Genetic Barcoding of Marine Leeches (Ozobranchus Spp.) from Florida Sea Turtles and Their Divergence in Host Specificity

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Barcoding of Marine Leeches (Ozobranchus Spp.) from Florida Sea Turtles and Their Divergence in Host Specificity Molecular Ecology Resources (2011) 11, 271–278 doi: 10.1111/j.1755-0998.2010.02946.x DNA BARCODING Genetic barcoding of marine leeches (Ozobranchus spp.) from Florida sea turtles and their divergence in host specificity AUDREY E. McGOWIN,* TRIET M. TRUONG,* ADRIAN M. CORBETT,† DEAN A. BAGLEY,‡§ LLEWELLYN M. EHRHART,‡§ MICHAEL J. BRESETTE,§ STEVEN T. WEEGE§ and DAVE CLARK§ *Department of Chemistry, Wright State University, Dayton, OH 45435, USA, †Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA, ‡Department of Biology, University of Central Florida, Orlando, FL 32816, USA, §Inwater Research Group, Inc., 4160 NE Hyline Dr., Jensen Beach, FL 34957, USA Abstract Ozobranchus margoi and Ozobranchus branchiatus are the only two species of marine turtle leeches (Ozobranchus spp.) known to inhabit the Atlantic coast of the United States and theGulfofMexico.Inearlyreports of fibropapillomatosis (FP) in green turtles (Chelonia mydas), O. branchiatus was implicated as a vector in the transmission of Fibropapilloma- associated turtle herpesvirus (FPTHV). It is imperative that the leech species be identified to elucidate the role Ozobranchus spp. may play in disease transmission. In this study, Ozobranchus branchiatus has been identified for the first time on a log- gerhead (Caretta caretta) turtle, and the molecular data for this species is now available for the first time in GenBank. Both species of leeches were also found infecting a single C. mydas. Using morphological taxonomy combined with distance- and character-based genetic sequence analyses, this study has established a DNA barcode for both species of Ozobranchus spp. leech and has shown it can be applied successfully to the identification of leeches at earlier stages of development when morphological taxonomy cannot be employed. The results suggest a different haplotype may exist for O. branchiatus leeches found on C. caretta versus C. mydas. Leech cocoon residue collected from a C. mydas was identified using the new method. Keywords: cocoon, DNA barcoding, Fibropapillomatosis-associated turtle herpesvirus, new host record, Ozobranchus branchiatus, Ozobranchus margoi, sea turtle leech, two species infection Received 1 September 2010; revision received 11 October 2010; accepted 21 October 2010 1975). A distinguishing morphological characteristic of Introduction the Ozobranchidae family is finger-like terminally There are only two known species of marine turtle branching lateral protuberances (gills or branchidae) that leeches (Ozobranchus spp.) known to inhabit the Atlantic decrease in complexity and size from the anterior to the coast of the United States and the Gulf of Mexico, Ozo- posterior and begin on segment XIII of the abdomen branchus margoi and Ozobranchus branchiatus. The primary (Sawyer 1986). The primary difference in these two spe- host for O. margoi is the loggerhead turtle (Caretta caretta) cies of leeches is in the number of gills with one pair per but O. margoi has been reported on green turtles (Chelonia segment; O. margoi has five pairs (Davies 1978) and mydas), hawksbill turtles (Eretmochelys imbricata) and O. branchiatus sports seven pairs (Raj & Penner 1962). Kemp’s Ridley turtles (Lepidochelys kempi) as well (Bunk- Both species have a short, segmented body with two eye ley-Williams et al. 2008). Only rarely is a host other than spots, a proboscis and a large posterior sucker. These C. mydas reported for O. branchiatus, although its occur- leeches attach to the mouth, neck, cloaca and under the rence on black turtles (Chelonia agassizi a.k.a. Chelonia flippers of turtles and deposit eggs in cocoons on the car- mydas of the Eastern Pacific) (McDonald & Dutton 1990), apace. Almost nothing is known about the life cycle of hawksbill turtles (Bunkley-Williams et al. 2008), and olive sea turtle leeches, including whether they can exist in the ridley turtles (Lepidochelys olivacea) in Mexico has been absence of a turtle host or if they have alternate hosts. documented (Hernandez-Vazquez & Valadez-Gonzalez Ozobranchus spp. can be very small (millimetres in 1998). These warm water marine leeches belong to the length) with various life stages so differentiation amongst family Rhynchobdellida, Ozobranchidae (Sawyer et al. species is difficult. Only a few descriptions of Ozobran- Correspondence: Audrey E. McGowin, Fax: +1 937 775 2717; chus spp. exist in the scientific literature (Sawyer et al. E-mail: [email protected] 1975) primarily because of the challenges of studying Ó 2010 Blackwell Publishing Ltd 272 DNA BARCODING their hosts, a formidable task because of the limited aligned and unique