Prime Focus (11-19)

Total Page:16

File Type:pdf, Size:1020Kb

Prime Focus (11-19) Highlights of the November Sky - - - 1st - - - DUSK: Saturn, a waxing crescent Moon, and Jupiter form a 22° long arc. - - - 4th - - - First Quarter Moon 5:23 am EST - - - 9th 11th - - - DAWN: Mars, in Virgo, KAS passes within 2½° of Spica. - - - 11th - - - AM: Transit of Mercury General Meeting: Friday, November 1 @ 7:00 pm begins at 7:35 am EST. Kalamazoo Area Math & Science Center - See Page 12 for Details - - - 12th - - - Full Moon Special Event: Monday, November 11 @ 7:00 am 8:34 am EST Transit of Mercury - Richland Township Park - See Page 11 for Details - - - 16th - - - PM: A waning gibbous Moon is 6.5° right of Pollux Remote Session: Saturday, November 16 @ 7:00 pm in Gemini. WMU Rood Hall (Room 1110) - See Page 5 for Details th th - - - 16 17 - - - PM: Leonid meteor shower peaks, but a waning gibbous Training Session: Friday, November 22 @ 8:00 pm Moon will interfere. Remote Telescope - KAMSC - See Page 4 for Details - - - 19th - - - Last Quarter Moon 4:11 pm EST - - - 23rd 24th - - - Inside the Newsletter. DUSK: Venus and Jupiter are only 1° apart. October Meeng Minutes................. p. 2 - - - 25th - - - Board Meeng Minutes..................... p. 2 DAWN: Thinnest sliver of a waning crescent Moon is 5° NASA Night Sky Notes........................ p. 3 to the lower le of Mercury. Observaons...................................... p. 4 - - - 26th - - - Remote Telescope Training Session...p. 4 New Moon Remote Viewing Sessions.................. p. 5 10:06 am EST Membership of the KAS..................... p. 6 th - - - 28 - - - Astrophotography Night Highlights... p. 7 DUSK: A thin waxing crescent Moon is less than November Night Sky.......................... p. 10 2° to upper le of Venus. KAS Board & Announcements............ p. 11 - - - 29th - - - General Meeng Preview.................. p. 12 DUSK: The Moon is less than 2° to lower le of Saturn. The general meeting of the Kalamazoo Astronomical Society The KAS Board met on October 14, 2019 at Sunnyside was brought to order by President Richard Bell on Friday, Church. Board members present were Richard Bell, Joe October 4, 2019 at 7:05 pm EDT. Approximately 36 Comiskey, Rich Mather, Jack Price, Don Stilwell, and Roger members and guests were in attendance at the Kalamazoo Williams. KAS member Ellen Comiskey was also present. Area Math & Science Center (KAMSC). Richard called the meeting to order at 5:08 pm. Richard began with a brief President’s Report. Like last Don delivered the Treasurer’s report, prepared with the month, he asked members to share ideas for 2020 KAS recently clarified financial records. All of the balances were activities. One idea put forth was to hold sessions focused reported as of year-to-date since January 1st. Major on Astronomical League Observing Programs. Someone is expenditures during this period were mostly related to the needed to organize and lead this activity, so Richard Owl Observatory upgrade, totaling over $21,000. There encouraged members to step forward. The Remote Telescope were some questions related to how the financial records is back online after the summer hiatus, so users are welcome were allocated. What was desired was a breakdown into to reserve time. A second training session will be held on categories, which could be done by the software with the November 22nd (see page 4 for details). The inaugural season right kind of query. Don agreed to prepare a report showing of Remote Viewing Sessions will begin in November. A this information. He also processed requests for ceremony will precede the first session with a start time of reimbursement of expenses incurred by members, some of 7pm. We hope ALL KAS members plan to attend. Finally, which had been held up awaiting clarification of the Richard reviewed outreach activities for October. accounts. As far back as the 1970s, the October meeting has been In the summary of November events, Richard reported that devoted to the art of astrophotography. This was an the general meeting on November 1st would feature Professor especially good year for “Astrophotography Night,” since six Artemis Spyrou, from MSU, speaking on the topic of KAS members shared their latest images of the night sky. nucleosynthesis of the chemical elements. The subject is in Richard highlighted his total lunar eclipse image taken on keeping with the designation of 2019 as the International January 21st that went viral after being shared on Twitter by Year of the Periodic Table. A highlight of November will Elon Musk. Richard also presented the first color images also be the first Remote Viewing Session (Nov. 16th, 1110 taken with the KAS Remote Telescope. Rood Hall, 8pm), following a ceremony at 7pm to inaugurate the series. Another event is the transit of Mercury on the Josh Taylor-Lehman shared images during Astrophoto Night morning of November 11th, scheduled to be viewed at for the first