Sexual Conflict About Parental Care: the Role of Reserves

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Conflict About Parental Care: the Role of Reserves View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Debrecen Electronic Archive vol. 159, no. 6 the american naturalist june 2002 Sexual Conflict about Parental Care: The Role of Reserves Zolta´n Barta,1,* Alasdair I. Houston,2,† John M. McNamara,1,‡ and Tama´s Sze´kely 3,§ 1. Centre for Behavioural Biology, School of Mathematics, and thus, parents should have sufficient reserves to raise University of Bristol, University Walk, Bristol BS8 1TW, United their young to independence. Parents in poor condition Kingdom; may terminate care and abandon their nest or young (Sny- 2. Centre for Behavioural Biology, School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United der et al. 1989; Olsson 1997; reviewed by Clutton-Brock Kingdom; 1991; Sze´kely et al. 1996). Given that energy reserves play 3. Department of Biology and Biochemistry, University of Bath, an important role in determining patterns of care, an evo- Bath BA2 7AY, United Kingdom lutionary account of care should adopt a state-dependent approach (Houston et al. 1988; Houston and McNamara Submitted February 5, 2001; Accepted November 30, 2001 1999; Clark and Mangel 2000). State-dependent models have been developed to investigate the decision of a single sex by Kelly and Kennedy (1993) and Webb et al. (in press). For instance, Kelly and Kennedy (1993) showed that fe- abstract: Parental care often increases the survival of offspring, male Cooper’s hawks Accipiter cooperi should desert their but it is costly to parents. Because of this trade-off, a sexual conflict young when their reserves fall below a critical level. In over care arises. The solution to this conflict depends on the inter- their model, however, the behavior of deserting females actions between the male and female parents, the behavior of other was constrained by their not allowing the females to re- animals in the population, and the individual differences within a sex. We take an integrated approach and develop a state-dependent mate. In a more general model by Webb et al. (in press), dynamic game model of parental care. The model investigates a single a deserting female can remate and renest within the same breeding season in which the animals can breed several times. Each breeding season. Interestingly, their model found that a parent’s decision about whether to care for the brood or desert female deserts not only when her reserves are low (and depends on its own energy reserves, its mate’s reserves, and the time thus she is threatened by starvation) but also when her in the season. We develop a fully consistent solution in which the reserves are high. In the latter case, the deserting female behavior of an animal is the best given the behavior of its mate and immediately starts to search for a new mate and thus in- of all other animals in the population. The model predicts that fe- males may strategically reduce their own reserves so as to “force” creases her reproductive success by remating. their mate to provide care. We investigate how the energy costs of In many birds, fish, and mammals, however, the payoffs caring and searching for a mate, values of care (how the probability from caring and deserting not only depend on the envi- of offspring survival depends on the pattern of care), and population ronment and the energy reserves of the parents but also sex ratio influence the pattern of care over the breeding season. on the behavior of other animals in the population. First, the success of the current breeding attempt depends on Keywords: sexual conflict, parental care, offspring desertion, dynamic whether the focal animal’s mate cares or deserts. Second, game, reserves, body mass regulation. the operational sex ratio (Emlen and Oring 1977) can determine the time to remate and hence influence the payoff from desertion. There is evidence that animals re- Parental care is an energetically demanding behavior spond to the operational sex ratio. For example, male fish (Ricklefs 1974; Golet and Irons 1999; Ho˜rak et al. 1999), more often terminate care if the sex ratio is biased toward * Corresponding author. Present address: Behavioural Ecology Research females (Keenleyside 1983; Balshine-Earn and Earn 1998), Group, Department of Evolutionary Zoology, University of Debrecen, Deb- and female rock sparrows Petronia petronia desert their recen H-4010, Hungary; e-mail: zbarta@delfin.klte.hu. brood in years when many unmated males are in the pop- † E-mail: [email protected]. ulation (Pilastro et al. 2001). These aspects of parental care ‡ E-mail: [email protected]. require a game-theoretic analysis (Maynard-Smith 1982; § E-mail: [email protected]. Hammerstein and Parker 1987) in which the behavior of Am. Nat. 2002. Vol. 159, pp. 687–705. ᭧ 2002 by The University of Chicago. the focal pair as well as other members of the population 0003-0147/2002/15906/0008$15.00. All rights reserved. is considered. The importance of including the behavior 688 The American Naturalist of other members of the population is illustrated by Webb (i.e., the net energy gained in a day). Searching for a mate et al. (1999). They show that modeling the behavior of a decreases the reserves of the male, but he may find a mate. single pair in isolation from the rest of the population The mate-finding probability of a male depends on the results in different evolutionarily stable strategies (ESSs) number of mate-searching individuals of both sexes (Webb from ones in which future expectations, including remat- et