The Structure of Graphs Not Topologically Containing the Wagner Graph

Total Page:16

File Type:pdf, Size:1020Kb

The Structure of Graphs Not Topologically Containing the Wagner Graph The structure of graphs not topologically containing the Wagner graph John Maharry, Neil Robertson1 Department of Mathematics The Ohio State University Columbus, OH USA [email protected], [email protected] Abstract A structural characterization of graphs not containing the Wagner graph, also known as V8, is shown. The result was announced in 1979 by the second author, but until now a proof has not been published. Keywords: Wagner graph, V8 graph, Excluded-minor 1. Introduction Graphs in this paper are finite and have no loops or multiple edges. Given a graph G, one can obtain a contraction K of G by contracting pairwise dis- joint connected induced subgraphs to single (distinct) vertices where distinct vertices of K are adjacent if and only if there exists an edge of G with an end- vertex in each of the corresponding subgraphs of G. A graph M is a minor of a graph G when M is a contraction of a subgraph of G. We write H ≤m G when H is isomorphic to a minor M of G. Given an edge e 2 E(G) with endvertices x and y, we define the single-edge contraction to be the graph formed by contracting the edge e to a new vertex, call it z. An equivalent definition of minor inclusion of a graph is H ≤m G if and only if H is iso- morphic to a graph obtained by a series of single-edge contractions starting with a subgraph S of G. 1Research funded in part by King Abdulaziz University, 2011 and in part by SERC Visiting Fellowship Research Grant, University of London, 1985 Preprint submitted to Journal Combin. Ser. B December 3, 2015 A single-edge contraction of an edge with at least one endvertex divalent is called a series contraction. If one restricts the single-edge contractions to series contractions, then the resulting graph H is a topological minor of G. In this case, the subgraph S of G is called a subdivision of H in G. We write H ≤t G when H is isomorphic to a topological minor of G. In such a topological inclusion, the edges of H correspond to paths in S whose internal vertices are divalent in S. The corresponding paths in S are called branches. Similarly, the vertices of S that correspond to vertices of H are called nodes. Note that H is isomorphic to the graph of nodes and branches of S we will normally denote this graph by H and S by H0. The subpath of a branch M from vertex a to vertex b on M will be denoted M[a; b], or simply [a; b]. We will use standard notation such as (a; b) if one or both of the endpoints are not included. Define a separation of G to be an expression G = G1 [ G2, where G1, G2 are non-null edge-disjoint subgraphs of G and jE(G1)j ≥ jV (G1 \ G2)j ≤ jE(G2)j. A separation where jV (G1 \ G2)j = k is called a k-separation.A graph G is k-connected if G has no k0-separation for any k0 < k and jV (G)j > k. A 3-connected graph G is called internally-4-connected if jV (G)j ≥ 4 and there does not exist a 3-separation G = G1[G2 where jE(G1)j ≥ 4 ≤ jE(G2)j. Note that, unless G is isomorphic to K4, if G contains a vertex that is both in a triangle and of valency three, then G is not internally-4-connected. 2. Main Theorem The Wagner graph is the graph W which is formed by adding to an octagon four edges joining its diagonally opposite pairs of vertices. This graph appears in a theorem of Wagner [20] which states that any graph with no minor isomorphic to K5 can be obtained by 0; 1; 2 and 3-summing beginning with planar graphs and the graph W . The graph W (see Figure 1) is also known as V8 or the M¨obiusladder with four rungs. Note that Wagner's theorem implies that W is the unique maximal 3-connected nonplanar graph that does not contain K5 as a minor. In a sense, the graph W can be viewed as a graph intermediate between the Kuratowski graph K3;3 and the Petersen graph P (the unique 3-regular graph of girth 5 on 10 vertices). It is straightforward to check that as W is a cubic graph, containing W as a minor is equivalent to containing W under topological inclusion. In this paper, we present an exact characterization of those internally-4- connected graphs that do not contain as a subgraph a subdivision W . This 2 Figure 1: The Wagner