time. Josh’s first-ever image was of Jupiter, Richland Township Park. taken with an iPhone 7 in 2016. Subsequent images showed the considerable progress he’s made in a relatively short Concerning follow-up items, Richard gave an update on the amount of time. Some of his more impressive images were Owl Observatory Upgrade Project. The available funds have of the Crab Nebula (M1), an 8-hour image of the Horsehead been spent, and some more money is needed to complete the Nebula, the Eagle Nebula (M16, his first narrowband image), project. Richard has been working on another fund-raising and the western portion of the Veil Nebula (NGC 6960). letter, to be completed soon. Information is being collected The father and son duo of Dave & Matt Garten shared on the best model of a numerical lock box for the KNC front images separately, but many were taken together in Dave’s gate. The lock box would contain gate and observatory keys, backyard observatory in Portage or at their property near making access considerably easier and encourage increased Walkerville in the Huron-Manistee National Forest (which observatory usage. they promise to invite us to next summer). Dave & Matt have become quite adept at narrowband imaging and many Plans for year 2020 outreach activities included Science of their images have been processed using the Hubble palette Night at Vicksburg Middle School on March 11th and color scheme. Roger Williams featured images of the planets Astronomy Night at North Shore Elementary in South Haven Jupiter and Saturn, as well as another impressive composite on March 5th. The Board also heard from Bloomingdale High of the Sun in H-alpha. All were taken from Roger’s new School senior Gustavo Silva (who had joined the meeting in observatory at their home in Friendship Village. Eric Schreur progress). Gustavo was looking for information about an traveled to Chile in July to capture images of the most recent astronomy-related project that could fulfill a community total solar eclipse. He took advantage of the opportunity and service graduation requirement. Some suggestions were photographed portions of the Milky Way only visible from made by board members, based on our experience with the Southern Hemisphere. public outreach activities. Gustavo was advised to consult the gallery section of the website for examples of outreach Members enjoyed the traditional snack of apple cider and activities we had done in the past, and he was invited to donuts during break. Thanks again to Jean DeMott for consult with Richard or other board members individually providing the goodies. The meeting concluded at ~9:10 pm. using contact information on the website. Prime Focus Page 2 November 2019 The proposed schedules for 2020 general meetings and NASA Night Sky Notes... Public Observing Sessions were examined briefly. The only rd meeting date in question was April 3 . Mike Sinclair gave The Messenger Crosses the Sun: the okay for that date, since it was the start of KPS spring Mercury Transit 2019 break. No other problems were noted. Additional 2020 proposed activities included February Freeze Out (KNC, by David Prosper Feb. 21st), Messier Marathon (Richland Township Park, March 21st), Halloween Full Moon Party (Oct. 31st, KNC), and the Great Conjunction of Jupiter and Saturn on Dec. 21st. Did you know that there are two other objects in our skies Richard was also looking at redoing his Introduction to that have phases like the Moon? They’re the inner planets, Amateur Astronomy lecture series. Attempts had been made found between Earth and the Sun: Mercury and Venus. You to contact the Oshtemo Branch Library with no success, so can see their phases if you observe them through a telescope. Portage Public Library still looked like the best bet so far. Like our Moon, you can’t see the planets in their “new” phase, unless they are lined up perfectly between us On the subject of New Business, Richard reported about a Earthlings and the Sun. In the case of the Moon, this contact with our KAS Online website host (GoDaddy), who alignment results in a solar eclipse; in the case of Mercury said that it was necessary to migrate to a different server. and Venus, this results in a transit, where the small disc of Since the capabilities were improved and the price a bit the planet travels across the face of the Sun. Skywatchers are in for a treat this month, as Mercury transits the Sun the lower (about $200), Richard had made the move. Regarding th the first Remote Viewing Session, a “dress rehearsal” was morning of November 11 ! planned for Friday, October 25th. Interested members were invited to attend to see how the sessions will be conducted You may have seen the transit of Venus in 2012; you may and perhaps offer input. Richard suggested the possibility of have even watched it through eclipse glasses! However, this another field trip to Abrams Planetarium on November 2nd or time you’ll need a solar telescope to see anything, since 9th.