al. 1999). To illustrate this, let us assume that only a ing probabilities, depend on the behavior of all members few females are searching for a mate. If only the focal male of the population. Taken together, a full understanding of searches for females, he will find one with high probability parental care requires an analysis that is both state de- despite their low numbers. However, if many males search, pendent and game theoretic. For a related discussion in the focal male’s probability of finding a mate will be low. the context of alternative reproductive behaviors, see The probability of finding a mate also depends on the Alonzo and Warner (2000). mate-search efficiency k, which may reflect population Here, we develop a state-dependent game model in density (McNamara et al. 2000). If the focal male finds a which the parents’ decisions depend on their own energy mate, he becomes mated. We assume that mate-finding is reserves, their mate’s reserves, and time in the season. The random (i.e., there is no mate choice). As a consequence, payoffs for performing each action are not specified in the level of energetic reserves of the mate is drawn from advance, since they depend on future expectations, which, the distribution of the reserves of the unmated mate- in turn, depend on the future behavior of the focal animal searching females (i.e., at the time of pair formation, one and the behavior (both past and future) of other popu- member of the pair has no information about the energy lation members. We use the model to show that state- reserves of its partner). dependent models can produce very different predictions Once a pair has formed, they then produce some off- from state-independent ones because they allow the ani- spring after a fixed period. For example, in birds, this mals to optimize simultaneously their behavior and re- period may represent the time required to prepare a nest serves. We then investigate how the energetic costs of var- or to produce eggs. Producing offspring reduces the re- ious activities (e.g., parental care, reproduction, mate serves. This could represent the energetic cost of nest search), care parameters, and the population sex ratio in- building, territory defense, or egg laying. We assume that fluence parental decisions. if the reserves of the male’s mate are not high enough to cover this cost, then she dies and no offspring are pro- duced. The male then becomes unmated after the time The Model period needed for offspring production. We consider the behavior of a focal male and a focal female Having produced the offspring, both members of the p in a large population of NM males and NF females (N pair decide whether to care for the offspring until they ϩ NMFN ) during a breeding season of T d. For simplicity, become independent or to desert (i.e., we assume that the we only describe the behavior of a focal male. If we do animals decide once for each breeding attempt). We as- not explicitly specify the female’s behavior, then similar sume that by this time, each parent has been able to ob- reasoning applies to her too. For a technical account of serve the energy reserves of its partner. Thus, when making the model, see appendices A and B. decisions, both parents know each others’ reserves exactly. The state of a focal male is represented by his marital The male decides first, and the female then decides on the status (unmated or mated), his energy reserves, and, if he basis of her partner’s decision. This is a reasonable as- is mated, the energy reserves of his mate. The male dies sumption in internally fertilizing animals such as birds, of starvation if his reserves fall to zero. However, his re- mammals, and some fish because the male can leave the serves cannot increase above some maximal level. All family immediately after fertilization, whereas the female changes in reserves are stochastic.
Recommended publications
  • Benefit of Polyandry in a Monandrous Species When Females Mate with Already Mated Males
    King, BH. 2018. Benefit of polyandry in a monandrous species when females mate with already mated males. Behavioral Ecology and Sociobiology For additional accessible full text of publications by BH King, go to http://niu.edu/biology/about/faculty/bking/bking-publications.shtml This is a post-peer-review, pre-copyedit version of an article published in Behavioral Ecology and Sociobiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00265-018-2508-4 Benefit of polyandry in a highly monandrous species when females mate with already mated males B. H. King Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA e-mail: [email protected] ORCID 0000-0003-0435-5928 Abstract Female mating frequency varies among animal taxa. A benefit to females of remating has usually been found, but almost all tests have been with polyandrous species. A species being monandrous does not guarantee that mating only once benefits the female, instead the monandry may result from sexual conflict, where her failure to remate benefits her mate, but not her. The parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae) is highly monandrous. Females do not benefit from either immediate or delayed remating when their first mate is virgin. However, some females are likely to mate with already mated males because sex ratios are female-biased. Here the effect of experimentally-induced polyandry on female fitness was examined for females whose first mate had already mated four times, i.e., for fifth females. Fifth female S. endius produce significantly fewer daughters than first females. Production of daughters, but not sons, requires sperm in hymenopterans.
