A Polynomial-Time Approximation Scheme For

Total Page:16

File Type:pdf, Size:1020Kb

A Polynomial-Time Approximation Scheme For A PolynomialTime Approximation Scheme for Weighted Planar Graph TSP z x y David Karger Philip Klein Michelangelo Grigni Sanjeev Arora Brown U Emory U Princeton U Andrzej Woloszyn Emory U O Abstract in n time where is any constant Then Arora and so on after Mitchell showed that a Given a planar graph on n no des with costs weights PTAS also exists for Euclidean TSP ie the subcase on its edges dene the distance b etween no des i and in which the p oints lie in and distance is measured j as the length of the shortest path b etween i and j using the Euclidean metric This PTAS also achieves Consider this as an instance of metric TSP For any O an approximation ratio in n time More our algorithm nds a salesman tour of total cost 2 O recently Arora improved the running time of his at most times optimal in time n O algorithm to O n log n using randomization We also present a quasip olynomial time algorithm The PTASs for Euclidean TSP and planargraph for the Steiner version of this problem TSP though discovered within a year of each other are quite dierent Interestingly enough Grigni et al had Intro duction conjectured the existence of a PTAS for Euclidean TSP The TSP has b een a testb ed for virtually every algorith and suggested one line of attack to design a PTAS for mic idea in the past few decades Most interesting the case of a shortestpath metric of a weighted planar subcases of the problem are NPhard so attention has graph We note later in the pap er that Euclidean TSP turned to other notions of a go o d solution An early can b e viewed as a Steiner subcase of weighted planar approximation algorithm by Christodes achieves an ap graph TSP proximation ratio on every instance of metric TSP 2 O In this pap er we present an n time PTAS namely one in which the interno de distances form a scheme for weightedplanargraph TSP Our approxima metric This algorithm has not b een improved up on tion scheme starts by extracting a spanner of the input and a general approximation scheme is unlikely since graph the spanner preserves distances b etween vertices metric TSP is MAXSNPhard Nevertheless there but has a lower sum of edgecosts Then like some pre has b een recent progress for certain sp ecial classes of vious results ab out approximation schemes on planar metrics unweighted graphs our approximation scheme Grigni Koutsoupias and Papadimitriou showed employs a technique for obtaining a hierarchical decom that if the metric is the shortestpath metric of an position of the input graph By hierarchical we mean unweighted planar graph that is all edge costs are that the decomp osition is done in steps A step parti one then a polynomial time approximation scheme or tions every current comp onent into two or more pieces PTAS exists It achieves an approximation ratio each of which contains at most a constant fraction of the vertices of its parent Hence the decomp osition tree aroracsprincetonedu Supp orted by NSF CAREER has O log n levels where n is the numb er of vertices Award Alfred Sloan Fellowship and Packard Fellowship The useful asp ect of our decomp osition is that we show y Emory Dept of Math Computer Sci Atlanta GA the existence of a approximate salesman tour Email micmathcsemoryedu z that crosses the b oundary of each region in the decom MIT Lab oratory for Computer Science Cambridge MA p osition O log n times This is reminiscent of the Supp orted by NSF contract CCR and an Alfred P Sloane Foundation Fellowship approximation scheme for the unweighted case In Email kargerlcsmitedu particular we ensure that after contracting the edges URL httptheorylcsmite du karg er that lie on the b oundaries of the regions we obtain a x kleincsbrownedu Supp orted by NSF grant CCR graph where each region is b ounded by O log n ver and a planar embedded graph G with edgecosts vertex tices Dynamic programming can b e used to nd the weights and faceweights nds a Jordan curve C such optimal tour in this contracted graph We show how to that lift this tour to a tour in the uncontracted graph without increasing the cost by much balance condition the interior and exterior of C have In Section we also present a quasip olynomial weight at most of the total weight time algorithm for the Steiner version of this problem faceedge condition C uses at most k face edges that is when we want a nearoptimal tour on some given subset S of the vertices ordinaryedge condition C uses ordinary edges of total cost O k times the total cost of al l the ordinary Denitions and pro cedures edges Spanner Our approach requires that the sum Remark The separating cycle also has the property of the edgecosts of the graph b e within a constant that the ordinary edges comprise at most two paths but factor of the cost of the minimum tour We use the the algorithm does not use this property following spanner result due to Althofer Das Dobkin Joseph and Soares to obtain such a lowcost subgraph Given a planar emb edded graph G and a separator of the input graph that also approximately preserves C satisfying the conditions of Theorem we split distances the graph into two or more derived subgraphs called Theorem For every planar graph G with edge children as follows 0 costs and every there is a subgraph G with the First in G we contract the ordinary edges that are same vertex set such that for every pair of vertices i and in C giving us a contracted planar emb edded graph 0 0 j in V their