What's Cool About X86 Assembly Language?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ADSP-21065L SHARC User's Manual; Chapter 2, Computation
&20387$7,2181,76 Figure 2-0. Table 2-0. Listing 2-0. The processor’s computation units provide the numeric processing power for performing DSP algorithms, performing operations on both fixed-point and floating-point numbers. Each computation unit executes instructions in a single cycle. The processor contains three computation units: • An arithmetic/logic unit (ALU) Performs a standard set of arithmetic and logic operations in both fixed-point and floating-point formats. • A multiplier Performs floating-point and fixed-point multiplication as well as fixed-point dual multiply/add or multiply/subtract operations. •A shifter Performs logical and arithmetic shifts, bit manipulation, field deposit and extraction operations on 32-bit operands and can derive exponents as well. ADSP-21065L SHARC User’s Manual 2-1 PM Data Bus DM Data Bus Register File Multiplier Shifter ALU 16 × 40-bit MR2 MR1 MR0 Figure 2-1. Computation units block diagram The computation units are architecturally arranged in parallel, as shown in Figure 2-1. The output from any computation unit can be input to any computation unit on the next cycle. The computation units store input operands and results locally in a ten-port register file. The Register File is accessible to the processor’s pro- gram memory data (PMD) bus and its data memory data (DMD) bus. Both of these buses transfer data between the computation units and internal memory, external memory, or other parts of the processor. This chapter covers these topics: • Data formats • Register File data storage and transfers -
6.004 Computation Structures Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 6.004 Computation Structures Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.004 Computation Structures β Documentation 1. Introduction This handout is a reference guide for the β, the RISC processor design for 6.004. This is intended to be a complete and thorough specification of the programmer-visible state and instruction set. 2. Machine Model The β is a general-purpose 32-bit architecture: all registers are 32 bits wide and when loaded with an address can point to any location in the byte-addressed memory. When read, register 31 is always 0; when written, the new value is discarded. Program Counter Main Memory PC always a multiple of 4 0x00000000: 3 2 1 0 0x00000004: 32 bits … Registers SUB(R3,R4,R5) 232 bytes R0 ST(R5,1000) R1 … … R30 0xFFFFFFF8: R31 always 0 0xFFFFFFFC: 32 bits 32 bits 3. Instruction Encoding Each β instruction is 32 bits long. All integer manipulation is between registers, with up to two source operands (one may be a sign-extended 16-bit literal), and one destination register. Memory is referenced through load and store instructions that perform no other computation. Conditional branch instructions are separated from comparison instructions: branch instructions test the value of a register that can be the result of a previous compare instruction. -
Most Computer Instructions Can Be Classified Into Three Categories
Introduction: Data Transfer and Manipulation Most computer instructions can be classified into three categories: 1) Data transfer, 2) Data manipulation, 3) Program control instructions » Data transfer instruction cause transfer of data from one location to another » Data manipulation performs arithmatic, logic and shift operations. » Program control instructions provide decision making capabilities and change the path taken by the program when executed in computer. Data Transfer Instruction Typical Data Transfer Instruction : LD » Load : transfer from memory to a processor register, usually an AC (memory read) ST » Store : transfer from a processor register into memory (memory write) MOV » Move : transfer from one register to another register XCH » Exchange : swap information between two registers or a register and a memory word IN/OUT » Input/Output : transfer data among processor registers and input/output device PUSH/POP » Push/Pop : transfer data between processor registers and a memory stack MODE ASSEMBLY REGISTER TRANSFER CONVENTION Direct Address LD ADR ACM[ADR] Indirect Address LD @ADR ACM[M[ADR]] Relative Address LD $ADR ACM[PC+ADR] Immediate Address LD #NBR ACNBR Index Address LD ADR(X) ACM[ADR+XR] Register LD R1 ACR1 Register Indirect LD (R1) ACM[R1] Autoincrement LD (R1)+ ACM[R1], R1R1+1 8 Addressing Mode for the LOAD Instruction Data Manipulation Instruction 1) Arithmetic, 2) Logical and bit manipulation, 3) Shift Instruction Arithmetic Instructions : NAME MNEMONIC Increment INC Decrement DEC Add ADD Subtract SUB Multiply -