    [Show full text]
  • Sexual Selection, Sex Roles, and Sexual Conflict
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press The Sexual Cascade and the Rise of Pre-Ejaculatory (Darwinian) Sexual Selection, Sex Roles, and Sexual Conflict Geoff A. Parker Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Correspondence: [email protected] After brief historic overviews of sexual selection and sexual conflict, I argue that pre-ejacu- latory sexual selection (the form of sexual selection discussed by Darwin) arose at a late stage in an inevitable succession of transitions flowing from the early evolution of syngamy to the evolution of copulation and sex roles. If certain conditions were met, this “sexual cascade” progressed inevitably, if not, sexual strategy remained fixed at a given stage. Prolonged evolutionary history of intense sperm competition/selection under external fertilization preceded the rise of advanced mobility, which generated pre-ejaculatory sexual selection, followed on land by internal fertilization and reduced sperm competition in the form of postcopulatory sexual selection. I develop a prospective model of the early evolution of mobility, which, as Darwin realized, was the catalyst for pre-ejaculatory sexual selection. Stages in the cascade should be regarded as consequential rather than separate phenomena and, as such, invalidate much current opposition to Darwin–Bateman sex roles. Potential for sexual conflict occurs throughout, greatly increasing later in the cascade, reaching its peak under precopulatory sexual selection when sex roles become highly differentiated. exual selection and sexual conflict are vast changed through evolutionary time, from Sfields in evolutionary biology; when possi- mostly gamete competition in early unicellu- ble, here, I refer to reviews.
    [Show full text]
  • Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer
    vol. 165, no. 6 the american naturalist june 2005 Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer Don R. Levitan* Department of Biological Science, Florida State University, a very simple way—the timing of gamete release (Levitan Tallahassee, Florida 32306-1100 1998b). This allows for an investigation of how mating behavior can influence mating success without the com- Submitted October 29, 2004; Accepted February 11, 2005; Electronically published April 4, 2005 plications imposed by variation in adult morphological features, interactions within the female reproductive sys- tem, or post-mating (or pollination) investments that can all influence paternal and maternal success (Arnqvist and Rowe 1995; Havens and Delph 1996; Eberhard 1998). It abstract: Identifying the target of sexual selection in externally also provides an avenue for exploring how the evolution fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex of sexual dimorphism in adult traits may be related to the differences in spawning behavior; males spawn before females. I in- evolutionary transition to internal fertilization. vestigated the consequences of spawning order and time intervals One of the most striking patterns among animals and between male and female spawning in two field experiments. The in particular invertebrate taxa is that, generally, species first involved releasing one female sea urchin’s eggs and one or two that copulate or pseudocopulate exhibit sexual dimor- males’ sperm in discrete puffs from syringes; the second involved phism whereas species that broadcast gametes do not inducing males to spawn at different intervals in situ within a pop- ulation of spawning females.
    [Show full text]
  • Sexual Conflict in Hermaphrodites
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Sexual Conflict in Hermaphrodites Lukas Scha¨rer1, Tim Janicke2, and Steven A. Ramm3 1Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland 2Centre d’E´cologie Fonctionnelle et E´volutive, CNRS UMR 5175, 34293 Montpellier Cedex 05, France 3Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany Correspondence: [email protected] Hermaphrodites combine the male and female sex functions into a single individual, either sequentially or simultaneously. This simple fact means that they exhibit both similarities and differences in the way in which they experience, and respond to, sexual conflict compared to separate-sexed organisms. Here, we focus on clarifying how sexual conflict concepts can be adapted to apply to all anisogamous sexual systems and review unique (or especially im- portant) aspects of sexual conflict in hermaphroditic animals. These include conflicts over the timing of sex change in sequential hermaphrodites, and in simultaneous hermaphrodites, over both sex roles and the postmating manipulation of the sperm recipient by the sperm donor. Extending and applying sexual conflict thinking to hermaphrodites can identify general evolutionary principles and help explain some of the unique reproductive diversity found among animals exhibiting this widespread but to date understudied sexual system. onceptual and empirical work on sexual strategy of making more but smaller gam- Cconflict is dominated by studies on gono- etes—driven by (proto)sperm competition— chorists (species with separate sexes) (e.g., Par- likely forced the (proto)female sexual strategy ker 1979, 2006; Rice and Holland 1997; Holland into investing more resources per gamete (Par- and Rice 1998; Rice and Chippindale 2001; ker et al.
