The CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SULFUR TRIOXIDE -- Chemical Fact Sheet
OLEUM/SULFUR TRIOXIDE -- Chemical Fact Sheet 1 What is it? Oleum is a cloudy, gray, fuming, oily, corrosive liquid with a sharp, penetrating odor. When Oleum comes into contact with air following a spill, it releases Sulfur Trioxide. Sulfur Trioxide is a white gas having the appearance of fog. It also has a sharp, penetrating odor that is detectable at low concentrations. Because of the tendency to liberate Sulfur Trioxide on contact with air, Oleum is also known as “fuming Sulfuric Acid”. Where does it Oleum is made by dissolving Sulfur Trioxide into Sulfuric Acid. Sulfur come from? Trioxide is made from Sulfur Dioxide in the presence of a catalyst. What are the It is used in the oil refining process to make crude oil distillates into higher quality materials. common uses for it? Manufacture of soap Manufacture of high purity Sulfuric Acid for the electronic industry Manufacture of catalyst used in production of Sulfuric Acid. How is it Oleum is shipped by truck and pipeline. transported in CCC? How is it stored Oleum is stored in covered tanks. in CCC? Health Hazards from Exposure Exposure Route Symptoms First Aid Inhalation Irritates nose, throat and Remove to fresh air. Seek (low concentrations) lungs medical attention if Burning Sensation symptoms persist. Sneezing, coughing Inhalation Burning sensation Remove to fresh air, get (high concentrations & prolonged exposure) Coughing, gagging medical attention including Chest tightness and pain, oxygen administration. Fluid in lungs Initiate CPR if breathing has Suffocation, death stopped. Eyes Severely irritates eyes Rinse eyes with water for at Burning/discomfort least 5 minutes. -
Noncovalent Bonds Through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons
molecules Review Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons Wiktor Zierkiewicz 1,* , Mariusz Michalczyk 1,* and Steve Scheiner 2 1 Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeze˙ Wyspia´nskiego27, 50-370 Wrocław, Poland 2 Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA; [email protected] * Correspondence: [email protected] (W.Z.); [email protected] (M.M.) Abstract: Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another. Keywords: molecular electrostatic potential; halogen bond; pnicogen bond; tetrel bond; chalcogen bond; cooperativity Citation: Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same 1. Introduction Molecule. Guiding Principles and The concept of the σ-hole, introduced to a wide audience in 2005 at a conference in Comparisons. Molecules 2021, 26, Prague by Tim Clark [1], influenced a way of thinking about noncovalent interactions 1740. -
Source Test Method ST-20 SULFUR DIOXIDE, SULFUR TRIOXIDE
Source Test Method ST-20 SULFUR DIOXIDE, SULFUR TRIOXIDE, SULFURIC ACID MIST (Adopted January 20, 1982) REF: Regulations 6-320, 6-330, 9-1-302, 9-1-304 thru 310, 10-1-301, 12-6-301 1. APPLICABILITY 1.1 This method is used to quantify emissions of s ulfur dioxide, sulfur trioxide and sulfuric acid mist. It determines compliance with Regulations 6-320 and 6-330 for SULFUR TRIOXIDE and SULFURIC ACID MIST, and 9-1-302, 9- 1-304 thru 310 and 10-1-301 and 12-6-301 for SULFUR DIOXIDE. 1.2 This method, modified with a glass fiber disc filter as the back-up SO 3 filter, has been given alternate status by the EPA to EPA Method 8. It may be used to determine compliance with oxides of sulfur regulations under Regulation 9. 2. PRINCIPLE 2.1 Sulfuric acid mist, sulfur trioxide and sulfur dioxide are collected in a single extractive sampling train. Acid mist is trapped in a quartz wool plug in the sample probe and is subsequently analyzed with an acid-base titration. Sulfur trioxide is absorbed in an 80% isopropyl alcohol (IPA)/water solution with a quartz wool back-up filter and is analyzed using analytical procedure Lab-12. Sulfur dioxide is absorbed in an aqueous hydrogen peroxide solution and is analyzed using analytical procedure Lab-12. 3. RANGE 3.1 The minimum measurable concentration using this method listed below are: 3 3.1.1 Acid mist - 0.0002 gr/ft as H2SO4 3.1.2 Sulfur trioxide - 7 ppm 3.1.3 Sulfur dioxide - 7 ppm 3.2 The maximum measurable concentrations using this method listed below are: 3.2.1 Acid mist - undetermined 3.2.2 Sulfur trioxide - 350 ppm 3.2.3 Sulfur dioxide - 2.5 % 4. -
(VI) and Chromium (V) Oxide Fluorides
