Inion Not a Reliable Landmark of the Torcula in Posterior Fossa Craniotomies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Normal Dimensions of the Sella Turcica in North Karnataka Region- a Computed Tomographic Study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi***
Original Article Pravara Med Rev 2018;10(3) The normal dimensions of the Sella Turcica in North Karnataka region- A Computed tomographic study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi*** Abstract Aim of the study: Sella turcica is an important structure in middle cranial fossa. It is a saddle shaped concavity in the body of sphenoid bone. It is bounded by dura of cavernous sinuses bilaterally, the lamina dura and dorsum sellae posteriorly and the tuberculum sellae and planum sphenoidale anteriorly. The present study was undertaken to study the normal dimensions of sella turcica morphometry. Material and methods: This observational study was conducted in S Nijalingappa medical college and HSK hospital, Bagalkot. 1650 computed tomographic images of healthy Indians aged 21-70 years were collected. Radiant Dicom viewer software was used to determine the linear dimensions of sella turcica. Data was analysed using t test and ANOVA with Epi Info software. Results: The mean values (in millimeter) of length, width and height of sella turcica in different age groups was 8.80 ± 1.65, 10.83 ± 1.35 and 8.52 ± 1.50. Conclusion: The dimensions of sella turcica vary in different populations and these findings could form an initial database for Indian population which may provide a good anatomical knowledge during objective evaluation and detection of pathological conditions of sella turcica and hypophysis cerebri. Key words: Sphenoid bone, Linear dimensions, Hypophysis cerebri Introduction Sella turcica is an important structure in middle cranial fossa. It is safe treatment of various pituitary disorders such as a saddle shaped concavity in the body of sphenoid bone. -
CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit
228 CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit MUSCLES OF FACIAL EXPRESSION Dural Venous Sinuses Not in the Subendocranial Occipitofrontalis Space More About the Epicranial Aponeurosis and the Cerebral Veins Subcutaneous Layer of the Scalp Emissary Veins Orbicularis Oculi CLINICAL SIGNIFICANCE OF EMISSARY VEINS Zygomaticus Major CAVERNOUS SINUS THROMBOSIS Orbicularis Oris Cranial Arachnoid and Pia Mentalis Vertebral Artery Within the Cranial Cavity Buccinator Internal Carotid Artery Within the Cranial Cavity Platysma Circle of Willis The Absence of Veins Accompanying the PAROTID GLAND Intracranial Parts of the Vertebral and Internal Carotid Arteries FACIAL ARTERY THE INTRACRANIAL PORTION OF THE TRANSVERSE FACIAL ARTERY TRIGEMINAL NERVE ( C.N. V) AND FACIAL VEIN MECKEL’S CAVE (CAVUM TRIGEMINALE) FACIAL NERVE ORBITAL CAVITY AND EYE EYELIDS Bony Orbit Conjunctival Sac Extraocular Fat and Fascia Eyelashes Anulus Tendineus and Compartmentalization of The Fibrous "Skeleton" of an Eyelid -- Composed the Superior Orbital Fissure of a Tarsus and an Orbital Septum Periorbita THE SKULL Muscles of the Oculomotor, Trochlear, and Development of the Neurocranium Abducens Somitomeres Cartilaginous Portion of the Neurocranium--the The Lateral, Superior, Inferior, and Medial Recti Cranial Base of the Eye Membranous Portion of the Neurocranium--Sides Superior Oblique and Top of the Braincase Levator Palpebrae Superioris SUTURAL FUSION, BOTH NORMAL AND OTHERWISE Inferior Oblique Development of the Face Actions and Functions of Extraocular Muscles Growth of Two Special Skull Structures--the Levator Palpebrae Superioris Mastoid Process and the Tympanic Bone Movements of the Eyeball Functions of the Recti and Obliques TEETH Ophthalmic Artery Ophthalmic Veins CRANIAL CAVITY Oculomotor Nerve – C.N. III Posterior Cranial Fossa CLINICAL CONSIDERATIONS Middle Cranial Fossa Trochlear Nerve – C.N. -
Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA. -
Torcular Herophili)Ÿ W
