose Lake, Carlton Co., pine guides were revised and updated. The primary emphasis MN. (2005, R. Klevorn, MN DNR) of the many guides produced during the twentieth century was on establishing and managing red pine stands to improve timber growth. During the latter part of the 1900s the objectives of management broadened beyond timber output, especially on public lands. Land managers are now being challenged to address questions that are not well covered by existing guides, while continuing to produce timber. Despite their widespread use, the red pine management guides produced to date have several increasingly apparent deficiencies. These include: 1. Attention is focused on managing the stand as an isolated unit, without considering Two-cohort stand. (B. Palik) landscape concerns; 2. Timber production is almost the sole consideration of most guides, with little attention given to how management recommendations should be modified to allow for recreation, aesthetics, wildlife, water, or other objectives; 3 Introduction 3. Guides tend to focus on the management of pure even-aged stands, and provide little information on the maintenance of mixed-species and uneven-aged stands. 4. Existing guides are poorly linked to landscape level ecological interests, to vegetation and soil types, and they base the productivity of red pine stands almost entirely on site index. In order to provide a guide for managing red pine with multiple objectives in mind, this new guide was developed by a multidisciplinary team of public and private forestry professionals, researchers, and practitioners. It attempts to address some of the above deficiencies by bringing up-to-date information from many disciplines to address a wider range of management issues. 4 Introduction Ecology 5 Ecology Ecology Historically, red pine was abundant in the North Central region, making up about a third of the 22 million acres of pine forest in Minnesota, Wisconsin, and Michigan. The amount of red pine in the contemporary landscape of these three states has been greatly reduced from this total and today covers around 1.9 million acres. Opportunities exist to restore red pine to appropriate sites and to manage red pine stands in ways that enhance wildlife habitat, native species richness, and ecological characteristics. This section outlines the concepts and information you need to understand red pine ecology and to establish and manage this species with ecological objectives in mind. We also refer you to the Silvics of North America manual; specifically, the Red Pine section. Map of red pine range in Northern United States. The source for this map and more information can be found at the Silvics Manuals of the Forest Service. 6 Ecology Site characteristics Red pine typically occurs on well-drained, acidic, dry sandy soils. These sites include outwash plains, ice contact features, rock outcrops, and dunes. The species grows best on well-drained sandy to loamy sand soils, but does not compete well with hardwoods on better sites. Red pine is intolerant of high water tables and poor aeration. Site indices of natural red pine sites range from 45 to 75 feet in height at 50 years of age. Though red pine does prefer sandy soils it does not grow well on excessively drained, very nutrient poor sites. These sites would more likely be classified as jack pine sites. Red pine growing on these sites are very prone to pest problems such as Diplodia. If you are unsure whether red pine is an appropriate species for your site, you can consult regionally appropriate guides for determining habitat type, native ecosystems, or native plant communities Wisconsin Forest Habitat Type Classification System (PDF, 146K) and Minnesota Native PIRE good growth. (B. Palik) Plant Communities can be useful for determining your site potential from the standpoint of native plant communities, successional development, and natural disturbances. Young red pine can be very prone to frost injury and pest problems in frost pockets. Saratoga spittlebug damage and scleroderris canker are two pests often encountered in frost pockets. In many areas, frost pockets can simply be large or small landscape depressions where cold air pools. The botanical range of red pine is centered on the northern Lake States. Trying to grow red pine outside of its range is likely to result in pest and weather related problems.
Recommended publications
  • Pine Sawflies, Neodiprion Spp. (Insecta: Hymenoptera: Diprionidae)1 Wayne N
    EENY317 Pine Sawflies, Neodiprion spp. (Insecta: Hymenoptera: Diprionidae)1 Wayne N. Dixon2 Introduction Pine sawfly larvae, Neodiprion spp., are the most common defoliating insects of pine trees, Pinus spp., in Florida. Sawfly infestations can cause growth loss and mortality, especially when followed by secondary attack by bark and wood-boring beetles (Coleoptera: Buprestidae, Cerambycidae, Scolytidae). Trees of all ages are susceptible to sawfly defoliation (Barnard and Dixon 1983; Coppel and Benjamin 1965). Distribution Neodiprion spp. are indigenous to Florida. Host tree specificity and location will bear on sawfly distribution statewide. Description Six species are covered here so there is some variation in appearance. However, an adult female has a length of 8 to 10 mm, with narrow antennae on the head and a stout and Figure 1. Larvae of the blackheaded pine sawfly, Neodiprion excitans thick-waisted body. This is unlike most Hymenopteran Rohwer, on Pinus sp. Credits: Arnold T. Drooz, USDA Forest Service; www.forestryimages.org insects which have the thinner, wasp-like waist. The background color varies from light to dark brown, with Adult yellow-red-white markings common. The two pairs of The adult male has a length of 5 to 7 mm. The male has wings are clear to light brown with prominent veins. broad, feathery antennae on the head with a slender, thick- waisted body. It generally has brown to black color wings, similar to the female. 1. This document is EENY317 (originally published as DPI Entomology Circular No. 258), one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date January 2004.