substitutions at specific positions can knowledge of sea turtle life history patterns (Bolten 2003). be identified as characteristic attributes (CAs). A set of Interest in Ozbranchus spp. has increased in recent these CAs for any species becomes the character-based years because of its possible relationship to a panzootic ‘DNA barcode’ for species identification. The identifica- that has primarily afflicted C. mydas but has now spread tion of a new species with DNA barcoding and those not to other sea turtles (Herbst 1994; Williams et al. 1994). included in a genomic repository must be accompanied The disease, fibropapillomatosis (FP), is a condition char- by standard taxonomy (DeSalle et al. 2005). Still care acterized by the growth of multiple visceral and cutane- must be exercised when using a single gene such as COI ous fibrovascular tumours on the eyes, neck, cloaca and alone because more than one gene may be necessary to flippers of sea turtles (the same places where leeches delineate phylogenetic relationships between species attach themselves), which can interfere with the turtle’s (DeSalle et al. 2005). ability to swim, see and feed. Fibropapilloma-associated For leeches, DNA barcoding could be particularly use- turtle herpesvirus (FPTHV) has been identified as the ful, as their identification using standard taxonomic tech- causative agent of FP (Quackenbush et al. 1998), although niques can sometimes be ambiguous (Bely & Weisblat the primary vector triggering this chronic tumour-form- 2006). In addition, morphological characteristics are only ing disease is still unknown. In early reports of FP in useful when dealing with more mature specimens, not C. mydas, O. branchiatus was implicated as a vector specimens in the larval or cocoon stages, whereas DNA organism (Smith & Coates 1938; Nigrelli & Smith 1943). barcoding would be useful for all stages of development. Four separate viral variants were detected in an analysis DNA barcoding of marine leeches could facilitate marine of FPTHV in sea turtles in Florida waters (Ene et al. 2005). leech life cycle elucidation because the nucleotide The viral variant specific to Indian River Lagoon, a green sequence will be identical at every life stage. Although turtle foraging area along the Atlantic coast of Florida, the phylogeny of leeches has been studied extensively appears to be endemic to the habitat, leading to the sup- through the lens of COI sequences (Siddall & Burreson position that FP is transmitted during the juvenile phase 1998; Light & Siddall 1999; Utevsky et al. 2007) and when turtles move to nearshore feeding grounds after includes O. margoi (GenBank accession number spending several years at sea (Ene et al. 2005). Therefore, AF003268; Siddall & Burreson 1998), O. branchiatus has a vector organism could be responsible for the epizootic previously been excluded as no COI sequence had been occurring at Indian River Lagoon where as high as 72% determined. In this study, COI sequences of both species of C. mydas have been affected (Hirama & Ehrhart 2007). of leeches were obtained for specimens collected from An analysis of FPTHV concentration in five types of tur- sea turtles captured by net in the Indian River Lagoon tle ectoparasites collected in Hawaii showed only Ozo- and the St. Lucie Power Plant on Hutchinson Island in branchus spp. leeches contained sufficient viral load for Florida, resulting in the addition of O. branchiatus to the transmission of the virus between turtles (Greenblatt GenBank database. Using COI sequences of closely et al. 2004). Unfortunately, the leech species was not spec- related species already in GenBank (Siddall & Burreson ified in this publication. Knowledge of the species 1998; Light & Siddall 1999; Utevsky et al. 2007), DNA bar- removed from turtles with FP could shed light on the role codes were generated for both of these species of leeches of marine leeches as a possible vector organism in disease in the Ozobranchidae family and morphological data transmission (Williams & Bunkley-Williams 2006; Bunk- were used to corroborate DNA barcode identification. ley-Williams et al. 2008). These simple character-based attributes (sCAs) were Sequencing of particular mitochondrial genes in ani- applied to a sample of leech cocoon residue (a sample for mals, such as the cytochrome c oxidase I (COI) gene, can which taxonomic identification would be impossible) yield phylogenetic information as well as aid in the iden- taken from a C. mydas during a cold-stunning event that tification of species that have molecular data in genetic occurred in Florida in January 2010. databases such as BOLD, NCBI, GBIF, DDBJ or EMBL. The Universal Folmer primers (Folmer et al. 1994) have Materials and methods been used successfully for the amplification of COI genes in other species of leeches (Siddall & Burreson 1998; Light Collection sites & Siddall 1999; Utevsky et al. 2007).