Neuroanatomy, 2002, Volume1, Page 14. Letter to the Editor Published online November 7, 2002 © neuroanatomy.org R. Shane Tubbs We would like to clarify a commonly misunderstood term (torcular Herophili)Ÿ W. Jerry Oakes that has infiltrated all fields associated with neuroanatomy e.g. neurosurgery, neurology, neurosciences. The term torcular (wine press) is an incorrect version of the original Greek word (a canal or gutter) [1]. Herophili is after the celebrated Greek physician/anatomist Herophilus (335 B.C.-280 B.C.) born in Chalcedon which is now Kadikoy, Turkey. Herophilus is known as the father of anatomy because he was the first to base his conclusions on dissection of the human body. Herophilus studied the brain, recognizing it as the center Pediatric Neurosurgery, Children’s Hospital, Birmingham, Alabama 35233 USA of the nervous system. The original term was meant to describe the concavity on the internal aspect of the occipital bone that housed the confluence of sinuses. However, over time this term has been used incorrectly as an interchangable term with the confluence of sinuses. Almost every textbook of anatomy with few exceptions, that we reviewed, interchange these terms with no distinction [e.g. 2-4]. True these two entities are intimately related Correspondence Address but clearly represent different anatomical structures. Just as other venous sinuses erode the inner table of the skull producing same named sulci or R. Shane Tubbs, Pediatric Neurosurgery ACC 400, 1600 7th Ave grooves e.g. the transverse sinus sulcus, the confluence of sinuses (formed by South, Birmingham, Alabama 35233 USA the superior sagittal, straight, occipital, and transverse sinuses) erode the Phone: 205-939-9914 Fax: 205-939-9972 occipital bone where the major venous sinus tributaries congregate thus forming E-mail: [email protected] the torcular Herophili. -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
Median Occipital Fossa: Is It Really a Sign of Crime Or Simply an Anatomical Variant?
IJAE Vol. 124, n. 1: 104-106, 2019 ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY Letter - Basic and Applied Anatomy Median occipital fossa: is it really a sign of crime or simply an anatomical variant? Domenico Chirchiglia1,*, Pasquale Chirchiglia1, Rosa Marotta2 Departments of 1Neurosurgery and 2Health Sciences, University Of Catanzaro, Italy Abstract Anatomical variants are alterations of the form, thickness, length, width, position of organs and anatomic structures that can cause problems of a functional nature. They can be vascular, bony, muscular and more. They represent anomalies that may cause disturbances or do not cause changes in functions. The criminologist Cesare Lombroso had correlated the anatomical varia- tions to the criminal tendency. The most emblematic case was that related to the alleged brig- and Villella, on which Lombroso, performing the autopsy, found in the skull the so-called medi- al occipital fossa or a third dimple. He stated that the median occipital dimple was considered a sign of atavism, the expression of the criminal. In fact all the anatomical variants described by Lombroso are variations of normality. No one ever said that anatomical variants were a sign of crime. In conclusion, anatomical variants cannot be related to crime tendency, therefore the debated median occipital fossa is only and simply an anatomical variant. Key words Anatomy, anatomical variants, median occipital fossa, Cesare Lombroso. Dear Editor, The occipital bone is the main bone of the occiput, lower part of the skull. It is trapezoidal in shape and overlies the occipital lobes of the cerebrum. The base of the skull in the occipital bone contains the foramen magnum, which allows the passage of the spinal cord. -
Morphological (Length, Depth, and Diameter) Study of Sella Turcica In
Original Article Morphological (Length, Depth, and Diameter) Study of Sella Turcica in Different Mandibular Growth Patterns in Indians Siddhartha Kaustav Konwar1, Anshul Singhla1, Rimlee Bayan2 Department of Orthodontics, I.T.S. Dental College Hospital and Research Centre, Greater Noida, Uttar Pradesh, India ABSTRACT Aim: This study aims to analyze the morphological dimensions of sella turcica to determine if differences exist due to gender, age or in subjects with different skeletal patterns. Methods: A total of 100 (43 males and 57 females) sella turcica cephalometric radiograph was traced. Linear dimensions of sella turcica (length, depth, and diameter [in mm]) were measured and skeletal shape/type (normal, bridging, double contour, oblique, irregular, and pyramidal) was assessed. A Student’s t-test was used to calculate the mean differences in linear dimensions of sella turcica between males and females and between different age groups, skeletal types. A Chi-square test was used to test the interrelationship of gender, age and skeletal types with the shape of sella turcica. Results: In low angle group subjects, 80% of the subjects had normal sella and 20% of the subjects had variations in morphology and in high angle group subjects, 76% of the subjects had a normal sella, and 24% of the subjects had variations in the morphology. Conclusions: The shape of the sella turcica was normal in 78% of the subjects, and there was a significant difference in length between high and low angle subjects, where the length of sella was larger in the low angle subjects and the distribution of shape of sella turcica was found to be significantly different among both high and low angle types. -