distance in G is at most times their G the ordinaryedge condition ensures that we do not distance in G Furthermore the sum of costs of edges contract much cost so we do not dramatically p erturb 0 0 appearing in G is O times the cost of a minimum the solution Let C b e the contracted version of the 0 spanning tree in G The subgraph G can be found in separating cycle it has no ordinary edges so the vertices polynomial time it contains if removed separate the graph the numb er of vertices is equal to the numb er of face edges in the Separating the graph Now we give our separa separator so the faceedge condition ensures that there tor theorem which can b e viewed as a generalization of are not to o many We call these vertices the boundary Millers simplecycleseparator theorem The pro of of vertices the theorem app ears in Section We dene the interior piece to b e the interior of 0 It is useful to ensure that our separator while not C together with the b oundary vertices The exterior a cycle in the original graph do es trace out a Jordan piece is similarly dened it to o contains the b oundary curve To capture the resemblance to a cycle we vertices The interior piece and exterior piece each use the notion of face edges Face edges are articial satisfy the following prop erty edges added to the graph while preserving planarity in other words the cycle may cross through the interior of Boundaryvertices prop erty The b ound some faces Our separator will b e a cycle in the graph ary vertices lie on the b oundary of a single face obtained by adding some of these articial edges We We call the single face a hole b ecause it results from call it a cycle separator Such a cycle traverses certain the removal of some of the graph vertices edges and faces of the graph the rest of the The connected comp onents of the interior piece and graph divides into an interior and an exterior the exterior piece are the children of G Because of the The separator is supp osed to achieve some sort of 0 balance condition on the separator the interior of C has balance We sp ecify what is to b e balanced by assigning vertex weight at most twothirds of the vertex weight of weights to vertices and faces the separator then has the G We obtain the following prop erty prop erty that the sum of weights of vertices and faces in the interior is only a constant fraction of the sum of Childweight prop erty Each child has ver all the weights and similarly for the exterior tex weight at most a constant fraction of that We measure the quality of the separator in two of the parent graph ways the numb er of face edges it uses and the sum of costs of the ordinary edges it uses Because all ordinary edges on the b oundary b etween Theorem Separator Theorem There the interior and exterior were contracted we obtain the is an p oly ntime algorithm that given a parameter k following prop erty edgedisjointness prop erty No edge of G obtain the following lemma app ears in more than one child 0 Lemma The edges of G that do not appear in G have total cost at most O P T Moreover the b oundaryvertices prop erty still 0 Clearly the optimal tour in G has length at most holds for each child the b oundary vertices that sep OPT Below we show how to use dynamic programming arate the child from its siblings all lie on the b oundary 0 to compute the optimal tour for G We then extend of a single face a hole this tour back to the original graph as follows We uncontract the contracted paths and use the classical A simpler algorithm doubleMST heuristic on each path to get a tour for To intro duce our techniques we b egin with a simpler those vertices of cost at most path length We then algorithm that runs in quasip olynomial time In the splice the path tour into the global tour Doing this following section we will show how to mo dify it to for all contracted paths raises the tour cost by at most achieve a p olynomial running time OPT so the the cost of the nal tour is at most Our goal is to nd a tour in the input graph that has OPT the other is taken by the spanner cost at most times that of
Recommended publications
  • Bandwidth, Expansion, Treewidth, Separators and Universality for Bounded-Degree Graphs$
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector European Journal of Combinatorics 31 (2010) 1217–1227 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphsI Julia Böttcher a, Klaas P. Pruessmann b, Anusch Taraz a, Andreas Würfl a a Zentrum Mathematik, Technische Universität München, Boltzmannstraße 3, D-85747 Garching bei München, Germany b Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zürich, Switzerland article info a b s t r a c t Article history: We establish relations between the bandwidth and the treewidth Received 3 March 2009 of bounded degree graphs G, and relate these parameters to the size Accepted 13 October 2009 of a separator of G as well as the size of an expanding subgraph of Available online 24 October 2009 G. Our results imply that if one of these parameters is sublinear in the number of vertices of G then so are all the others. This implies for example that graphs of fixed genus have sublinear bandwidth or, more generally, a corresponding result for graphs with any fixed forbidden minor. As a consequence we establish a simple criterion for universality for such classes of graphs and show for example that for each γ > 0 every n-vertex graph with minimum degree 3 C . 4 γ /n contains a copy of every bounded-degree planar graph on n vertices if n is sufficiently large. ' 2009 Elsevier Ltd.