Recommended publications
  • Biodiversidad De Sanguijuelas (Annelida: Euhirudinea) En México
    Revista Mexicana de Biodiversidad, Supl. 85: S183-S189, 2014 Revista Mexicana de Biodiversidad, Supl. 85: S183-S189, 2014 DOI: 10.7550/rmb.33212 DOI: 10.7550/rmb.33212183 Biodiversidad de sanguijuelas (Annelida: Euhirudinea) en México Biodiversity of leeches (Annelida: Euhirudinea) in Mexico Alejandro Oceguera-Figueroa1 y Virginia León-Règagnon2 1Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México. Tercer circuito s/n, Ciudad Universitaria, 04510 México, D. F., México. Laboratorio de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España. Calle Catedrático José Beltrán 2, Paterna, 46980 Valencia, España. 2Estación de Biología Chamela, Sede Colima. Instituto de Biología, Universidad Nacional Autónoma de México, 48980 San Patricio, Jalisco, México. [email protected] Resumen. El número total de especies de sanguijuelas verdaderas (Annelida: Euhirudinea) registradas en México asciende a 31, las cuales representan el 4.5% de las aproximadamente 680 especies conocidas en el mundo. De las 14 familias reconocidas de euhirudíneos, 10 de ellas tiene representantes en México. Veinte especies y los géneros Limnobdella y Diestecostoma pueden ser considerados como endémicos de México. Los estados de Jalisco y Michoacán son los mejor representados con 10 y 11 registros respectivamente, por el contrario Baja California, Campeche, Quintana Roo y Zacatecas carecen completamente de registros. Palabras clave: sanguijuelas, hirudíneos, Euhirudinea, México. Abstract. The total number of true leech species (Annelida: Euhirudinea) recorded in Mexico now reaches 31, representing 4.5% of the approximately 680 known species in the world. Of the 14 currently recognized families of euhirudineans, 10 occur in Mexico. Twenty species and the genera Diestecostoma and Limnobdella can be considered endemic to Mexico.
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]
  • HE 1749-2015 Martins-S-Final.Indd
    ©2016 Institute of Parasitology, SAS, Košice DOI 10.1515/helmin-2016-0012 HELMINTHOLOGIA, 53, 2: 195 – 199, 2016 Research Note Helminth fauna of Chelonia mydas (Linnaeus, 1758) in the south of Espírito Santo State in Brasil E. BINOTI1, M. C. GOMES1, A. DE CALAIS JUNIOR1, M. R. WERNECK2, I. V. F. MARTINS1*, J. N. BOELONI1 1Department of Veterinary Medicine, Parasitology Laboratory, Universidade Federal do Espírito Santo, Brazil, E-mail: [email protected]; 2BW Consultoria Veterinária, Rua Ponciano Eugênio Duarte n.º 203, Centro, Ubatuba, SP, CEP 11680-000, Brazil Article info Summary Received August 31, 2015 Due to an inadequate knowledge about threats to the sea turtle, we aimed to evaluate the helminth Accepted December 2, 2015 fauna of Chelonia mydas which had died on the southern coast of Espirito Santo, Brasil and de- scribed the associated tissue pathological lesions. Retrospective and prospective studies on turtle parasites were conducted and tissues samples were collected. 106 of 212 of sea turtles (50 %) were parasitized, and 47 of 106 of infected animals 43.0 % (47/106) were in poor health condition. Seven trematoda families covering 19 different helminths species were identifi ed. Turtles were inhabited with one or more species of parasites, and there was no signifi cant association between parasitism and weakness of the animals. Trematode eggs, with or without giant cells in tissues of various organs were observed. Keywords: green turtles; fl uke; morphology; etiology Introduction For the management and conservation of this species, the estab- lishment of death cause is an important point of concern. There- The green turtle Chelonia mydas can be found from the tropics to fore, further research has to be conducted to identify the causes the temperate zones, with coastal habits, i.e.