Muscle Insertion Line As a Simple Landmark to Identify The
Original Article Muscle Insertion Line as a Simple Landmark To Identify the Transverse Sinus When Neuronavigation Is Unavailable Juri Kivelev1, Riku Kivisaari2, Mika Niemela¨ 2, Juha Hernesniemi2 - OBJECTIVE: Skull opening in occipital and suboccipital venous outflow disturbances, and increased intracranial pressure. regions might be associated with risk of damage to the When operating in a sitting position, inadvertent sinus opening transverse venous sinus and the confluence of sinuses. We causes air embolism. Modern frameless neuronavigation systems analyze the value of magnetic resonance (MR) imaging in are useful in localizing venous sinuses before craniotomy, but they localizing the venous sinuses in relation to the superior are not yet widely available due to high price. Furthermore, when surgery is performed in a sitting or prone position, some diffi- muscle insertion line (MIL) on the occipital bone. culties with neuronavigation may occur. Many studies have been - METHODS: We retrospectively analyzed head MR im- conducted regarding the role of external skull bony landmarks in ages of 100 consecutive patients imaged for any reason localization of posterior venous sinuses. Our study is the first to from 1 January 2013. All MR images were interpreted by a analyze a simple and effective way to localize the venous sinuses in radiologist (R.K.). The superior MIL was identified at the relation to the superior muscle insertion line (MIL) on occipital bone. In this region, a surgical view after skin incision includes midline and on both midpupillar lines, which represent the (from cephalad to caudal) the occipital bone surface, MIL, and most frequent sites of skin incision and craniotomy (me- muscles covered by the superficial layer of cervical fascia. -
Dural Venous Sinuses Dr Nawal AL-Shannan Dural Venous Sinuses ( DVS )
Dural venous sinuses Dr Nawal AL-Shannan Dural venous sinuses ( DVS ) - Spaces between the endosteal and meningeal layers of the dura Features: 1. Lined by endothelium 2. No musculare tissue in the walls of the sinuses 3. Valueless 4.Connected to diploic veins and scalp veins by emmissary veins .Function: receive blood from the brain via cerebral veins and CSF through arachnoid villi Classification: 15 venous sinuses Paried venous sinuses Unpaired venous sinuses ( lateral in position) • * superior sagittal sinus • * cavernous sinuses • * inferior sagittal sinus • * superior petrosal sinuses • * occipital sinus • * inferior petrosal sinuses • * anterior intercavernous • * transverse sinuses • sinus * sigmoid sinuses • * posterior intercavernous • * spheno-parietal sinuses • sinus • * middle meningeal veins • * basilar plexuses of vein SUPERIOR SAGITTAL SINUS • Begins in front at the frontal crest • ends behind at the internal occipital protuberance diliated to form confluence of sinuses and venous lacunae • • The superior sagittal sinus receives the following : • 1- Superior cerebral veins • 2- dipolic veins • 3- Emissary veins • 4- arachnoid granulation • 5- meningeal veins Clinical significance • Infection from scalp, nasal cavity & diploic tissue • septic thrombosis • CSF absorption intra cranial thrombosis (ICT) • Inferior sagittal sinus - small channel occupy • lower free magin of falx cerebri ( post 2/3) - runs backward and • joins great cerebral vein at free margin of tentorium cerebelli to form straight sinus. • - receives cerebral -
An Anatomico-Radiological Study of the Grooves for Occipital Sinus in the Posterior Cranial Fossa