    [Show full text]
  • Separator Theorems and Turán-Type Results for Planar Intersection Graphs
    SEPARATOR THEOREMS AND TURAN-TYPE¶ RESULTS FOR PLANAR INTERSECTION GRAPHS JACOB FOX AND JANOS PACH Abstract. We establish several geometric extensions of the Lipton-Tarjan separator theorem for planar graphs. For instance, we show that any collection C of Jordan curves in the plane with a total of m p 2 crossings has a partition into three parts C = S [ C1 [ C2 such that jSj = O( m); maxfjC1j; jC2jg · 3 jCj; and no element of C1 has a point in common with any element of C2. These results are used to obtain various properties of intersection patterns of geometric objects in the plane. In particular, we prove that if a graph G can be obtained as the intersection graph of n convex sets in the plane and it contains no complete bipartite graph Kt;t as a subgraph, then the number of edges of G cannot exceed ctn, for a suitable constant ct. 1. Introduction Given a collection C = fγ1; : : : ; γng of compact simply connected sets in the plane, their intersection graph G = G(C) is a graph on the vertex set C, where γi and γj (i 6= j) are connected by an edge if and only if γi \ γj 6= ;. For any graph H, a graph G is called H-free if it does not have a subgraph isomorphic to H. Pach and Sharir [13] started investigating the maximum number of edges an H-free intersection graph G(C) on n vertices can have. If H is not bipartite, then the assumption that G is an intersection graph of compact convex sets in the plane does not signi¯cantly e®ect the answer.
    [Show full text]
  • Sphere-Cut Decompositions and Dominating Sets in Planar Graphs
    Sphere-cut Decompositions and Dominating Sets in Planar Graphs Michalis Samaris R.N. 201314 Scientific committee: Dimitrios M. Thilikos, Professor, Dep. of Mathematics, National and Kapodistrian University of Athens. Supervisor: Stavros G. Kolliopoulos, Dimitrios M. Thilikos, Associate Professor, Professor, Dep. of Informatics and Dep. of Mathematics, National and Telecommunications, National and Kapodistrian University of Athens. Kapodistrian University of Athens. white Lefteris M. Kirousis, Professor, Dep. of Mathematics, National and Kapodistrian University of Athens. Aposunjèseic sfairik¸n tom¸n kai σύνοla kuriarqÐac se epÐpeda γραφήματa Miχάλης Σάμαρης A.M. 201314 Τριμελής Epiτροπή: Δημήτρioc M. Jhlυκός, Epiblèpwn: Kajhγητής, Tm. Majhmatik¸n, E.K.P.A. Δημήτρioc M. Jhlυκός, Staύρoc G. Kolliόποuloc, Kajhγητής tou Τμήμatoc Anaπληρωτής Kajhγητής, Tm. Plhroforiκής Majhmatik¸n tou PanepisthmÐou kai Thl/ni¸n, E.K.P.A. Ajhn¸n Leutèrhc M. Kuroύσης, white Kajhγητής, Tm. Majhmatik¸n, E.K.P.A. PerÐlhyh 'Ena σημαντικό apotèlesma sth JewrÐa Γραφημάτwn apoteleÐ h apόdeixh thc eikasÐac tou Wagner από touc Neil Robertson kai Paul D. Seymour. sth σειρά ergasi¸n ‘Ελλάσσοna Γραφήματα’ apo to 1983 e¸c to 2011. H eikasÐa αυτή lèei όti sthn κλάση twn γραφημάtwn den υπάρχει άπειρη antialusÐda ¸c proc th sqèsh twn ελλασόnwn γραφημάτwn. H JewrÐa pou αναπτύχθηκε gia thn απόδειξη αυτής thc eikasÐac eÐqe kai èqei ακόμα σημαντικό antÐktupo tόσο sthn δομική όσο kai sthn algoriθμική JewrÐa Γραφημάτwn, άλλα kai se άλλα pedÐa όπως h Παραμετρική Poλυπλοκόthta. Sta πλάιsia thc απόδειξης oi suggrafeÐc eiσήγαγαν kai nèec paramètrouc πλά- touc. Se autèc ήτan h κλαδοαποσύνθεση kai to κλαδοπλάτoc ενός γραφήματoc. H παράμετρος αυτή χρησιμοποιήθηκε idiaÐtera sto σχεδιασμό algorÐjmwn kai sthn χρήση thc τεχνικής ‘διαίρει kai basÐleue’.