    [Show full text]
  • Field Bioassays of Synthetic Pheromones and Host Monoterpenes for Conophthorus Coniperda (Coleoptera: Scolytidae)
    PHYSIOLXICAL AND CHEMICAL ECOLOGY Field Bioassays of Synthetic Pheromones and Host Monoterpenes for Conophthorus coniperda (Coleoptera: Scolytidae) PETER DE GROOT,’ GART L. DEBARR,3 AND GORAN BIRGERSSON’,* Environ. Entomol. Z(2): 38-W (1998) ABSTRACT Four major monoterpenes, (i-)-cu-pinene, 1 (S)-( -)-/3-pinene, (R)-( t )-limonene, and myrcene are found in the cones of eastern white pines, Pinusstrobus L. Mixtures ofthese, as well as. u-pinene or P-pinene alone. increased catches of male white pine cone beetles, Conophthorus coniperda (Schwartz). in traps baited xvith the female sex pheromone, ( z)-trans-pityol. The mono- terpenes by themsekes as mistures or individually (a-pinene, /3-pinene) were not attractants for males or females. Traps baited with I r )-tram-pityol and wpinene caught as many, or significantly more beetles than those baited with pity01 and a four monoterpene mixture (1:l:l:l) used in seed orch‘ards in North Carolina, Ohio. and Virginia. Three beetle-produced compounds, conophthorin, tram-pinocarveol. and myrtenol did not enhance catches of males or females in ( z)-trans-pityol- baited traps. Racemic E-(k)- conophthorin. E-( -)- conophthorin, and E-( +)- conophthorin sig- nificantly reduced catches of males in traps baited with ( -c)-tran.s-pityol alone. Female C. coniperda were not attracted to any ofthe host- or beetle-produced compounds tested. The study demonstrated that traps \vith baits releasing (z)-t,ans-pityol at about lmgiwk with ( z)-a-pinene (98%pure) are potentially valuable tools for C conipwda pest management. Baited traps can be used to monitor C. cmipwdn populations or possibl>. to reduce seed losses in a beetle trap-out control strategy.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Supplementary Materials Neodiprion Sawflies
    Supplementary Materials Neodiprion sawflies: life history description and utility as a model for parent-offspring conflict To provide context for our comparative analysis of Neodiprion clutch-size traits, we provide relevant life history details (reviewed in Coppel and Benjamin 1965; Knerer and Atwood 1973; Wilson et al. 1992; Knerer 1993). Adult females emerge from cocoons with a full complement of mature eggs, find a suitable host, and attract males via a powerful pheromone. Shortly after mating, females use their saw-like ovipositors to embed their eggs within pine needles. While females of some species tend to lay their full complement of eggs on a single branch terminus, females of other species seek out multiple branches or trees for oviposition. Overall, female oviposition behavior is highly species-specific and, in some cases, diagnostic (Ghent 1959). Adult Neodiprion are non-feeding and short-lived (~2-4 days), dying soon after mating and oviposition. After hatching from eggs, Neodiprion larvae of many species form feeding aggregations that remain intact to varying degrees across 4-7 feeding instars, depending on the sex and the species. As larvae defoliate pine branches, they migrate to new branches and sometimes to new host trees (Benjamin 1955, Smirnoff 1960). During these migrations, colonies may undergo fission and fusion events (Codella and Raffa 1993, Codella and Raffa 1995, Costa and Loque 2001). Thus, while initial colony size corresponds closely to egg-clutch size, larvae are highly mobile and their dispersal behavior has the potential to substantially alter colony size (Codella and Raffa 1995). Beyond having a variable and well-documented natural history, Neodiprion provides an excellent test case for examining coevolution of female egg-laying and larval grouping behaviors because, as is likely the case for many insects, feeding in groups could confer both costs and benefits to the larvae (Codella and Raffa 1995, Heitland and Pschorn-Walcher 1993).