Graph W , also known as V8 theorem was originally announced in 1979 by the second author. It has become widely known. However no proof has, until now, appeared in print. As the theorem has recently been used as a starting point for several other theorems, it is time the result is written formally. The proof in this paper is based on a partial hand-written draft by the second author from 1985 and has been streamlined and modified. The result is central to the proofs of at least four recent results: a characterization of 2-crossing critical graphs [1], a structural characterization of graphs with no Octahedron minor [4], a characterization of the flexibility of graph embeddings on the Projective Plane [12] and a paper showing that all V8-free graphs have a closed 2-cell embedding [15]. Prior to the initial announcement of this result, there were few well- known excluded minor characterizations. The best-known were results for K5, K3;3 and the 3-Prism [20, 21, 3]. More recently, a number of other graphs have been so characterized, including the Cube [11], the Octahedron [4], the complement of P7 [6], the 5- and 6-wheels [7, 8] and several graphs on ten or fewer edges [5]. We now state the Main Theorem of this paper. Here L(K3;3) denotes the line graph of K3;3. Theorem 2.1. If G is an internally-4-connected graph then either G con- tains a subgraph S which is isomorphic to a subdivision of W or one of the following structural conditions holds: 1. G is planar, 2. G − fx; yg is a cycle, for some adjacent x; y 2 V (G), 3. G − fw; x; y; zg is edgeless, for some w; x; y; z 2 V (G), ∼ 4. G = L(K3;3), or 3 5. jV (G)j ≤ 7. Suppose G is an internally-4-connected graph. If vertices x; y exist such that G − fx; yg is a cycle as in Case 2, then G is called a double wheel. We refer to the rim, hub and spokes of G naturally. We observe that double wheels are planar or not planar according as x; y are nonadjacent or adjacent. It is routine to check that in an internally-4-connected double wheel G, the hub vertices x and y are either both adjacent to all vertices of the rim or to successively alternating vertices of an even length rim. Such double wheels are called complete or alternating, respectively. When nonplanar, complete double wheels exist if jV (G)j ≥ 5 and alternating double wheels exist for even jV (G)j ≥ 8, as internal-4-connectivity fails at lower values. When jV (G)j ≥ 8, a double wheel contains a topological Cube C0 with its rim C0 − fx; yg subdivided and no other edges subdivided. Note that x and y are antipodal nodes of C0. If vertices w; x; y; z exist such that G − fw; x; y; zg is edgeless as in Case 3, then G is called vertex 4-covered and fw; x; y; zg is a vertex 4-cover of G. When jV (G)j ≥ 8, a vertex 4-covered graph contains a Cube C as a subgraph with fw; x; y; zg as a colour class. Conversely, if G contains a subdivided Cube C0, then C = C0 and a vertex 4-cover fw; x; y; zg must be a colour class of C. Proposition 2.2. W is not contained topologically in G when the conditions of 2.1 hold. Proof: To show this, suppose for a contradiction that S which is isomor- phic to a subdivision of W , is a subgraph of G. For case (1), W , and hence S, is nonplanar. For case (2), if S is a subgraph of G, then S − fx; yg is a subgraph of G − fx; yg, which is a cycle. Hence, the valencies of the (at least) six remaining nodes of S were reduced when x and y were removed. This could only occur if x and y are nodes of S which are adjacent to the other 6 nodes of S. As W has diameter 2, this cannot happen for S. For case (3), note that the edge covering number of a subdivision is at least the edge covering number of the original graph. Since the edge covering number of W is five, S − fw; x; y; zg cannot be edgeless. For case (4), L(K3;3) does not have disjoint cycles of length at least 4, because the only quadrilateral in L(K3;3), up to isomorphism, leaves two triangles with one common vertex in its (vertex-set) complement. Finally, for case (5), the graphs are too small. 4 Note that the only internally-4-connected graphs on six or fewer vertices are K4,K5,K3;3 and the Octahedron with 0; 1; 2; or 3 diagonals added.
Recommended publications
  • On Treewidth and Graph Minors
    On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx.