Recommended publications
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop
    Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop 2 3 S Satoru Katsuda" Hiroshi Tsunemi , Koji Mori , Hiroyuki Uchida" Robert Petre , Shin'ya 1 Yamada , and Thru Tamagawa' ABSTRACT We report on a discovery of a diffuse nebula containing a pointlike source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the pointlike source are well represented by an absorbed power-law model with photon indices of 2.2±0.1 and 1.6±0.2, respectively. The photon indices as well as the flux ratio of F nebula/ F po;.,li" ~ 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5- 8 keY luminosity of the nebula is computed to be 2.1xlo"' (d/MOpc)2ergss-" where d is the distance to the Loop. This implies a spin-down loss-energy E ~ 2.6 X 1035 (d/MOpc)2ergss-'. The location of the neutron star candidate, ~2° away from the geometric center of the Loop, implies a high transverse velocity of ~ 1850(8/2D ) (d/540pc) (t/lOkyr)- ' kms-" assuming the currently accepted age of the Cygnus Loop. Subject headings: ISM: individual objects (Cygnus Loop) - ISM: supernova remnants - pulsars: general - stars: neutron - stars: winds, outflows - X-rays: ISM 'RlKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Sailama 351-0198 2Department of EaTth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Thyonaka, Osaka, 60-0043, Japan SDepartment of Applied Physics, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Klbana-dai Nishi, Miyazaki, 889-2192, Japan ' Department of PhysiCS, Kyoto University, Kitashirakawa-oiwake-clto, Sakyo, Kyoto 606-8502, J apan 'NASA Goddard Space Flight Center, Code 662, Greenbelt MD 20771 - 2 - 1.
    [Show full text]
  • XMM-Newton Observation of the Northeastern Limb of the Cygnus Loop Supernova Remnant
    XMM-Newton Observation of the Northeastern Limb of the Cygnus Loop Supernova Remnant Norbert Nemes Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan 04 February 2005 Osaka University Abstract We have observed the northeastern limb of the Cygnus Loop supernova remnant with the XMM-Newton observatory, as part of a 7-pointing campaign to map the remnant across its diameter. We performed medium sensitivity spatially resolved X-ray spectroscopy on the data in the 0.3-3.0 keV energy range, and for the first time we have detected C emission lines in our spectra. The background subtracted spectra were fitted with a single temperature absorbed non-equilibrium (VNEI) model. We created color maps and plotted the radial variation of the different parameters. We found that the heavy element abundances were depleted, but increase toward the edge of the remnant, exhibiting a jump structure near the northeastern edge of the field of view. The depletion suggests that the plasma in this region represents the shock heated ISM rather than the ejecta, while the radial increase of the elemental abundances seems to support the cavity explosion origin. The temperature decreases in the radial direction from 0:3keV to about 0:2keV , however, this ∼ ∼ decrease is not monotonic. There is a low temperature region in the part of the field of view closest to the center of the remnant, which is characterized by low abundances and high NH values. Another low temperature region characterized by low NH values but where the heavy element abundances suddenly jump to high values was found at the northeastern edge of the field of view.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Pos(MULTIF15)020 Al
    Suzaku Highlights of Supernova Remnants PoS(MULTIF15)020 Satoru Katsuda∗† Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210, Japan E-mail: [email protected] Hiroshi Tsunemi Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan E-mail: [email protected] Suzaku was the Japanese 5th X-ray astronomy satellite operated from 2005 July 10 to 2015 Au- gust 26. Its key features are high-sensitivity wide-band X-ray spectroscopy available with both the X-ray imaging CCD cameras and the non-imaging collimated hard X-ray detector. A number of interesting scientific discoveries have been achieved in various fields. Among them, I will focus on results on supernova remnants. The topics in this paper include (1) revealing distributions of supernova ejecta, (2) establishing over-ionized plasmas by discoveries of radiative-recombination