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1976 The chemistry of chromium (VI) and chromium (V) oxide fluorides Patrick Jay Green Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Green, Patrick Jay, "The chemistry of chromium (VI) and chromium (V) oxide fluorides" (1976). Dissertations and Theses. Paper 4039. https://doi.org/10.15760/etd.5923 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. All ABSTRACT OF THE TllESIS OF Patrick Jay Green for the Master of Science in Chemistry presented April 16, 1976. Title: Chemistry of Chromium(VI) and Chromium(V) Oxide Fluorides. APPROVEO BY MEMBERS OF THE THESIS CO'"o\l TIEE: y . • Ii . ' I : • • • • • New preparative routes to chromyl fluoride were sought. It was found that chlorine ironofluoride reacts with chromium trioxide and chromyl chlo ride to produce chromyl fluoride. Attempts were ~ade to define a mechan ism for the reaction of ClF and Cr0 in light of by-products observed 3 and previous investigations. Carbonyl fluoride and chromium trioxide react to fom chro·yl fluoride and carbo:i dioxide. A mechanism was also proposed for this react10n. Chromium trioxide 11itl\ l~F6 or WF5 reacts to produce chromyl fluoride and the respective oxide tetrafluoride. 2 Sulfur hexafluoride did not react with Cr03. -
Oxidation of Sulfur Dioxide to Sulfur Trioxide Over Supported Vanadia Catalysts
Applied Catalysis B: Environmental 19 (1998) 103±117 Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts Joseph P. Dunn, Prashanth R. Koppula, Harvey G. Stenger, Israel E. Wachs* Zettlemoyer Center for Surface Studies, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA Accepted 2 June 1998 Abstract The objectives of this research are to establish the fundamental kinetics and mechanism of sulfur dioxide oxidation over supported vanadia catalysts and use these insights to facilitate the design of SCR DeNOx catalysts with minimal sulfur dioxide oxidation activity. A series of supported vanadia catalysts were prepared on various metal-oxide supports: ceria, zirconia, titania, alumina and silica. Raman spectroscopy was used to determine the coordination of surface species. At low vanadia 5 loadings, vanadia preferentially exists on oxide support surfaces as isolated tetrahedrally coordinated (M±O)3V O species. 5 At higher vanadia loadings, the isolated (M±O)3V O species polymerize on the oxide support surface breaking two V±O±M bonds and forming two V±O±V bridging bonds. The turnover frequency for sulfur dioxide oxidation was very low, 104 to 106 s1 at 4008C, and was independent of vanadia coverage suggesting that only one vanadia site is required for the oxidation reaction. As the support was varied, sulfur dioxide oxidation activity of the supported vanadia catalysts varied by one order of magnitude (Ce>Zr, Ti>Al>Si). The basicity of the bridging V±O±M oxygen appears to be responsible for in¯uencing the adsorption and subsequent oxidation of the acidic sulfur dioxide molecule. Over the range of conditions studied, the rate of sulfur dioxide oxidation is zero-order in oxygen, ®rst-order in sulfur dioxide and inhibited by sulfur trioxide. -
The Hydrogen Bond: a Hundred Years and Counting
J. Indian Inst. Sci. A Multidisciplinary Reviews Journal ISSN: 0970-4140 Coden-JIISAD © Indian Institute of Science 2019. The Hydrogen Bond: A Hundred Years and Counting Steve Scheiner* REVIEW REVIEW ARTICLE Abstract | Since its original inception, a great deal has been learned about the nature, properties, and applications of the H-bond. This review summarizes some of the unexpected paths that inquiry into this phenom- enon has taken researchers. The transfer of the bridging proton from one molecule to another can occur not only in the ground electronic state, but also in various excited states. Study of the latter process has devel- oped insights into the relationships between the nature of the state, the strength of the H-bond, and the height of the transfer barrier. The enormous broadening of the range of atoms that can act as both pro- ton donor and acceptor has led to the concept of the CH O HB, whose ··· properties are of immense importance in biomolecular structure and function. The idea that the central bridging proton can be replaced by any of various electronegative atoms has fostered the rapidly growing exploration of related noncovalent bonds that include halogen, chalco- gen, pnicogen, and tetrel bonds. Keywords: Halogen bond, Chalcogen bond, Pnicogen bond, Tetrel bond, Excited-state proton transfer, CH O H-bond ··· 1 Introduction charge on the proton. The latter can thus attract Over the course of its century of study following the partial negative charge of an approaching its earliest conceptual formulation1,2, the hydro- nucleophile D. Another important factor resides gen bond (HB) has surrendered many of the in the perturbation of the electronic structure mysteries of its source of stability and its myriad of the two species as they approach one another. -