    [Show full text]
  • 2015 Forest Health Highlights Michigan Department of Natural Resources Acknowledgments
    2015 Forest Health Highlights Michigan Department of Natural Resources Acknowledgments Forest Health Highlights is a summary of the condition of Michigan’s forests during 2015 and the work done to preserve and protect them by Forest Resources Division, Department of Natural Resources, www.michigan.gov/foresthealth. Written by Michigan Department of Natural Resources Forest Resources Division Michigan Department of Agriculture and Rural Development Michigan State University Department of Forestry and the Department of Entomology United States Department of Agriculture Forest Service Photographs and design by Michigan Department of Natural Resources Forest Resources Division United States Department of Agriculture Forest Service Michigan Department of Agriculture & Rural Development Michigan State University Maps and other information provided by Michigan Department of Agriculture and Rural Development United States Department of Agriculture Forest Service and Animal and Plant Health Inspection Service Michigan State University Extension Cover photo: The redheaded pine sawfly, Neodiprion lecontei, is native to Michigan and much of eastern North America. The larvae feed in colonies and consume both new and old foliage. During outbreaks, multiple colonies can attack young trees and cause complete defoliation and tree mortality. The preferred hosts in Michigan are jack pine and red pine. Young plantations less than 15 feet in height are at greatest risk. Photo by Michigan Department of Natural Resources forest health technician Scott Lint.
    [Show full text]
  • Interactions Between Ungulates and Forest Insects Michelle Nordkvist
    !CTA5NIVERSITATIS!GRICULTURAE3UECIAE Acta Universitatis Agriculturae Sueciae 2020:52 • No. Thesis Doctoral Doctoral Thesis No. 2020:52 Herbivores that share a host plant can directly and indirectly affect each other Doctoral Thesis No. 2020:52 in several ways, with consequences for plant damage and growth. Interactions Faculty of Forest Sciences between taxonomically distant herbivores has been poorly studied. This thesis examines the effects of ungulate browsing and grazing on performance, abundance and diversity of herbivorous insects and their predators, and explores Interactions between ungulates and forest insects Interactions between ungulates and how such changes can influence insect population dynamics. It also examines forest insects the combined effect of ungulate and insect herbivory on tree growth. Michelle Nordkvist Michelle Nordkvist received her PhD education at the department of Ecology, SLU and obtained her Master of Science in Biology from Uppsala University. Acta Universitatis Agriculturae Sueciae presents doctoral theses from the Swedish University of Agricultural Sciences (SLU). SLU generates knowledge for the sustainable use of biological natural • Michelle Nordkvist • Michelle resources. Research, education, extension, as well as environmental monitoring and assessment are used to achieve this goal. Online publication of thesis summary: http://pub.epsilon.slu.se/ ISSN 1652-6880 ISBN (print version) 978-91-7760-622-2 ISBN (electronic version) 978-91-7760-623-9 Interactions between ungulates and forest insects Michelle
    [Show full text]
  • Redheaded Pine Sawfly Neodiprion Lecontei (Fitch)1 Sara Deberry2
    EENY488 doi.org/10.32473/edis-in329-2000 Redheaded Pine Sawfly Neodiprion lecontei (Fitch)1 Sara DeBerry2 The Featured Creatures collection provides in-depth profiles of insects, nematodes, arachnids and other organisms relevant to Florida. These profiles are intended for the use of interested laypersons with some knowledge of biology as well as academic audiences. Introduction The redheaded pine sawfly, Neodiprion lecontei (Fitch), is one of numerous sawfly species (including 35 species in the genus Neodiprion) native to the United States and Canada (Arnett 2000) inhabiting mainly pine stands. The ovipositor of all adult female sawflies is saw-like, and is likely where the common name for this group (suborder) originated (PADCNR 2010). Neodiprion lecontei is an important defoliator of com- mercially grown pine, as the preferred feeding conditions for sawfly larvae are enhanced in monocultures of shortleaf, loblolly, and slash pine, all of which are commonly culti- vated in the southern United States. Figure 1. Adult female redheaded pine sawfly, Neodiprion lecontei (Fitch). Distribution Credits: Lacy L. Hyche, Auburn University, www.forestryimages.org Numerous sawfly species are found in North America. The redheaded pine sawfly is native to the United States and Description found primarily east of the Great Plains (Wilson 1978), Adults north into Canada, and south into Florida. Adult sawflies have a broad “waist,” in contrast with many other hymenopterans, and have two pairs of membranous wings. Adults are 0.5–0.85 cm (1/5–1/3 inch) in length, with the females being approximately two-thirds larger than 1. This document is EENY488, one of a series of the Entomology and Nematology Department, UF/IFAS Extension.