    [Show full text]
  • Linearity of Grid Minors in Treewidth with Applications Through Bidimensionality∗
    Linearity of Grid Minors in Treewidth with Applications through Bidimensionality∗ Erik D. Demaine† MohammadTaghi Hajiaghayi† Abstract We prove that any H-minor-free graph, for a fixed graph H, of treewidth w has an Ω(w) × Ω(w) grid graph as a minor. Thus grid minors suffice to certify that H-minor-free graphs have large treewidth, up to constant factors. This strong relationship was previously known for the special cases of planar graphs and bounded-genus graphs, and is known not to hold for general graphs. The approach of this paper can be viewed more generally as a framework for extending combinatorial results on planar graphs to hold on H-minor-free graphs for any fixed H. Our result has many combinatorial consequences on bidimensionality theory, parameter-treewidth bounds, separator theorems, and bounded local treewidth; each of these combinatorial results has several algorithmic consequences including subexponential fixed-parameter algorithms and approximation algorithms. 1 Introduction The r × r grid graph1 is the canonical planar graph of treewidth Θ(r). In particular, an important result of Robertson, Seymour, and Thomas [38] is that every planar graph of treewidth w has an Ω(w) × Ω(w) grid graph as a minor. Thus every planar graph of large treewidth has a grid minor certifying that its treewidth is almost as large (up to constant factors). In their Graph Minor Theory, Robertson and Seymour [36] have generalized this result in some sense to any graph excluding a fixed minor: for every graph H and integer r > 0, there is an integer w > 0 such that every H-minor-free graph with treewidth at least w has an r × r grid graph as a minor.
    [Show full text]
  • 1 Introduction 2 Planar Graphs and Planar Separators
    15-859FF: Coping with Intractability CMU, Fall 2019 Lecture #14: Planar Graphs and Planar Separators October 21, 2019 Lecturer: Jason Li Scribe: Rudy Zhou 1 Introduction In this lecture, we will consider algorithms for graph problems on a restricted class of graphs - namely, planar graphs. We will recall the definition of planar graphs, state the key property of planar graphs that our algorithms will exploit (planar separators), apply planar separators to maximum independent set, and prove the Planar Separator Theorem. 2 Planar Graphs and Planar Separators Informally speaking, a planar graph G is one that we can draw on a piece of paper such that its edges do not cross. Definition 14.1 (Planar Graph). An undirected graph G is planar if it admits a planar drawing. A planar drawing is a drawing of G in the plane such that the vertices of G are points in the plane, and the edges of G are curves connecting their respective endpoints (these curves do not have to be straight lines.) Further, we require that the edges do not cross, so they only intersect at possibly their endpoints. On planar graphs, many of our intuitions about graphs that come from drawing them on paper actually do hold. In particular, fix a planar drawing of the planar graph G. Any cycle of G divides the plane into two parts: the area outside the cycle, and the area inside the cycle. We call a chordless cycle of G a face of G. In addition, G has exactly one outer face that is unbounded on the outside.
    [Show full text]
  • Planar Separator Theorem
    Planar Separator Theorem Aleksandar Timanov RWTH Aachen University [email protected] Abstract—Divide and conquer is a widely spread strategy for recursively, a lot of problems can be solved in an efficient solving complex problems efficiently. It is probably known to the manner. reader from some of the base algorithmic approaches for sorting In the following section (II) we are going to begin by of lists like merge sort and quick sort, which both recursively divide the list into smaller ones, sort these ones, and then merge defining some ground rules and notation which will help us the results in order to get the final sorted solution. In this paper later on. After that in section III we are going to talk about we are going to explore some of the laws by which a separator some basic theorems and lemmas and finally define and prove is defined, find efficient ways to calculate one and some of its the planar separator theorem (Theorem 4). In the IV section we applications. are going to go through an algorithm for efficient calculation of a separator in a given planar graph. In section V we are going I. INTRODUCTION to show some applications of the theorem like solving NP- In graph theory and more specifically when talking about complete problems like the maximal independent set problem planar graphs such an approach can be very useful in many and embedding data structures. We are going to finish with a situations. In the case of graphs the vertices of the graph have small conclusion in the end.