    [Show full text]
  • Multiple Mating and Its Relationship to Alternative Modes of Gestation in Male-Pregnant Versus Female-Pregnant fish Species
    Multiple mating and its relationship to alternative modes of gestation in male-pregnant versus female-pregnant fish species John C. Avise1 and Jin-Xian Liu Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by John C. Avise, September 28, 2010 (sent for review August 20, 2010) We construct a verbal and graphical theory (the “fecundity-limitation within which he must incubate the embryos that he has sired with hypothesis”) about how constraints on the brooding space for em- one or more mates (14–17). This inversion from the familiar bryos probably truncate individual fecundity in male-pregnant and situation in female-pregnant animals apparently has translated in female-pregnant species in ways that should differentially influence some but not all syngnathid species into mating systems char- selection pressures for multiple mating by males or by females. We acterized by “sex-role reversal” (18, 19): a higher intensity of then review the empirical literature on genetically deduced rates of sexual selection on females than on males and an elaboration of fi multiple mating by the embryo-brooding parent in various fish spe- sexual secondary traits mostly in females. For one such pipe sh cies with three alternative categories of pregnancy: internal gesta- species, researchers also have documented that the sexual- tion by males, internal gestation by females, and external gestation selection gradient for females is steeper than that for males (20). More generally, fishes should be excellent subjects for as- (in nests) by males. Multiple mating by the brooding gender was fl common in all three forms of pregnancy.
    [Show full text]
  • Females Manipulate Behavior of Caring Males Via Prenatal Maternal Effects
    Females manipulate behavior of caring males via prenatal maternal effects Matthieu Paqueta,1 and Per T. Smisetha aInstitute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, United Kingdom Edited by Tom Tregenza, University of Exeter, Cornwall, Penryn, United Kingdom, and accepted by Editorial Board Member Douglas Futuyma May 11, 2017 (received for review December 1, 2016) In species with biparental care, there is sexual conflict as each (9–11), thereby providing a potential tool for manipulating the parent is under selection to minimize its personal effort by shifting behavior of caring males. For example, by producing smaller eggs, as much as possible of the workload over to the other parent. females could redirect the costs of parental care from the prenatal Most theoretical and empirical work on the resolution of this period, when they pay the full costs of egg production, toward the conflict has focused on strategies used by both parents, such as postnatal period, when the costs of rearing young are shared with negotiation. However, because females produce the eggs, this the male (9). Alternatively, females may deposit yolk androgens might afford females with an ability to manipulate male behavior that modulate offspring begging behavior in a way that alters the via maternal effects that alter offspring phenotypes. To test this male’s perception of offspring need, thereby increasing male hypothesis, we manipulated the prenatal conditions (i.e., presence contributions to care (9–11). Thus, if prenatal maternal effects or absence of the male), performed a cross-fostering experiment, influence the resolution of sexual conflict over care, this would and monitored the subsequent effects of prenatal conditions on introduce an asymmetry of power between the two sexes, with the Nicro- offspring and parental performance in the burying beetle female gaining the upper hand.
    [Show full text]
  • The Relationship Between Sexual Selection and Sexual Conflict
    Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press The Relationship between Sexual Selection and Sexual Conflict Hanna Kokko and Michael D. Jennions Center of Excellence in Biological Interactions, Ecology, Evolution & Genetics, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia Correspondence: [email protected], [email protected] Evolutionary conflicts of interest arise whenever genetically different individuals interact and their routes to fitness maximization differ. Sexual selection favors traits that increase an individual’s competitiveness to acquire mates and fertilizations. Sexual conflict occurs if an individual of sex A’s relative fitness would increase if it had a “tool” that could alter what an individual of sex B does (including the parental genes transferred), at a cost to B’s fitness. This definition clarifies several issues: Conflict is very common and, although it extends outside traits under sexual selection, sexual selection is a ready source of sexual conflict. Sexual conflict and sexual selection should not be presented as alternative expla- nations for trait evolution. Conflict is closely linked to the concept of a lag load, which is context-dependent and sex-specific. This makes it possible to ask if one sex can “win.” We expect higher population fitness if females win. any published studies ask if sexual selec- one or the other shapes the natural world, when Mtion or sexual conflict drives the evolution obviously both interact to determine the out- of key reproductive traits (e.g., mate choice). come. Here we argue that this is an inappropriate So why have sexual conflict and sexual selec- question.