Simple Computer Example Register Structure
Simple Computer Example Register Structure Read pp. 27-85 Simple Computer • To illustrate how a computer operates, let us look at the design of a very simple computer • Specifications 1. Memory words are 16 bits in length 2. 2 12 = 4 K words of memory 3. Memory can be accessed in one clock cycle 4. Single Accumulator for ALU (AC) 5. Registers are fully connected Simple Computer Continued 4K x 16 Memory MAR 12 MDR 16 X PC 12 ALU IR 16 AC Simple Computer Specifications (continued) 6. Control signals • INCPC – causes PC to increment on clock edge - [PC] +1 PC •ACin - causes output of ALU to be stored in AC • GMDR2X – get memory data register to X - [MDR] X • Read (Write) – Read (Write) contents of memory location whose address is in MAR To implement instructions, control unit must break down the instruction into a series of register transfers (just like a complier must break down C program into a series of machine level instructions) Simple Computer (continued) • Typical microinstruction for reading memory State Register Transfer Control Line(s) Next State 1 [[MAR]] MDR Read 2 • Timing State 1 State 2 During State 1, Read set by control unit CLK - Data is read from memory - MDR changes at the Read beginning of State 2 - Read is completed in one clock cycle MDR Simple Computer (continued) • Study: how to write the microinstructions to implement 3 instructions • ADD address • ADD (address) • JMP address ADD address: add using direct addressing 0000 address [AC] + [address] AC ADD (address): add using indirect addressing 0001 address [AC] + [[address]] AC JMP address 0010 address address PC Instruction Format for Simple Computer IR OP 4 AD 12 AD = address - Two phases to implement instructions: 1. -
Lecture Notes in Assembly Language
Lecture Notes in Assembly Language Short introduction to low-level programming Piotr Fulmański Łódź, 12 czerwca 2015 Spis treści Spis treści iii 1 Before we begin1 1.1 Simple assembler.................................... 1 1.1.1 Excercise 1 ................................... 2 1.1.2 Excercise 2 ................................... 3 1.1.3 Excercise 3 ................................... 3 1.1.4 Excercise 4 ................................... 5 1.1.5 Excercise 5 ................................... 6 1.2 Improvements, part I: addressing........................... 8 1.2.1 Excercise 6 ................................... 11 1.3 Improvements, part II: indirect addressing...................... 11 1.4 Improvements, part III: labels............................. 18 1.4.1 Excercise 7: find substring in a string .................... 19 1.4.2 Excercise 8: improved polynomial....................... 21 1.5 Improvements, part IV: flag register ......................... 23 1.6 Improvements, part V: the stack ........................... 24 1.6.1 Excercise 12................................... 26 1.7 Improvements, part VI – function stack frame.................... 29 1.8 Finall excercises..................................... 34 1.8.1 Excercise 13................................... 34 1.8.2 Excercise 14................................... 34 1.8.3 Excercise 15................................... 34 1.8.4 Excercise 16................................... 34 iii iv SPIS TREŚCI 1.8.5 Excercise 17................................... 34 2 First program 37 2.1 Compiling, -
ARM Instruction Set
4 ARM Instruction Set This chapter describes the ARM instruction set. 4.1 Instruction Set Summary 4-2 4.2 The Condition Field 4-5 4.3 Branch and Exchange (BX) 4-6 4.4 Branch and Branch with Link (B, BL) 4-8 4.5 Data Processing 4-10 4.6 PSR Transfer (MRS, MSR) 4-17 4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-22 4.8 Multiply Long and Multiply-Accumulate Long (MULL,MLAL) 4-24 4.9 Single Data Transfer (LDR, STR) 4-26 4.10 Halfword and Signed Data Transfer 4-32 4.11 Block Data Transfer (LDM, STM) 4-37 4.12 Single Data Swap (SWP) 4-43 4.13 Software Interrupt (SWI) 4-45 4.14 Coprocessor Data Operations (CDP) 4-47 4.15 Coprocessor Data Transfers (LDC, STC) 4-49 4.16 Coprocessor Register Transfers (MRC, MCR) 4-53 4.17 Undefined Instruction 4-55 4.18 Instruction Set Examples 4-56 ARM7TDMI-S Data Sheet 4-1 ARM DDI 0084D Final - Open Access ARM Instruction Set 4.1 Instruction Set Summary 4.1.1 Format summary The ARM instruction set formats are shown below. 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 9876543210 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing / PSR Transfer Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch and Exchange Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer: register offset Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer: immediate offset Cond 0 -