Chemical Physics 524 (2019) 55–62
Chemical Physics 524 (2019) 55–62 Contents lists available at ScienceDirect Chemical Physics journal homepage: www.elsevier.com/locate/chemphys Structures of clusters surrounding ions stabilized by hydrogen, halogen, T chalcogen, and pnicogen bonds ⁎ ⁎ Steve Scheinera, , Mariusz Michalczykb, Wiktor Zierkiewiczb, a Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, United States b Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland ARTICLE INFO ABSTRACT Keywords: Four H-binding HCl and HF molecules position themselves at the vertices of a tetrahedron when surrounding a Tetrahedral central Cl−. Halogen bonding BrF and ClF form a slightly distorted tetrahedron, a tendency that is amplified for QTAIM ClCN which forms a trigonal pyramid. Chalcogen bonding SF2, SeF2, SeFMe, and SeCSe occupy one hemisphere NBO of the central ion, leaving the other hemisphere empty. This pattern is repeated for pnicogen bonding PF3, SeF3 Cl− and AsCF. The clustering of solvent molecules on one side of the Cl− is attributed to weak attractive interactions Na+ between them, including chalcogen, pnicogen, halogen, and hydrogen bonds. Binding energies of four solvent molecules around a central Na+ are considerably reduced relative to chloride, and the geometries are different, with no empty hemisphere. The driving force maximizes the number of electronegative (F or O) atoms close to the Na+, and the presence of noncovalent bonds between solvent molecules. 1. Introduction particular, the S, Se, etc group can engage in chalcogen bonds (YBs) [19–25], and the same is true of the P, As family which forms pnicogen The hydrogen bond (HB) is arguably the most important and in- bonds (ZBs) [26–34]. -
Recent Advances in the Synthesis of Five- and Six-Membered Selena
290 RECENT ADVANCES IN THE SYNT HESIS OF FIVE - AND SIX - MEMBERED SELENA - HETEROCYCLES DOI: http://dx.medra.org/ 10.17374/targets.2021.24.290 D amiano Tanini * , Antonella Capperucci Department of Chemistry “Ugo Schiff ”, Università di Firenze , Via della Lastruccia 3 - 13, 50019 Sesto Fiorentino (Firenze ) , Italy (e - mail: [email protected] ) Abstract. Organoselenium compounds play an increasingly important role in chemistry and biochemistry. Amongst the wide variety of selenium - containing systems, selena - heterocycles are versatile derivatives with broad applications in organic synthesis, catalysis, medicinal chemistry, and biology. In this context, taking into account the poor stability of most selenylating reagents or intermediates , the developm ent of simple, mild and ver satile synthetic methodologies towards functionalised selena - heterocycles remains an attractive yet challenging topic . This chapter will be focusing on recent advances on the synthesis of different classes of selenium - containing five - and six - member ed ring systems. Contents 1. I ntroduction 2. S ynthesis of heterocyc lic systems containing selenium 3. S ynthesis of heterocyclic systems containing selenium and nitrogen 4. S ynthesis of heterocyclic systems containing selenium and other heteroatoms (O, S, P) 5. C onclusion s and future outlook Acknowledgement s References 1. I ntroduction Selenium - containing small molecules occupy a central position in chemical science , with different application s in organic synthesis, material sciences and polymer chemistry . 1,2,3 Organoselenides are often employed as synthetic intermediates, ligands, and catalysts. 4,5,6,7 Furthermore, owing to their antioxidant, enzyme modulator, and anticancer properties, selenium - containing organic molecules play an increasingly important role in medicinal chemistry and biology. -
Quantitative Analysis of Hydrogen and Chalcogen Bonds in Two Pyrimidine