    [Show full text]
  • Phylogenetic Perspectives in the Evolution of Parental Care in Ray-Finned Fishes
    Evolution, 59(7), 2005, pp. 1570±1578 PHYLOGENETIC PERSPECTIVES IN THE EVOLUTION OF PARENTAL CARE IN RAY-FINNED FISHES JUDITH E. MANK,1,2 DANIEL E. L. PROMISLOW,1 AND JOHN C. AVISE1 1Department of Genetics, University of Georgia, Athens, Georgia 30602 2E-mail: [email protected] Abstract. Among major vertebrate groups, ray-®nned ®shes (Actinopterygii) collectively display a nearly unrivaled diversity of parental care activities. This fact, coupled with a growing body of phylogenetic data for Actinopterygii, makes these ®shes a logical model system for analyzing the evolutionary histories of alternative parental care modes and associated reproductive behaviors. From an extensive literature review, we constructed a supertree for ray-®nned ®shes and used its phylogenetic topology to investigate the evolution of several key reproductive states including type of parental care (maternal, paternal, or biparental), internal versus external fertilization, internal versus external gestation, nest construction behavior, and presence versus absence of sexual dichromatism (as an indicator of sexual selection). Using a comparative phylogenetic approach, we critically evaluate several hypotheses regarding evolutionary pathways toward parental care. Results from maximum parsimony reconstructions indicate that all forms of parental care, including paternal, biparental, and maternal (both external and internal to the female reproductive tract) have arisen repeatedly and independently during ray-®nned ®sh evolution. The most common evolutionary transitions were from external fertilization directly to paternal care and from external fertilization to maternal care via the intermediate step of internal fertilization. We also used maximum likelihood phylogenetic methods to test for statistical correlations and contingencies in the evolution of pairs of reproductive traits.
    [Show full text]
  • Female Brain Size and Parental Care in Carnivores (Mammal) JOHN L
    Proc. Natd. Acad. Sci. USA Vol. 91, pp. 5495-5497, June 1994 Evolution Female brain size and parental care in carnivores (mammal) JOHN L. GITTLEMAN Department of Zoology, University of Tennessee, Knoxville, TN 37996-0810 Communicated by George C. Williams, February 24, 1994 (receivedfor review October 12, 1993) ABSTRACT Comparative studies indicate that species dif- 26) and African lions (27), a mother is assisted by multiple ferences in mammalian brain size relate to body size, ecology, males and/or females. Communal duties include similar and life-history traits. Previous analyses failed to show intra- parental behaviors as shown in biparental systems, except sexual or behavioral patterns ofbrain size in mammals. Across that communal nursing is an added feature occasionally the terrestrial Carnivora, I find to the contrary. Differences in shown in some species. A crucial difference is that in both female, but not male, brain size associate with a fundamental biparental and communal species, parental care by an adult ecological and evolutionary characteristic of female behavior. other than the mother confers significant reduction in time Other factors equal, females that provide the sole parental care and energy ofmaternal feeding, guarding, and den attendance have larger brains than those of biparental or communal (28-30). Of the three parental systems in carnivores, single species. For females, more parental investment accompanies female care reflects the most intensive behavioral and ener- larger brains. Future comparative studies of mammalian brain getic demands. size must recognize that some patterns arise independently in Thus, assuming that brain size is associated with increased the two sexes. information processing (1, 4-6, 31), it is predicted that females of species that care for young exclusively on their Among mammal species, brain weight reflects differences in own will have larger brains relative to their body weight than body size, ecology, and life histories (1).