The Von Neumann Computer Model 5/30/17, 10:03 PM
The von Neumann Computer Model 5/30/17, 10:03 PM CIS-77 Home http://www.c-jump.com/CIS77/CIS77syllabus.htm The von Neumann Computer Model 1. The von Neumann Computer Model 2. Components of the Von Neumann Model 3. Communication Between Memory and Processing Unit 4. CPU data-path 5. Memory Operations 6. Understanding the MAR and the MDR 7. Understanding the MAR and the MDR, Cont. 8. ALU, the Processing Unit 9. ALU and the Word Length 10. Control Unit 11. Control Unit, Cont. 12. Input/Output 13. Input/Output Ports 14. Input/Output Address Space 15. Console Input/Output in Protected Memory Mode 16. Instruction Processing 17. Instruction Components 18. Why Learn Intel x86 ISA ? 19. Design of the x86 CPU Instruction Set 20. CPU Instruction Set 21. History of IBM PC 22. Early x86 Processor Family 23. 8086 and 8088 CPU 24. 80186 CPU 25. 80286 CPU 26. 80386 CPU 27. 80386 CPU, Cont. 28. 80486 CPU 29. Pentium (Intel 80586) 30. Pentium Pro 31. Pentium II 32. Itanium processor 1. The von Neumann Computer Model Von Neumann computer systems contain three main building blocks: The following block diagram shows major relationship between CPU components: the central processing unit (CPU), memory, and input/output devices (I/O). These three components are connected together using the system bus. The most prominent items within the CPU are the registers: they can be manipulated directly by a computer program. http://www.c-jump.com/CIS77/CPU/VonNeumann/lecture.html Page 1 of 15 IPR2017-01532 FanDuel, et al. -
LECTURE NOTE 5: the MEMORY MANAGEMENT REAL MODE Allows the Microprocessor to Address Only the First 1Mbyte of Memory Even If Its Pentium II Microprocessor
LECTURE NOTE 5: THE MEMORY MANAGEMENT REAL MODE Allows the microprocessor to address only the first 1Mbyte of memory even if its Pentium II microprocessor. The first 1Mbyte of memory is called either the real mode or conventional memory system. The DOS operating system requires the microprocessor to operate in this mode. It allows application software. Segment and Offset Through the combination of these two, a memory location is accessed in the real mode. All real mode memory address must consist of a segment address plus an offset address. Segment Address Defines the beginning address of any 64k-byte memory segment. Offset Address Sometimes called displacement or relative. Selects any location within the 64k-byte memory segment. It is the distance above the start of the segment. Note: Each segment register is internally appended with a 0H on its right end. The segment address can begin only at a 16-byte boundary, which is called paragraph. Once the beginning address in known, an ending address is known, by adding FFFFH. The code segment register defines the start of the code segment and the instruction pointer to locate the next instruction within the code segment. This combination (CS:IP or CS:EIP) locates the next instruction executed by the microprocessor. Stack data are referenced through the stack segment at the memory location addressed by either the stack pointer (SP/ESP) or the base pointer (BP/EBP). These combinations are referred to as SS:SP (SS:ESP) or SS:BP (SS:EBP). Addressing Modes 1. Register Addressing Mode transfer a copy of a byte or word from the source register or memory location to the destination register or memory location. -
MIPS IV Instruction Set
MIPS IV Instruction Set Revision 3.2 September, 1995 Charles Price MIPS Technologies, Inc. All Right Reserved RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and / or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor / manufacturer is MIPS Technologies, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. R2000, R3000, R6000, R4000, R4400, R4200, R8000, R4300 and R10000 are trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of MIPS Technologies, Inc. The information in this document is preliminary and subject to change without notice. MIPS Technologies, Inc. (MTI) reserves the right to change any portion of the product described herein to improve function or design. MTI does not assume liability arising out of the application or use of any product or circuit described herein. Information on MIPS products is available electronically: (a) Through the World Wide Web. Point your WWW client to: http://www.mips.com (b) Through ftp from the internet site “sgigate.sgi.com”. Login as “ftp” or “anonymous” and then cd to the directory “pub/doc”. (c) Through an automated FAX service: Inside the USA toll free: (800) 446-6477 (800-IGO-MIPS) Outside the USA: (415) 688-4321 (call from a FAX machine) MIPS Technologies, Inc. -
The Pentium Processor