Bratisl Lek Listy 2008; 109 (11) 520524 COMPARATIVE ANATOMY An anatomico-radiological study of the grooves for occipital sinus in the posterior cranial fossa Srijit Das1, Azian Abd Latiff1, Farihah Haji Suhaimi1, Faizah Bt Othman1, Mohd F Yahaya1, Fairus Ahmad1, Hamzaini Abdul Hamid2 Department of Anatomy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia. [email protected] Abstract: Background: The occipital sinus (OS) lies in the attached margin of the falx cerebelli in the internal occipital crest of the occipital bone. The OS extends from the foramen magnum to the confluence of sinuses. Standard textbooks and research reports do not describe in detail any variation in the groove for the occipital sinus. Methods: In the present study, we examined a total of 50 human dried skulls for the groove of OS and its possible variations. We also performed an osteological study supplemented with digital X ray and CT scan. Results: Out of 50 skull specimens, a single case with two grooves for OS was observed (2 %). The two grooves for OS traversed as two limbs from the foramen magnum to join the other at the internal occipital protuberance. An accessory faint groove was also found at the lateral aspect of the left limb. Interestingly, in the same specimen, the superior sagittal sinus instead of continuing as right transverse sinus, continued as left transverse sinus. The X ray and CT scan of the anomalous bone specimen were compared to those of the normal bone specimen. Discussion: To the best of our knowledge, this is the first anatomico-radiological study of multiple OS groove with associated anomalies. -
Concussion and OMT Sports Medicine: Screening and Treating
Concussion and OMT Sports Medicine: Screening and Treating Sheldon C. Yao, D.O. March 14, 2019 Objectives • Define and discuss concussion diagnosis and screening. • Discuss how osteopathic manipulative medicine can be applied help address concussion injuries. • Discuss the application of osteopathic manipulation through the autonomic nervous, lymphatic, and musculoskeletal systems. • Review Fulford’s shock release, dural release, and venous sinus drainage and how it can help concussion symptoms. Concussion • Form of mild traumatic brain injury following a biomechanical force • Results in the rapid onset of short-lived impairment of neurologic function • LOC not necessary and does not correlate with severity • Centers for Disease Control and Prevention estimate that as many as 3.8 million sport- related traumatic brain injuries occur annually Pathophysiology • Concussion results from a rapid rotational acceleration of the brain which causes a shear strain which then induces immediate changes in brain neurochemistry : – Neuronal depolarization – Local lactic acid accumulation – Decreased cerebral blood flow with mismatch of cerebral glucose supply and demand Evaluation - History • Mechanism • Symptoms • Prior concussion • LOC • Change in mental status • Seizures Common Symptoms Evaluation: Sideline Assessment • Sideline eval: – ABC’s, C-spine evaluation – Neurologic exam – SPORT CONCUSSION ASSESSMENT TOOL (SCAT-5) – Balance Errors Scoring System (BESS) – King-Devick test • Suspected concussion = remove from play • Serial exams on sideline -
The Cranial Dura Mater: a Review of Its History, Embryology, and Anatomy
Childs Nerv Syst (2012) 28:827–837 DOI 10.1007/s00381-012-1744-6 REVIEW PAPER The cranial dura mater: a review of its history, embryology, and anatomy Nimer Adeeb & Martin M. Mortazavi & R. Shane Tubbs & Aaron A. Cohen-Gadol Received: 14 February 2012 /Accepted: 23 March 2012 /Published online: 15 April 2012 # Springer-Verlag 2012 Abstract mother) and umm al-raqiqah (thin mother). These terms were Introduction The dura mater is important to the clinician as then literally translated into Latin by the twelfth century Italian a barrier to the internal environment of the brain, and surgi- monk Stephen of Antioch, as the dura (hard) mater (Fig. 1), and cally, its anatomy should be well known to the neurosurgeon the pia (pious) mater. The term pia was a misnomer and should and clinician who interpret imaging. have been replaced by tenue (from tennus meaning thin), but Methods The medical literature was reviewed in regard to the term pia has persisted. The first introduction of the word the morphology and embryology of specifically, the intra- arachnoid (spider-like) mater was by Herophilus in the third cranial dura mater. A historic review of this meningeal layer century B.C., who also described its relation to the ventricles. It is also provided. was later described by the Dutch anatomist Frederik Ruysch in Conclusions Knowledge of the cranial dura mater has a rich the seventeenth century. The term mater is derived from ma- history. The embryology is complex, and the surgical anat- (from matru meaning mother) and the suffix -ter indicating a omy of this layer and its specializations are important to the state of being [41, 53].