    [Show full text]
  • Benefits and Costs of Parental Care (Ed NJR)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Chapter 3: Benefits and costs of parental care (Ed NJR) Carlos Alonso‐Alvarez and Alberto Velando 3.1. Introduction In order to explain the huge variation in parental behaviour evolutionary biologists have traditionally used a cost‐benefit approach, which enables them to analyse behavioural traits in terms of the positive and negative effects on the transmission of parental genes to the next generation. Empirical evidence supports the presence of a number of different trade‐offs between the costs and benefits associated with parental care (Stearns 1992; Harshman and Zera 2007), although the mechanisms they are governed by are still the object of debate. In fact, Clutton‐Brock’s (1991) seminal book did not address the mechanistic bases of parental care and most work in this field has been conducted over the last 20 years. Research on mechanisms has revealed that to understand parental care behaviour we need to move away from traditional models based exclusively on currencies of energy/time. Nevertheless, despite repeated claims, the integration of proximate mechanisms into ultimate explanations is currently far from successful (e.g. Barnes and Partridge 2003; McNamara and Houston 2009). In this chapter, nonetheless, we aim to describe the most relevant advances in this field. In this chapter, we employ Clutton‐Brock’s (1991) definitions of the costs and benefits of parental care. Costs imply a reduction in the number of offspring other than those that are currently receiving care (i.e. parental investment, Trivers 1972), whereas benefits are increased fitness in the offspring currently being cared for.
    [Show full text]
  • Sexual Conflict in a Sexually Cannibalistic Praying Mantid
    Animal Behaviour 99 (2015) 9e14 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Sexual conflict in a sexually cannibalistic praying mantid: males prefer low-risk over high-risk females * Romina C. Scardamaglia a, , Sandro Fosacheca a, Lorena Pompilio a, b a Departamento de Ecología, Genetica y Evolucion & IEGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina b Facultad de Psicología, Universidad de Buenos Aires, Argentina article info Sexually cannibalistic species such as praying mantids are an ideal model in which to study sexual fl Article history: con ict since the interests of both sexes under a cannibalistic scenario are clearly opposed. Females gain Received 16 April 2014 direct material benefits of feeding on a male, which can in turn boost female reproductive output. Males, Initial acceptance 2 June 2014 on the other hand, pay a high cost when cannibalized since they lose all chance of future reproduction. Final acceptance 23 September 2014 Here, we tested the hypothesis that males behave so as to reduce the risk of being cannibalized in the Published online praying mantid Parastagmatoptera tessellata. Twenty-six males were tested in a choice experiment where MS. number: A14-00315R two options were presented simultaneously: one aggressive female (signalling high risk of cannibalism) and one nonaggressive female (low risk of cannibalism). We predicted that males would prefer Keywords: nonaggressive over aggressive females. We found evidence that males are sensitive to the predatory mate choice strike of a female towards a conspecific male, showing a strong preference for nonaggressive females Parastagmatoptera tessellata based on the time that males spent near each type of female.
    [Show full text]
  • Mate Choice and Sexual Selection: What Have We Learned Since Darwin?
    Mate choice and sexual selection: What have we learned since Darwin? Adam G. Jones1 and Nicholas L. Ratterman Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843 Charles Darwin laid the foundation for all modern work on sexual concerns sexual selection, but many of Darwin’s insights regard- selection in his seminal book The Descent of Man, and Selection in ing sexual selection appear in his chapters on humans. Relation to Sex. In this work, Darwin fleshed out the mechanism of Darwin’s most lasting achievement with respect to sexual sexual selection, a hypothesis that he had proposed in The Origin of selection must be his definition of the term, as it is essentially the Species. He went well beyond a simple description of the phenom- same as the one still in use today. It is difficult to find a quote enon by providing extensive evidence and considering the far-reach- from Darwin that captures the full essence of his concept of ing implications of the idea. Here we consider the contributions of sexual selection, but he provides the following definition (ref. 2; Darwin to sexual selection with a particular eye on how far we have Part I, pp 254–255): progressed in the last 150 years. We focus on 2 key questions in sexual selection. First, why does mate choice evolve at all? And second, what ‘‘We are, however, here concerned only with that kind factors determine the strength of mate choice (or intensity of sexual of selection, which I have called sexual selection. This selection) in each sex? Darwin provided partial answers to these depends on the advantage which certain individuals questions, and the progress that has been made on both of these have over other individuals of the same sex and species, topics since his time should be seen as one of the great triumphs of in exclusive relation to reproduction.’’ modern evolutionary biology.
    [Show full text]