    [Show full text]
  • Dermochelys Coriacea)
    U.S. Fish & Wildlife Service Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys coriacea) Biological Technical Publication BTP-R4015-2012 Guillaume Feuillet U.S. Fish & Wildlife Service Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys coriacea) Biological Technical Publication BTP-R4015-2012 Karen L. Eckert 1 Bryan P. Wallace 2 John G. Frazier 3 Scott A. Eckert 4 Peter C.H. Pritchard 5 1 Wider Caribbean Sea Turtle Conservation Network, Ballwin, MO 2 Conservation International, Arlington, VA 3 Smithsonian Institution, Front Royal, VA 4 Principia College, Elsah, IL 5 Chelonian Research Institute, Oviedo, FL Author Contact Information: Recommended citation: Eckert, K.L., B.P. Wallace, J.G. Frazier, S.A. Eckert, Karen L. Eckert, Ph.D. and P.C.H. Pritchard. 2012. Synopsis of the biological Wider Caribbean Sea Turtle Conservation Network data on the leatherback sea turtle (Dermochelys (WIDECAST) coriacea). U.S. Department of Interior, Fish and 1348 Rusticview Drive Wildlife Service, Biological Technical Publication Ballwin, Missouri 63011 BTP-R4015-2012, Washington, D.C. Phone: (314) 954-8571 E-mail: [email protected] For additional copies or information, contact: Sandra L. MacPherson Bryan P. Wallace, Ph.D. National Sea Turtle Coordinator Sea Turtle Flagship Program U.S. Fish and Wildlife Service Conservation International 7915 Baymeadows Way, Ste 200 2011 Crystal Drive Jacksonville, Florida 32256 Suite 500 Phone: (904) 731-3336 Arlington, Virginia 22202 E-mail: [email protected] Phone: (703) 341-2663 E-mail: [email protected] Series Senior Technical Editor: Stephanie L. Jones John (Jack) G. Frazier, Ph.D. Nongame Migratory Bird Coordinator Smithsonian Conservation Biology Institute U.S.
    [Show full text]
  • New Leeches and Diseases for the Hawksbill Sea Turtle and the West Indies
    Comp. Parasitol. 75(2), 2008, pp. 263–270 New Leeches and Diseases for the Hawksbill Sea Turtle and the West Indies 1,7 2 3 4 LUCY BUNKLEY-WILLIAMS, ERNEST H. WILLIAMS,JR., JULIA A. HORROCKS, HECTOR C. HORTA, 5 3,6 ANTONIO A. MIGNUCCI-GIANNONI, AND ANTHONY C. POPONI 1 Caribbean Aquatic Animal Health Project, Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagu¨ez, Puerto Rico 00861-9012 (e-mail: [email protected]), 2 Department of Marine Sciences, University of Puerto Rico at Mayagu¨ez, P.O. Box 908, Lajas, Puerto Rico 00667-0908 (e-mail: [email protected]), 3 Barbados Sea Turtle Project, Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, St. Michael, Barbados (e-mail: [email protected]; [email protected]), 4 Department of Natural and Environmental Resources, P.O. Box 1186, Fajardo, Puerto Rico 00738-1186 (e-mail: [email protected]), and 5 Caribbean Stranding Network, P.O. Box 361715, San Juan, Puerto Rico 00936 (e-mail: [email protected]). 6 Current address: c/o Sea Turtle Preservation Society, P.O. Box 510988, Melbourne Beach, Florida 32951, U.S.A. ABSTRACT: The Green sea turtle leech, Ozobranchus brachiatus, infected a moribund hawksbill sea turtle (Eretomochelys imbricata) posthatchling juvenile at Farjardo, Puerto Rico. It usually infects green sea turtles, Chelonia mydas, and has not been reported from wild E. imbriata. A superinfection of the loggerhead sea turtle leech, Ozobranchus margoi, occurred on a stranded E. imbricata at Vieques Island, causing sea turtle leech erosion disease (SLED).