    [Show full text]
  • Arxiv:1602.02002V1 [Math.CO] 5 Feb 2016 Dept
    a The Structure of W4-Immersion-Free Graphs R´emy Belmonteb;c Archontia Giannopouloud;e Daniel Lokshtanovf ;g Dimitrios M. Thilikosh;i ;j Abstract We study the structure of graphs that do not contain the wheel on 5 vertices W4 as an immersion, and show that these graphs can be constructed via 1, 2, and 3-edge-sums from subcubic graphs and graphs of bounded treewidth. Keywords: Immersion Relation, Wheel, Treewidth, Edge-sums, Structural Theorems 1 Introduction A recurrent theme in structural graph theory is the study of specific properties that arise in graphs when excluding a fixed pattern. The notion of appearing as a pattern gives rise to various graph containment relations. Maybe the most famous example is the minor relation that has been widely studied, in particular since the fundamental results of Kuratowski and Wagner who proved that planar graphs are exactly those graphs that contain neither K5 nor K3;3 as a (topological) minor. A graph G contains a graph H as a topological minor if H can be obtained from G by a sequence of vertex deletions, edge deletions and replacing internally vertex-disjoint paths by single edges. Wagner also described the structure of the graphs that exclude K5 as a minor: he proved that K5- minor-free graphs can be constructed by \gluing" together (using so-called clique-sums) planar graphs and a specific graph on 8 vertices, called Wagner's graph. aEmails of authors: [email protected] [email protected], [email protected], [email protected] b arXiv:1602.02002v1 [math.CO] 5 Feb 2016 Dept.
    [Show full text]
  • Characterizations of Graphs Without Certain Small Minors by J. Zachary
    Characterizations of Graphs Without Certain Small Minors By J. Zachary Gaslowitz Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mathematics May 11, 2018 Nashville, Tennessee Approved: Mark Ellingham, Ph.D. Paul Edelman, Ph.D. Bruce Hughes, Ph.D. Mike Mihalik, Ph.D. Jerry Spinrad, Ph.D. Dong Ye, Ph.D. TABLE OF CONTENTS Page 1 Introduction . 2 2 Previous Work . 5 2.1 Planar Graphs . 5 2.2 Robertson and Seymour's Graph Minor Project . 7 2.2.1 Well-Quasi-Orderings . 7 2.2.2 Tree Decomposition and Treewidth . 8 2.2.3 Grids and Other Graphs with Large Treewidth . 10 2.2.4 The Structure Theorem and Graph Minor Theorem . 11 2.3 Graphs Without K2;t as a Minor . 15 2.3.1 Outerplanar and K2;3-Minor-Free Graphs . 15 2.3.2 Edge-Density for K2;t-Minor-Free Graphs . 16 2.3.3 On the Structure of K2;t-Minor-Free Graphs . 17 3 Algorithmic Aspects of Graph Minor Theory . 21 3.1 Theoretical Results . 21 3.2 Practical Graph Minor Containment . 22 4 Characterization and Enumeration of 4-Connected K2;5-Minor-Free Graphs 25 4.1 Preliminary Definitions . 25 4.2 Characterization . 30 4.3 Enumeration . 38 5 Characterization of Planar 4-Connected DW6-minor-free Graphs . 51 6 Future Directions . 91 BIBLIOGRAPHY . 93 1 Chapter 1 Introduction All graphs in this paper are finite and simple. Given a graph G, the vertex set of G is denoted V (G) and the edge set is denoted E(G).
    [Show full text]
  • The Alon-Tarsi Number of K5-Minor-Free Graphs
    The Alon-Tarsi number of K5-minor-free graphs Toshiki Abea, Seog-Jin Kimb, Kenta Ozekia aGraduate school of Environmental and Information Science, Yokohama National University bDepartment of Mathematics Education, Konkuk university November 12, 2019 Abstract In this paper, we show the following three theorems. Let G be a K5-minor-free graph. Then Alon-Tarsi number of G is at most 5, there exists a matching M of G such that the Alon-Tarsi number of G−M is at most 4, and there exists a forest F such that the Alon-Tarsi number of G − E(F ) is at most 3. Key words. planar graph, defective-coloring, list coloring; Combinatorial Nullstellensatz; Alon-Tarsi number 1 Introductions In this paper, we only deal with finite and simple graphs. A d-defective coloring of G is a coloring c : V (G) ! N such that each color class induces a subgraph of maximum degree at most d. Especially, a 0-defective coloring is also called a proper coloring of G. A k-list assignment of a graph G is a mapping L which assigns to each vertex v of G a set L(v) of k permissible colors. Given a k-list assignment arXiv:1911.04067v1 [math.CO] 11 Nov 2019 L of G, a d-defective L-coloring of G is a d-defective coloring c such that c(v) 2 L(v) for every vertex v. We say that G is d-defective k-choosable if G has a d-defective L-coloring for every k-list assignment L.