    [Show full text]
  • Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth
    Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth Erik D. Demaine and MohammadTaghi Hajiaghayi MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA, {edemaine,hajiagha}@mit.edu Abstract. This paper surveys the theory of bidimensional graph prob- lems. We summarize the known combinatorial and algorithmic results of this theory, the foundational Graph Minor results on which this theory is based, and the remaining open problems. 1 Introduction The newly developing theory of bidimensional graph problems, developed in a series of papers [DHT,DHN+04,DFHT,DH04a,DFHT04b,DH04b,DFHT04a, DHT04,DH05b,DH05a], provides general techniques for designing efficient fixed- parameter algorithms and approximation algorithms for NP-hard graph prob- lems in broad classes of graphs. This theory applies to graph problems that are bidimensional in the sense that (1) the solution value for the k × k grid graph (and similar graphs) grows with k, typically as Ω(k2), and (2) the solution value goes down when contracting edges and optionally when deleting edges. Examples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex-removal parameters, dominating set, edge dominating set, R-dominating set, connected dominating set, connected edge dominating set, connected R-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices). Bidimensional problems have many structural properties; for example, any graph in an appropriate minor-closed class has treewidth bounded above in terms of the problem’s solution value, typically by the square root of that value. These properties lead to efficient—often subexponential—fixed-parameter algorithms, as well as polynomial-time approximation schemes, for many minor-closed graph classes.
    [Show full text]
  • Lecture Beyond Planar Graphs 1 Overview 2 Preliminaries
    Approximation Algorithms Workshop June 17, 2011, Princeton Lecture Beyond Planar Graphs Erik Demaine Scribe: Siamak Tazari 1 Overview In the last lecture we learned about approximation schemes in planar graphs. In this lecture we go beyond planar graphs and consider bounded-genus graphs, and more generally, minor-closed graph classes. In particular, we discuss the framework of bidimensionality that can be used to obtain approximation schemes for many problems in minor-closed graph classes. Afterwards, we consider decomposition techniques that can be applied to other types of problems. The main motivation behind this line of work is that some networks are not planar but conform to some generalization of the concept of planarity, like being embeddable on a surface of bounded genus. Furthermore, by Kuratowski's famous theorem [Kur30], planarity can be characterized be excluding K5 and K3;3 as minors. Hence, it seems natural to study further classes with excluded minors as a generalization of planar graphs. One of the goals of this research is to identify the largest classes of graphs for which we can still ob- tain good and efficient approximations, i.e. to find out how far beyond planarity we can go. Natural candidate classes are graphs of bounded genus, graphs excluding a fixed minor, powers thereof, but also further generalizations, like odd-minor-free graphs, graphs of bounded expansion and nowhere dense classes of graphs. Another objective is to derive general approximation frameworks, two of which we are going to discuss here: bidimensionality and contraction decomposition. The main tools we are going to use come on one hand from graph structure theory and on the other hand from algorithmic results.
    [Show full text]
  • Space and Polymomial-Time Algorithm for the Planar Directed Graph Reachability Problem
    Electronic Colloquium on Computational Complexity, Report No. 71 (2014) p Oe( n)-Space and Polymomial-time Algorithm for the Planar Directed Graph Reachability Problem Tetsuo Asano,∗ David Kirkpatrick,y Kotaro Nakagawazand Osamu Watanabez Draft for ECCC, May 4, 2014 1 Introduction We consider the reachability problem in planar directed graphs. For its formal definition, we begin by defining the reachability in general directed graphs. Directed Graph Reachability Problem Input: Directed graph G = (V; E), start vertex v0, and goal vertex v∗. Task: Determine whether there exists a path from v0 to v∗ in G. Throughout this paper we will use n to denote the number of vertices of an input graph, which is the unique input size parameter. For a directed graph G = (V; E), its underlying graph is the undirected graph `G = (V; `E), where the vertex pair fu; vg belongs to `E if and only if at least one of (u; v) or (v; u) belongs to E. The planar directed graph reachability problem is a special case of the reachability problem where we restrict attention to input graphs whose underlying graph is planar. For a simpler setting to introduce some of our algorithmic ideas, we also consider the grid directed graph reachability problem, where we restrict attention to input graphs whose underlying graph is an edge-induced subgraph of a square grid. We will frequently refer to these problems with the shorter names \planar reachability" and \grid reachability." The directed graph reachability problem is a core problem in computational complexity theory. It is a canonical complete problem for the nondeterministic log-space, NL, and the famous open question L = NL is essentially asking whether the problem is solvable deterministically in log- space.