    [Show full text]
  • Forest Insect and Disease Conditions in the Rocky Mountain Region 1997-1999
    Forest Insect and Disease Conditions in the Rocky Mountain Region 1997-1999 United States Renewable Rocky Department of Resources Mountain Agriculture Forest Health Region Management 2 FOREST INSECT AND DISEASE CONDITIONS IN THE ROCKY MOUNTAIN REGION 1997-1999 by The Forest Health Management Staff Edited by Jeri Lyn Harris, Michelle Frank, and Susan Johnson December 2001 USDA Forest Service Rocky Mountain Region Renewable Resources, Forest Health Management P.O. Box 25127 Lakewood, Colorado 80225-5127 Cover: Aerial photograph taken by Robert D. Averill on October 29, 1997, just days after a blowdown event occurred on the Routt National Forest. The picture was taken looking east toward a blowdown area that straddles both the Mt. Zirkel Wilderness and the Routt National Forest. “The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternate means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity employer.” Maps in this product are reproduced from geospatial information prepared by the U.S. Department of Agriculture, Forest Service. GIS data and product accuracy may vary.
    [Show full text]
  • Baculovirus Enhancins and Their Role in Viral Pathogenicity
    9 Baculovirus Enhancins and Their Role in Viral Pathogenicity James M. Slavicek USDA Forest Service USA 1. Introduction Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from the order Lepidoptera and also insects in the orders Hymenoptera and Diptera (Moscardi 1999; Herniou & Jehle, 2007). Baculoviruses have been used to control insect pests on agricultural crops and forests around the world (Moscardi, 1999; Szewczk et al., 2006, 2009; Erlandson 2008). Efforts have been ongoing for the last two decades to develop strains of baculoviruses with greater potency or other attributes to decrease the cost of their use through a lower cost of production or application. Early efforts focused on the insertion of foreign genes into the genomes of baculoviruses that would increase viral killing speed for use to control agricultural insect pests (Black et al., 1997; Bonning & Hammock, 1996). More recently, research efforts have focused on viral genes that are involved in the initial and early processes of infection and host factors that impede successful infection (Rohrmann, 2011). The enhancins are proteins produced by some baculoviruses that are involved in one of the earliest events of host infection. This article provides a review of baculovirus enhancins and their role in the earliest phases of viral infection. 2. Lepidopteran specific baculoviruses The Baculoviridae are divided into four genera: the Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses, NPV), Betabaculovirus (lepidopteran specific Granuloviruses, GV), Gammabaculovirus (hymenopteran-specific NPV), and Deltabaculovirus (dipteran-specific NPV) (Jehle et al., 2006). Baculoviruses are arthropod-specific viruses with rod-shaped nucleocapsids ranging in size from 30-60 nm x 250-300 nm.