    [Show full text]
  • Excluding a Small Minor
    Excluding a small minor Guoli Ding1∗ and Cheng Liu1,2 1Mathematics Department, Louisiana State University, Baton Rouge, LA, USA 2School of Mathematical Science and Computing Technology, Central South University, Changsha, China August 20, 2012 Abstract There are sixteen 3-connected graphs on eleven or fewer edges. For each of these graphs H we discuss the structure of graphs that do not contain a minor isomorphic to H. Key words: Graph minor, splitter theorem, graph structure. 1 Introduction Let G and H be graphs. In this paper, G is called H-free if no minor of G is isomorphic to H. We consider the problem of characterizing all H-free graphs, for certain fixed H. In graph theory, many important problems are about H-free graphs. For instance, Hadwiger’s Conjecture [7], made in 1943, states that every Kn-free graph is n − 1 colorable. Today, this conjecture remains “one of the deepest unsolved problems in graph theory” [1]. Another long standing problem of this kind is Tutte’s 4-flow conjecture [19], which asserts that every bridgeless Petersen-free graph admits a 4-flow. It is generally believed that knowing the structures of Kn-free graphs and Petersen-free graphs, respectively, would lead to a solution to the corresponding conjecture. In their Graph-Minors project, Robertson and Seymour [16] obtained, for every graph H, an approximate structure for H-free graphs. This powerful result has many important consequences, yet it is not strong enough to handle the two conjectures mentioned above. An interesting contrast can be made for K6-free graphs.
    [Show full text]
  • Tree-Decomposition Graph Minor Theory and Algorithmic Implications
    DIPLOMARBEIT Tree-Decomposition Graph Minor Theory and Algorithmic Implications Ausgeführt am Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien unter Anleitung von Univ.Prof. Dipl.-Ing. Dr.techn. Michael Drmota durch Miriam Heinz, B.Sc. Matrikelnummer: 0625661 Baumgartenstraße 53 1140 Wien Datum Unterschrift Preface The focus of this thesis is the concept of tree-decomposition. A tree-decomposition of a graph G is a representation of G in a tree-like structure. From this structure it is possible to deduce certain connectivity properties of G. Such information can be used to construct efficient algorithms to solve problems on G. Sometimes problems which are NP-hard in general are solvable in polynomial or even linear time when restricted to trees. Employing the tree-like structure of tree-decompositions these algorithms for trees can be adapted to graphs of bounded tree-width. This results in many important algorithmic applications of tree-decomposition. The concept of tree-decomposition also proves to be useful in the study of fundamental questions in graph theory. It was used extensively by Robertson and Seymour in their seminal work on Wagner’s conjecture. Their Graph Minors series of papers spans more than 500 pages and results in a proof of the graph minor theorem, settling Wagner’s conjecture in 2004. However, it is not only the proof of this deep and powerful theorem which merits mention. Also the concepts and tools developed for the proof have had a major impact on the field of graph theory. Tree-decomposition is one of these spin-offs. Therefore, we will study both its use in the context of graph minor theory and its several algorithmic implications.
    [Show full text]
  • Graph Theory Graph Theory (II)
    J.A. Bondy U.S.R. Murty Graph Theory (II) ABC J.A. Bondy, PhD U.S.R. Murty, PhD Universite´ Claude-Bernard Lyon 1 Mathematics Faculty Domaine de Gerland University of Waterloo 50 Avenue Tony Garnier 200 University Avenue West 69366 Lyon Cedex 07 Waterloo, Ontario, Canada France N2L 3G1 Editorial Board S. Axler K.A. Ribet Mathematics Department Mathematics Department San Francisco State University University of California, Berkeley San Francisco, CA 94132 Berkeley, CA 94720-3840 USA USA Graduate Texts in Mathematics series ISSN: 0072-5285 ISBN: 978-1-84628-969-9 e-ISBN: 978-1-84628-970-5 DOI: 10.1007/978-1-84628-970-5 Library of Congress Control Number: 2007940370 Mathematics Subject Classification (2000): 05C; 68R10 °c J.A. Bondy & U.S.R. Murty 2008 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or trans- mitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered name, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.