    [Show full text]
  • 10 Hirudinida Mark E. Siddall , Alexa Bely , and Elizabeth Borda American Museum of Natural History, New York, New York 10024, U
    10 Hirudinida Mark E. Siddall1, Alexa Bely2, and Elizabeth Borda1 1 American Museum of Natural History, New York, New York 10024, USA; 2 Department of Biology, University of Maryland, College Park, Maryland 20742, USA 10.1 Phylogeny and Systematics Leech phylogenetic relationships and, consequently, classification of its constituents has seen considerable attention in the last decade particularly as leeches have been the subject of analyses at several taxonomic levels using morphological characters and DNA sequence data. The origin of leeches and other symbiotic clitellate annelids was at one time an issue rather hotly debated by annelid systematists. As with many annelids, leeches are soft-bodied and do not regularly leave a fossil record. There are two putative Jurrasic fossils from Bavarian deposits, Epitrachys rugosus and Palaeohirudo eichstaettensis, but neither has both the caudal sucker and annular subdivisions that together would definitively suggest a leech (Ehlers 1869; Kozur, 1970). Nonetheless there have long been anatomical clues regarding hirudinidan origins. Leeches have a constant number of somites and a posterior sucker used for attachment to hosts, but so too do the tiny branchiobdellidan crayfish worms and the Arctic salmon worm Acanthobdella peledina. The latter has oligochaete-like chaetae and a constant number of 29 somites but exhibits leech-like coelmic and reproductive structures. In contrast, the branchiobdelidans have a more oligochaete-like reproductive organization, a constant number of 15 body somites and yet lack chaetae altogether. Not surprisingly there have been several historical suggestions of a close relationship amongst these groups (Odier, 1823; Livanow, 1931; Brinkhurst and Gelder, 1989; Siddall and Burreson, 1996) but others worried that the similiarities were mere convergence (Holt, 1989; Purschke et al., 1993; Brinkhurst,1994).
    [Show full text]
  • Synopsis of Infections in Sea Turtles Caused by Virus, Bacteria and Parasites: an Ecological Review
    Synopsis of infections in sea turtles caused by virus, bacteria and parasites: an ecological review Alonzo Alfaro ¤, Marianne Køie (Main advisor) β, Kurt Buchmann (External advisor) £. ¤Marine biology M. Sc. Student, University of Copenhagen. βAssociate Professor. Department of Biology. Marine Biological Laboratory, University of Copenhagen. £Associate Professor. Department of Veterinarian Pathology. Faculty of Life Sciences. University of Copenhagen. Abstract During the last centuries sea turtle populations worldwide have been declining or have been driven nearly to extinction due to human activities. According to IUCN, all of the world’s seven sea turtle species have become threatened, five of them are endangered and two vulnerable. This precipitous decline in sea turtles numbers has awakened an interest in the use of classical anatomic pathology to describe their infectious diseases their prevalence and to determine cause of death. Lists of parasites species of sea turtles exist and new species are described continually, but few data are available on parasite life histories; how infestation affects an individual turtle’s health, growth, and reproductive output; or effects on population structure and dynamics in both the pelagic and terrestrial environments (Zug et al. 2001). However, very little is known about sea turtles in their wild environment. Our understanding of sea turtle biology, ecology and pathology is obtained almost entirely through the short phase in their lives when they come to ashore to lay their eggs or by incidental catch at sea. From these periods, pathogens and parasites such as virus, bacteria, protozoa, worms, leeches and insects have been found and described. This paper examines the known infections caused by virus, bacteria and parasites of sea turtles, and groups them using classic systematic taxonomy.