    [Show full text]
  • California Forest Insect and Disease Training Manual
    California Forest Insect and Disease Training Manual This document was created by US Forest Service, Region 5, Forest Health Protection and the California Department of Forestry and Fire Protection, Forest Pest Management forest health specialists. The following publications and references were used for guidance and supplemental text: Forest Insect and Disease Identification and Management (training manual). North Dakota Forest Service, US Forest Service, Region 1, Forest Health Protection, Montana Department of Natural Resources and Conservation and Idaho Department of Lands. Forest Insects and Diseases, Natural Resources Institute. US Forest Service, Region 6, Forest Health Protection. Forest Insect and Disease Leaflets. USDA Forest Service Furniss, R.L., and Carolin, V.M. 1977. Western forest insects. USDA Forest Service Miscellaneous Publication 1339. 654 p. Goheen, E.M. and E.A. Willhite. 2006. Field Guide to Common Disease and Insect Pests of Oregon and Washington Conifers. R6-NR-FID-PR-01-06. Portland, OR. USDA Forest Service, Pacific Northwest Region. 327 p. M.L. Fairweather, McMillin, J., Rogers, T., Conklin, D. and B Fitzgibbon. 2006. Field Guide to Insects and Diseases of Arizona and New Mexico. USDA Forest Service. MB-R3-16-3. Pest Alerts. USDA Forest Service. Scharpf, R. F., tech coord. 1993. Diseases of Pacific Coast Conifers. USDA For. Serv. Ag. Hndbk. 521. 199 p.32, 58. Tree Notes Series. California Department of Forestry and Fire Protection. Wood, D.L., T.W. Koerber, R.F. Scharpf and A.J. Storer, Pests of the Native California Conifers, California Natural History Series, University of California Press, 2003. Cover Photo: Don Owen. 1978. Yosemite Valley.
    [Show full text]
  • Wednesday, March 18, 2009
    REPORT NO. ZONE Z-3-66 Not for Publication 5Z30 FEBRUARY 1966 BIOLOGICAL EVALUATION OF A RED-HEADED PINE SAWFLY INFESTATION ON THE OCALA NATIONAL FOREST, FLORlDA by L. E. Drake and W. H. Padgett INTRODUCTION A biological evaluation of a red-headed sawfly infestation on the Seminole Dist:r.ict of the Ocala National Forest, Florida, was made on January Z6 and 27, 1966, by L. E. Drake, Forest Insect and Disease Control Section with assistance from Bascom Perry, Forester, Seminole Ranger District. The infestation is scattered throughout 14,000 acres of uneven-aged longleaf pine with intermingled slash pine plantations. This is the first year of defoliation and there is no known history of past sawfly infestations on this area. However, a 3, 000-acre infestation of another sawfly species, Neodiprion excitans, occurred in adjoining Marion County in 1963. TECHNICAL INFORMATION Causal agent - The red-headed pine sawfly, Neodiprion lecontei (Fitch.). Host trees attacked - Longleaf pine, Pinus palustris Mill. was the primary host Ppecies. However, light de.foliation was observed on scattered slash pine, Pinus elliottii var. elliottii Engelm. Type of damage - The red-headed pine sawfly feeds on the needles of its host causing defoliation. This damage results in growth loss and repeated defoliation may cause mortality. Defoliation was observed on all age classes from reproduction to sawtimber. Complete defoliation wall noted only on sapling-sized trees lZ-15 years old. No mortality was observed• • Biological data - There are, at least, three generations of this insect each year in Florida and feeding apparently continues throughout the winter months.
    [Show full text]
  • A Review of Pest Surveillance Techniques for Detecting Quarantine
    A review of pest surveillance techniques for detecting quarantine pests in Europe Sylvie Augustin, Neil Boonham, William Jan de Kogel, Pierre Donner, Massimo Faccoli, David Lees, Lorenzo Marini, Nicola Mori, Edoardo Petrucco Toffolo, Serge Quilici, et al. To cite this version: Sylvie Augustin, Neil Boonham, William Jan de Kogel, Pierre Donner, Massimo Faccoli, et al.. A review of pest surveillance techniques for detecting quarantine pests in Europe. Bulletin OEPP, 2012, 42 (3), pp.515-551. 10.1111/epp.2600. hal-02648312 HAL Id: hal-02648312 https://hal.inrae.fr/hal-02648312 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bulletin OEPP/EPPO Bulletin (2012) 42 (3), 515–551 ISSN 0250-8052. DOI: 10.1111/epp.2600 A review of pest surveillance techniques for detecting quarantine pests in Europe* Sylvie Augustin1, Neil Boonham2, Willem J. De Kogel3, Pierre Donner4, Massimo Faccoli5, David C. Lees1, Lorenzo Marini5, Nicola Mori5, Edoardo Petrucco Toffolo5, Serge Quilici4, Alain Roques1, Annie Yart1 and Andrea Battisti5 1INRA, UR0633
    [Show full text]