    [Show full text]
  • Planar Graphs
    Planar Graphs Planarity Testing Planar Separator Theorem + Applications Planar Duality Planar Max-cut Basic Properties Planar drawing: No two edges cross. Face: Given a drawing of G, a face is a “region” (i.e. equivalence set of points in a plane reachable from each other) Euler’s formula: If G is connected + planar, then v – e + f = 2 Proof: Induction Basics Use Euler’s formula to show 푚 ≤ 3푛 − 6 for simple planar graphs Show: For bipartite planar graphs m ≤ 2n -4 Show: 퐾3,3 and 퐾5 are non-planar. Kuratowski’s theorem: G is planar if and only if it does not contain a subgraph that is a subdivision of 퐾5 or 퐾3,3. Subgraph: Obtained by deleting some edges and vertices. Subdivision: Repeatedly insert a vertex in middle of an edge. Basics 6-colorable 5-colorable: Induction on v + look at conn. components of colors 1 and 3. + look at components of 2 and 4. Thm: Can color in 4 colors. Big result. Basics Fary’s theorem (1936): Any planar graph can be drawn such that edges are straight lines There is a whole research area called graph drawing. Want to draw (almost) planar graphs in various ways with various desirable properties. Planarity Testing Linear time algorithms known. We focus on an insightful 푂 푛3 time algorithm Assume connected Assume 2 edge-connected (each edge lies in a cycle) [If removing (u,v) disconnects, can contract (u,v)] Key insight: Consider a cycle C. If (u,v) and edge with u and v not on C, then either both lie inside C or both lie outside C.
    [Show full text]
  • A Separator Theorem for Graphs with an Excluded Minor and Its
    A Separator Theorem for Graphs with an Excluded Minor and its Applications (Extended Abstract) Noga Alon∗ Paul Seymoury Robin Thomasz Abstract Let G be an n-vertex graph with nonnegative weights whose sum is 1 assigned to its vertices, and with no minor isomorphic to a given h-vertex graph H. We prove that there is a set X of no more than h3=2n1=2 vertices of G whose deletion creates a graph in which the total weight of every connected component is at most 1=2. This extends significantly a well-known theorem of Lipton and Tarjan for planar graphs. We exhibit an algorithm which finds, given an n-vertex graph G with weights as above and an h-vertex graph H, either such a set X or a minor of G isomorphic to H. The algorithm runs in time O(h1=2n1=2m), where m is the number of edges of G plus the number of its vertices. Our results supply extensions of the many known applications of the Lipton-Tarjan separator theorem from the class of planar graphs (or that of graphs with bounded genus) to any class of graphs with an excluded minor. For example, it follows that for any fixed graph H , given a graph G with n vertices and with no H-minor one can approximate the size of the maximum independent set of G up to a relative error of 1=plog n in polynomial time, find that size exactly and find the chromatic number of G in time 2O(pn) and solve any sparse system of n linear equations in n unknowns whose sparsity structure corresponds to G in time O(n3=2).
    [Show full text]
  • Planarity Testing and Embedding
    1 Planarity Testing and Embedding 1.1 Introduction................................................. 1 1.2 Properties and Characterizations of Planar Graphs . 2 Basic Definitions • Properties • Characterizations 1.3 Planarity Problems ........................................ 7 Constrained Planarity • Deletion and Partition Problems • Upward Planarity • Outerplanarity 1.4 History of Planarity Algorithms.......................... 10 1.5 Common Algorithmic Techniques and Tools ........... 10 1.6 Cycle-Based Algorithms ................................... 11 Adding Segments: The Auslander-Parter Algorithm • Adding Paths: The Hopcroft-Tarjan Algorithm • Adding Edges: The de Fraysseix-Ossona de Mendez-Rosenstiehl Algorithm 1.7 Vertex Addition Algorithms .............................. 17 The Lempel-Even-Cederbaum Algorithm • The Shih-Hsu Algorithm • The Boyer-Myrvold Algorithm 1.8 Frontiers in Planarity ...................................... 31 Simultaneous Planarity • Clustered Planarity • Maurizio Patrignani Decomposition-Based Planarity Roma Tre University References ................................................... ....... 34 1.1 Introduction Testing the planarity of a graph and possibly drawing it without intersections is one of the most fascinating and intriguing algorithmic problems of the graph drawing and graph theory areas. Although the problem per se can be easily stated, and a complete characterization of planar graphs has been known since 1930, the first linear-time solution to this problem was found only in the 1970s. Planar graphs
    [Show full text]