    [Show full text]
  • Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys Coriacea)
    U.S. Fish & Wildlife Service Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys coriacea) Biological Technical Publication BTP-R4015-2012 Guillaume Feuillet U.S. Fish & Wildlife Service Synopsis of the Biological Data on the Leatherback Sea Turtle (Dermochelys coriacea) Biological Technical Publication BTP-R4015-2012 Karen L. Eckert 1 Bryan P. Wallace 2 John G. Frazier 3 Scott A. Eckert 4 Peter C.H. Pritchard 5 1 Wider Caribbean Sea Turtle Conservation Network, Ballwin, MO 2 Conservation International, Arlington, VA 3 Smithsonian Institution, Front Royal, VA 4 Principia College, Elsah, IL 5 Chelonian Research Institute, Oviedo, FL Author Contact Information: Recommended citation: Eckert, K.L., B.P. Wallace, J.G. Frazier, S.A. Eckert, Karen L. Eckert, Ph.D. and P.C.H. Pritchard. 2012. Synopsis of the biological Wider Caribbean Sea Turtle Conservation Network data on the leatherback sea turtle (Dermochelys (WIDECAST) coriacea). U.S. Department of Interior, Fish and 1348 Rusticview Drive Wildlife Service, Biological Technical Publication Ballwin, Missouri 63011 BTP-R4015-2012, Washington, D.C. Phone: (314) 954-8571 E-mail: [email protected] For additional copies or information, contact: Sandra L. MacPherson Bryan P. Wallace, Ph.D. National Sea Turtle Coordinator Sea Turtle Flagship Program U.S. Fish and Wildlife Service Conservation International 7915 Baymeadows Way, Ste 200 2011 Crystal Drive Jacksonville, Florida 32256 Suite 500 Phone: (904) 731-3336 Arlington, Virginia 22202 E-mail: [email protected] Phone: (703) 341-2663 E-mail: [email protected] Series Senior Technical Editor: Stephanie L. Jones John (Jack) G. Frazier, Ph.D. Nongame Migratory Bird Coordinator Smithsonian Conservation Biology Institute U.S.
    [Show full text]
  • Investigating Dna Barcoding Potentials and Genetic Structure in Ozobranchus Spp. from Atlantic and Pacific Ocean Sea Turtles
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 Investigating DNA Barcoding Potentials and Genetic Structure in Ozobranchus spp. from Atlantic and Pacific Ocean Sea urT tles Triet Minh Truong Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Truong, Triet Minh, "Investigating DNA Barcoding Potentials and Genetic Structure in Ozobranchus spp. from Atlantic and Pacific Ocean Sea urT tles" (2014). Browse all Theses and Dissertations. 1177. https://corescholar.libraries.wright.edu/etd_all/1177 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. INVESTIGATING DNA BARCODING POTENTIALS AND GENETIC STRUCTURE IN OZOBRANCHUS SPP. FROM ATLANTIC AND PACIFIC OCEAN SEA TURTLES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By TRIET MINH TRUONG B.S., Wright State University, 2011 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL February 6, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Triet Minh Truong ENTITLED Investigating DNA barcoding potentials and genetic structure in Ozobranchus spp. from Atlantic and Pacific Ocean sea turtles BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science _______________________________________ Audrey E. McGowin, Ph.D. Thesis Director _______________________________________ David A. Grossie, Ph.D. Chair, Department of Chemistry Committee on Final Examination _______________________________________ Audrey E.
    [Show full text]
  • DNA Barcoding of Sea Turtle Leeches (Ozobranchus Spp.) in Florida Coastal Waters
    Wright State University CORE Scholar Chemistry Student Publications Chemistry 4-1-2011 DNA barcoding of sea turtle leeches (Ozobranchus spp.) in Florida coastal waters Triet Minh Truong Wright State University - Main Campus Audrey E. McGowin Ph.D. Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/chem_student Part of the Chemistry Commons Repository Citation Truong, T. M., & McGowin, A. E. (2011). DNA barcoding of sea turtle leeches (Ozobranchus spp.) in Florida coastal waters. https://corescholar.libraries.wright.edu/chem_student/1 This Presentation is brought to you for free and open access by the Chemistry at CORE Scholar. It has been accepted for inclusion in Chemistry Student Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. DNA barcoding of sea turtle leeches (Ozobranchus spp.) in Florida coastal waters Triet M. Truong and Audrey E. McGowin, Ph.D.* Wright State University, Department of Chemistry, Dayton, OH 45435, USA Introduction Fibropapillomatosis (FP) is a neoplastic disease originally identified only on green sea turtles (Chelonia mydas). The disease is likely to be terminal if tumors are developed internally, but external tumors on the eyes, mouth, and flippers can also lead to fatal impairment of vision and difficulty Collection Date feeding and swimming. The involvement of an environmental cofactor appears possible since many FP outbreaks occur at sites of poor water quality in Florida, Hawaii, Brazil, and other similar places around the world, but outbreaks have also been recorded at less contaminated sites. Studies Site Locations Species Designation Host Haplotype designation (# samples) GenBank # have shown an association between FP and the fibropapilloma-associated turtle herpesvirus (FPTHV), but not all turtles with FPTHV develop FP.
