Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs Rahul Arora1, Ashu Gupta2, Rohit Gurjar∗3, and Raghunath Tewari4 1 University of Toronto, Canada; and Indian Institute of Technology Kanpur, India
[email protected],
[email protected] 2 University of Illinois at Urbana-Champaign, USA
[email protected] 3 HTW Aalen, Germany
[email protected] 4 Indian Institute of Technology Kanpur, India
[email protected] Abstract The perfect matching problem has a randomized NC algorithm, using the celebrated Isolation Lemma of Mulmuley, Vazirani and Vazirani. The Isolation Lemma states that giving a random weight assignment to the edges of a graph ensures that it has a unique minimum weight perfect matching, with a good probability. We derandomize this lemma for K3,3-free and K5-free bipart- ite graphs. That is, we give a deterministic log-space construction of such a weight assignment for these graphs. Such a construction was known previously for planar bipartite graphs. Our result implies that the perfect matching problem for K3,3-free and K5-free bipartite graphs is in SPL. It also gives an alternate proof for an already known result – reachability for K3,3-free and K5-free graphs is in UL. 1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.2 Graph Theory Keywords and phrases bipartite matching, derandomization, isolation lemma, SPL, minor-free graph Digital Object Identifier 10.4230/LIPIcs.STACS.2016.10 1 Introduction The perfect matching problem is one of the most extensively studied problem in combinatorics, algorithms and complexity.