Chapter 7 The Pentium Processor 7–1 The main purpose of registers is to provide a scratch pad so that the processor can keep data on a temporary basis. For example, the processor may keep the procedure return address, stack pointer, instruction pointer, and so on. Registers are also used to keep the data handy so that it can avoid costly memory accesses. Keeping frequently accessed data in registers is a common compiler optimization technique. 7–2 Pentium supports the following three address spaces: 1. Linear address space 2. Physical address space 3. I/O address space (from discussion in Section 1.7) 7–3 In segmented memory organization, memory is partitioned into segments, where each segment is a small part of the memory. In the real mode, each segment of memory is a linear contiguous sequence of up to 64 KB. In the protected mode, it can be up to 4 GB. Pentium supports segmentation largely to provide backward compatibility to 8086. Note that 8086 is a 16-bit processor with 20 address lines. This mismatch between the processor’s 16-bit registers and 20-bit addresses is solved by using the segmented memory architecture. This segmented architecture has been carried over to Pentium. However, in the protected mode, it is possible to consider the entire memory as a single segment; thus, segmentation is completely turned off. 7–4 In the real mode, a segment is limited to 64 KB due to the fact that 16 bits are used to indicate the offset value into a segment. This magic number 16 is due to the 16-bit registers used 8086 processor. -
Microprocessor's Registers
IT Basics The microprocessor and ASM Prof. Răzvan Daniel Zota, Ph.D. Bucharest University of Economic Studies Faculty of Cybernetics, Statistics and Economic Informatics [email protected] http://zota.ase.ro/itb Contents • Basic microprocessor architecture • Intel microprocessor registers • Instructions – their components and format • Addressing modes (with examples) 2 Basic microprocessor architecture • CPU registers – Special memory locations on the microprocessor chip – Examples: accumulator, counter, FLAGS register • Arithmetic-Logic Unit (ALU) – The place where most of the operations are being made inside the CPU • Bus Interface Unit (BIU) – It controls data and address buses when the main memory is accessed (or data from the cache memory) • Control Unit and instruction set – The CPU has a fixed instruction set for working with (examples: MOV, CMP, JMP) 3 Instruction’s processing • Processing an instruction requires 3 basic steps: 1. Fetching the instruction from memory (fetch) 2. Instruction’s decoding (decode) 3. Instruction’s execution (execute) – implies memory access for the operands and storing the result • Operation mode of an “antique” Intel 8086 Fetch Decode Execute Fetch Decode Execute …... Microprocessor 1 1 1 2 2 2 Busy Idle Busy Busy Idle Busy …... Bus 4 Instruction’s processing • Modern microprocessors may process more instructions simultaneously (pipelining) • Operation of a pipeline microprocessor (from Intel 80486 to our days) Fetch Fetch Fetch Fetch Store Fetch Fetch Read Fetch 1 2 3 4 1 5 6 2 7 Bus Unit Decode Decode -
Lecture Notes
Lecture #4-5: Computer Hardware (Overview and CPUs) CS106E Spring 2018, Young In these lectures, we begin our three-lecture exploration of Computer Hardware. We start by looking at the different types of computer components and how they interact during basic computer operations. Next, we focus specifically on the CPU (Central Processing Unit). We take a look at the Machine Language of the CPU and discover it’s really quite primitive. We explore how Compilers and Interpreters allow us to go from the High-Level Languages we are used to programming to the Low-Level machine language actually used by the CPU. Most modern CPUs are multicore. We take a look at when multicore provides big advantages and when it doesn’t. We also take a short look at Graphics Processing Units (GPUs) and what they might be used for. We end by taking a look at Reduced Instruction Set Computing (RISC) and Complex Instruction Set Computing (CISC). Stanford President John Hennessy won the Turing Award (Computer Science’s equivalent of the Nobel Prize) for his work on RISC computing. Hardware and Software: Hardware refers to the physical components of a computer. Software refers to the programs or instructions that run on the physical computer. - We can entirely change the software on a computer, without changing the hardware and it will transform how the computer works. I can take an Apple MacBook for example, remove the Apple Software and install Microsoft Windows, and I now have a Window’s computer. - In the next two lectures we will focus entirely on Hardware.