    [Show full text]
  • Flows in One-Crossing-Minor-Free Graphs Erin Wolf Chambers 1 David Eppstein 2
    Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 17, no. 3, pp. 201{220 (2013) DOI: 10.7155/jgaa.00290 Flows in One-Crossing-Minor-Free Graphs Erin Wolf Chambers 1 David Eppstein 2 1Dept. of Mathematics and Computer Science, Saint Louis University 2Computer Science Department, University of California, Irvine Abstract We study the maximum flow problem in directed H-minor-free graphs where H can be drawn in the plane with one crossing. If a structural decomposition of the graph as a clique-sum of planar graphs and graphs of constant complexity is given, we show that a maximum flow can be computed in O(n log n) time. In particular, maximum flows in directed K3;3-minor-free graphs and directed K5-minor-free graphs can be com- puted in O(n log n) time without additional assumptions. Submitted: Reviewed: Revised: Accepted: Final: August 2012 January 2013 February 2013 February 2013 February 2013 Published: March 2013 Article type: Communicated by: Regular paper S. Albers This material was presented in a preliminary form at ISAAC 2010. The work of David Eppstein was supported in part by NSF grants 0830403 and 1217322 and by the Office of Naval Research under grant N00014-08-1-1015. E-mail addresses: [email protected] (Erin Wolf Chambers) [email protected] (David Epp- stein) 202 Chambers and Eppstein Flows in One-Crossing-Minor-Free Graphs 1 Introduction Computing maximum flows is fundamental in algorithmic graph theory, and has many applications. Although flows can be computed in polynomial time for arbitrary graphs, it is of interest to find classes of graphs for which flows can be computed more quickly.
    [Show full text]
  • On the Purity of Minor-Closed Classes of Graphs
    On the purity of minor-closed classes of graphs Colin McDiarmid1 and Micha lPrzykucki2 1Department of Statistics, Oxford University∗ 2Mathematical Institute, Oxford University† August 31, 2016 Abstract Given a graph H with at least one edge, let gapH (n) denote the maximum difference between the numbers of edges in two n-vertex edge-maximal graphs with no minor H. We show that for exactly four connected graphs H (with at least two vertices), the class of graphs with no minor H is pure, that is, gapH (n) = 0 for all n > 1; and for each connected graph H (with at least two vertices) we have the dichotomy that either gapH (n) = O(1) or gapH (n) = Θ(n). Further, if H is 2-connected and does not yield a pure class, then there is a constant c > 0 such that gapH (n) ∼ cn. We also give some partial results when H is not connected or when there are two or more excluded minors. 1 Introduction We say that a graph G contains a graph H as a minor if we can obtain a graph isomorphic to H from a subgraph of G by using edge contractions (discarding any loops and multiple edges, we are interested in simple graphs). A class of graphs A is minor-closed if for each G 2 A, each minor G0 of G is also in A. We say that H is an excluded minor for A if H is not in A but each minor of H (other than H itself) is in A. Robertson and Seymour [16] showed that, for each minor-closed class A of graphs, the set H of excluded minors is finite.