    [Show full text]
  • Biodiversidad De Sanguijuelas (Annelida: Euhirudinea) En México
    Revista Mexicana de Biodiversidad, Supl. 85: S183-S189, 2014 Revista Mexicana de Biodiversidad, Supl. 85: S183-S189, 2014 DOI: 10.7550/rmb.33212 DOI: 10.7550/rmb.33212183 Biodiversidad de sanguijuelas (Annelida: Euhirudinea) en México Biodiversity of leeches (Annelida: Euhirudinea) in Mexico Alejandro Oceguera-Figueroa1 y Virginia León-Règagnon2 1Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México. Tercer circuito s/n, Ciudad Universitaria, 04510 México, D. F., México. Laboratorio de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España. Calle Catedrático José Beltrán 2, Paterna, 46980 Valencia, España. 2Estación de Biología Chamela, Sede Colima. Instituto de Biología, Universidad Nacional Autónoma de México, 48980 San Patricio, Jalisco, México. [email protected] Resumen. El número total de especies de sanguijuelas verdaderas (Annelida: Euhirudinea) registradas en México asciende a 31, las cuales representan el 4.5% de las aproximadamente 680 especies conocidas en el mundo. De las 14 familias reconocidas de euhirudíneos, 10 de ellas tiene representantes en México. Veinte especies y los géneros Limnobdella y Diestecostoma pueden ser considerados como endémicos de México. Los estados de Jalisco y Michoacán son los mejor representados con 10 y 11 registros respectivamente, por el contrario Baja California, Campeche, Quintana Roo y Zacatecas carecen completamente de registros. Palabras clave: sanguijuelas, hirudíneos, Euhirudinea, México. Abstract. The total number of true leech species (Annelida: Euhirudinea) recorded in Mexico now reaches 31, representing 4.5% of the approximately 680 known species in the world. Of the 14 currently recognized families of euhirudineans, 10 occur in Mexico. Twenty species and the genera Diestecostoma and Limnobdella can be considered endemic to Mexico.
    [Show full text]
  • Chelonia Mydas (Linnaeus 1758)
    BIOLOGICAL REPORT 97(1) AUGUST 1997 1111111111111111111111111111111 PB98-164833 SYNOPSIS OF THE BIOLOGICAL DATA ON THE GREEN TURTLE CHELONIA MYDAS (LINNAEUS 1758) Fish and Wildlife Service u.s. Department of the Interior .U.s. D~~~~~~~tCo~~~~inerce~ National Technical Information Service Springfield, Virginia 22161 BIOLOGICAL REPORT 97(1) AUGUST 1997 Synopsis of the Biological Data on the Green Thrtle Chelonia mydas (Linnaeos 1758) by Harold F. Hirth Department of Biology University of Utah Salt Lake City, Utah 84112 USA Fish and Wildlife Service U. S. Department of the Interior Washington, D. C. 20240 Preparation of this Synopsis This review of the green turtle, Chelonia mydas, has rnittee aided travel to libraries. Ms. Jeanette Stubbe gra­ been prepared following the FAO fisheries synopsis out­ ciously and conscientiously typed several versions ofthe line of Rosa (1965) and as applied to marine turtles by manuscript. Mr. Kerry Matz prepared the figures. Dr. Hirth (197Ib). John Roth, Chairman of the Biology Department, sup­ The main purposes ofthis synopsis are to bring together ported the author with some sabbatical leave time. the current and salient information on the biology of the It is a pleasure to acknowledge Dr. David W. Ehrenfeld, green turtle and to draw attention to some of the major Dr. Nicholas Mrosovsky, Dr. Mark Nielsen and Dr. Peter gaps in our knowledge of the species. Because of the C. H. Pritchard for their helpful comments after review­ nature of a synopsis, i.e., that of providing an entry into ing an earlier version of the manuscript. the literature, researchers should peruse the original pa­ The author thanks Drs.
    [Show full text]