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Quantitative analysis of hydrogen and chalcogen bonds in two pyrimidine-5-carbonitrile derivatives, potential DHFR inhibitors: an integrated crystallographic and theoretical study Al-Wahaibi, Lamya H ; Chakraborty, Kushumita ; Al-Shaalan, Nora H ; Syed Majeed, Mohamed Yehya Annavi ; Blacque, Olivier ; Al-Mutairi, Aamal A ; El-Emam, Ali A ; Percino, M Judith ; Thamotharan, Subbiah Abstract: Two potential bioactive pyrimidine-5-carbonitrile derivatives have been synthesized and char- acterized by spectroscopic techniques (1H and 13C-NMR) and the three dimensional structures were elucidated by single crystal X-ray diffraction at low temperature (160 K). In both structures, the molec- ular conformation is locked by an intramolecular C–HC interaction involving the cyano and CH of the thiophene and phenyl rings. The intermolecular interactions were analyzed in a qualitative man- ner based on the Hirshfeld surface and 2D-fingerprint plots. The results suggest that the phenyl and thiophene moieties have an effect on the crystal packing. For instance, the chalcogen bonds areonly preferred in the thiophene derivative. However, both structures uses a common N–HO hydrogen bond motif. Moreover, the structures of 1 and 2 display 1D isostructurality and molecular chains stabilize by intermolecular N–HO and N–HN hydrogen bonds. The nature and extent of different non-covalent interactions were further characterized by the topological parameters derived from the quantum the- ory of atoms-in-molecules approach. This analysis indicates that apart from N–HO hydrogen bonds, other non-covalent interactions are closed-shell in nature. -
Selenophene Transition Metal Complexes Carter James White Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1994 Selenophene transition metal complexes Carter James White Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation White, Carter James, "Selenophene transition metal complexes " (1994). Retrospective Theses and Dissertations. 10521. https://lib.dr.iastate.edu/rtd/10521 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if imauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
Utilization of Sulfur Dioxide in Organic Acids Recovery and Sulfur Trioxide Conversion with Iron Oxide As Catalyst Yonghui Shi Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Utilization of sulfur dioxide in organic acids recovery and sulfur trioxide conversion with iron oxide as catalyst Yonghui Shi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons, and the Environmental Engineering Commons Recommended Citation Shi, Yonghui, "Utilization of sulfur dioxide in organic acids recovery and sulfur trioxide conversion with iron oxide as catalyst " (2006). Retrospective Theses and Dissertations. 1486. https://lib.dr.iastate.edu/rtd/1486 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Utilization of sulfur dioxide in organic acids recovery and sulfur trioxide conversion with iron oxide as catalyst by Yonghui Shi A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Civil Engineering (Environmental Engineering) Program of Study Committee: J. Hans van Leeuwen (Co-major Professor) Robert C. Brown (Co-major Professor) Shihwu Sung (Co-major Professor) Thomas D. Wheelock Roy Gu Iowa State University Ames, Iowa 2006 UMI Number: 3223019 UMI Microform 3223019 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. -
Liquid Sulfur Trioxide Bulk Chemicals and Intermediates | Technical Data Sheet
Liquid Sulfur trioxide Bulk Chemicals and Intermediates | Technical Data Sheet Synonyms Sulfuric anhydride O O S O Molecular formula O3S Molecular weight 80.0 CAS number 7446-11-9 EINECS number 231-197-3 Specifications Appearance Clear, colourless fuming liquid Free sulfur trioxide 99.2% minimum Physical properties Boiling point 45°C Melting point 16.8°C Specific gravity 1.92 Vapour density 2.8 (air-1) Description Sulfur trioxide is a clear, colourless fuming liquid with a strong odour. It reacts violently with water. Applications Intermediate for chemicals Packaging Sulfur trioxide is available in bulk tankers. Other packaging may be considered on request. Storage and handling Store in a tightly closed container. Keep in a cool, dry and well-ventilated area. Sulfur trioxide is moisture-sensitive. Keep away from heat, any sources of ignition, direct sunlight or strong incandescent light. Do not breathe gas | fumes | vapours | spray. Never add water to this product. Avoid shock and friction. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, get immediate medical advice. Avoid contact with skin and eyes. Keep away from incompatible materials such as oxidising agents, metals, alkalis and moisture. Always refer to the Safety Data Sheet (SDS) for detailed information on storage and handling. Safety Wear personal protective equipment (PPE) such as safety glasses or chemical goggles, full-body suit, vapour respirator, safety shoes and gloves. A self-contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient, consult a specialist before handling this product. Always refer to the SDS for detailed information on safety.