    [Show full text]
  • (V, E ) Be a Graph and Let F Be a Function That Assigns to Each Vertex of F:V(G) → {1,2,.....K} Such That for V to a Set of Values from the Set {1,2
    BALANCED DOMINATION NUMBER OF SPECIAL GRAPHS 1S.CHRISTILDA and 2P.NAMASIVAYAM 1Department of Mathematics, Sadakathullah Appa College, Tirunelveli – 627011, Tamil Nadu, INDIA. E-mail: [email protected] 2PG and Research Department of Mathematics, The MDT Hindu College, Tirunelveli – 627010, Tamil Nadu, INDIA. ABSTRACT INTRODUCTION Let G= (V, E) be a graph. A Subset D of V is called a dominating Let G = (V, E ) be a graph and let f set of G if every vertex in V-D is be a function that assigns to each adjacent to atleast one vertex in D. The Domination number γ (G) of G is the vertex of V to a set of values from cardinality of the minimum dominating set of G. Let the set {1,2,.......k} that is, G = (V, E ) be a graph and let f be a function that assigns to each vertex of f:V(G) → {1,2,.....k} such that for V to a set of values from the set {1,2,.......k} that is, f:V(G) → each u,v ϵ V(G), f(u)≠f(v), if u is {1,2,.....k} such that for each u,v V(G), f(u) ≠ f(v), if u is adjacent to v in adjacent to v in G. Then the set D G. Then the dominating set D V (G) V (G) is called a balanced is called a balanced dominating set if In this dominating set if paper, we investigate the balanced domination number for some special graphs. Keywords: balanced, domination, The special graph balanced domination number Mathematics subject classification: 05C69 is the minimum cardinality of the balanced weak balanced dominating set dominating set.
    [Show full text]
  • On Triangles in Kr-Minor Free Graphs
    1 On triangles in Kr-minor free graphs Boris Albar a, Daniel Gonçalves b aI3M & LIRMM, CNRS and Univ. Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France bLIRMM, CNRS and Univ. Montpellier 2, 161 rue Ada, 34095 Montpellier Cedex 5, France Abstract We study graphs where each edge adjacent to a vertex of small degree (7 and 9, respectively) belongs to many triangles (4 and 5, respectively) and show that these graphs contain a complete graph (K6 and K7, respectively) as a minor. The second case settles a problem of Nevo (Nevo, 2007). Morevover if each edge of a graph belongs to 6 triangles then the graph contains a K8-minor or contains K2,2,2,2,2 as an induced subgraph. We then show applications of these structural properties to stress freeness and coloration of graphs. In particular, motivated by Hadwiger’s conjecture, we prove that every K7-minor free graph is 8-colorable and every K8- minor free graph is 10-colorable. 1 Introduction A minor of a graph G is a graph obtained from G by a succession of edge dele- arXiv:1304.5468v1 [math.CO] 19 Apr 2013 tions, edge contractions and vertex deletions. All graphs we consider are sim- ple, i.e. without loops or multiple edges. The following theorem of Mader [13] bounds the number of edges in a Kr-minor free graph. Theorem 1 (Mader, 1968, [13]) For 3 ≤ r ≤ 7, any Kr-minor free graph r−1 G on n ≥ r vertices has at most (r − 2)n − 2 edges.
    [Show full text]
  • Wagner and Petersen Are Uniformly Most-Reliable Graphs
    Publicaciones Matem´aticasdel Uruguay Volumen XX, Xxxx XXXX, P´aginasxxx{xxx S 0797-1443 WAGNER AND PETERSEN ARE UNIFORMLY MOST-RELIABLE GRAPHS PABLO ROMERO Abstract. If we are given n nodes and m links, what is the most reliable network topology? Partial answers are offered in the literature. Here, we show that Wagner and Petersen graphs are uniformly most-reliable graphs, and a conjecture on the existence of new such graphs is provided. 1. Motivation Extremal graph theory is inspirational for network design [9]. In the second book ever written in graph theory, Berge challenges the readers to find the graph with maximum connectivity among all graphs with a fixed number of nodes and links. Frank Harary provided not only a full answer, but also found connected graphs with minimum and maximum diameter [16]. Gustav Kirchhoff solved linear time- invariant resistive circuits, and as corollary he introduced the Matrix-Tree theorem, where he counts the number of spanning trees of a graph (i.e., the tree-number) using the determinant of a matrix [18]. This breakthrough in electrical systems launched the theory of trees, which provides the building blocks in communication design [16]. However, the corresponding extremal problem is not well understood: find the graph with a fixed number of nodes and links that maximizes the tree- number [24]. The previous problems are deterministic. In network reliability analysis, the goal is to determine the probability of correct operation of a system [15, 4]. In its most elementary setting, we are given a simple graph G with perfect nodes but random link failures with identical and independent probability ρ.
    [Show full text]