continua, (3) constraining progenitors of Type Ia SNRs from Mn/Cr and Ni/Fe line ratios, and (4) searching for X-ray counterparts from unidentified HESS sources. These results are of high sci- entific importance in physics of supernova explosions, non-equilibrium plasmas, and cosmic-ray acceleration. XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop, 25-30 May 2015 Palermo, Italy ∗Speaker. †A footnote may follow. © c CopyrightCopyright owned owned by the author(s) under the terms of the Creative Creative Commons License Attribution-NonCommercial 4.0 International. http://pos.sissa.it/ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • Hubble Revisits the Veil Nebula 2 April 2021
    Image: Hubble revisits the Veil Nebula 2 April 2021 this stellar violence, the shockwaves and debris from the supernova sculpted the Veil Nebula's delicate tracery of ionized gas—creating a scene of surprising astronomical beauty. The Veil Nebula is also featured in Hubble's Caldwell Catalog, a collection of astronomical objects that have been imaged by Hubble and are visible to amateur astronomers in the night sky. Provided by NASA Credit: ESA/Hubble & NASA, Z. Levay This image taken by the NASA/ESA Hubble Space Telescope revisits the Veil Nebula, which was featured in a previous Hubble image release. In this image, new processing techniques have been applied, bringing out fine details of the nebula's delicate threads and filaments of ionized gas. To create this colorful image, observations were taken by Hubble's Wide Field Camera 3 instrument using five different filters. The new post-processing methods have further enhanced details of emissions from doubly ionized oxygen (seen here in blues), ionized hydrogen, and ionized nitrogen (seen here in reds). The Veil Nebula lies around 2,100 light-years from Earth in the constellation of Cygnus (the Swan), making it a relatively close neighbor in astronomical terms. Only a small portion of the nebula was captured in this image. The Veil Nebula is the visible portion of the nearby Cygnus Loop, a supernova remnant formed roughly 10,000 years ago by the death of a massive star. That star—which was 20 times the mass of the Sun—lived fast and died young, ending its life in a cataclysmic release of energy.
    [Show full text]
  • Monthly Observer's Challenge
    MONTHLY OBSERVER'S CHALLENGE Compiled by: Roger Ivester, North Carolina & Sue French, New York September 2020 Report #140 The Veil Nebula in Cygnus Sharing Observations and Bringing Amateur Astronomers Together Introduction The purpose of the Observer's Challenge is to encourage the pursuit of visual observing. It's open to everyone who's interested, and if you're able to contribute notes, and/or drawings, we’ll be happy to include them in our monthly summary. Visual astronomy depends on what's seen through the eyepiece. Not only does it satisfy an innate curiosity, but it allows the visual observer to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what astronomers saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings, and that's the tradition we're stressing in the Observer's Challenge. And for folks with an interest in astrophotography, your digital images and notes are just as welcome. The hope is that you'll read through these reports and become inspired to take more time at the eyepiece, study each object, and look for those subtle details that you might never have noticed before. This month's target The Veil Nebula has long been modeled as the remnant of a supernova explosion that occurred within an interstellar cavity created by the progenitor star. However, a recent study by Fesen, Weil, and Cisneros (2018MNRAS.481.1786F ) using multi-wavelength emission maps indicates that the large-scale structure of the Veil Nebula is due to interaction of the remnant with local interstellar clouds.
    [Show full text]
  • Transactions 1905
    THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. The Royal Astronomical Society of Canada. THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. TABLE OF CONTENTS. The Dominion Observatory, Ottawa (Frontispiece) List of Officers, Fellows and A ssociates..................... - - 3 Treasurer’s R eport.....................--------- 12 President’s Address and Summary of Work ------ 13 List of Papers and Lectures, 1905 - - - - ..................... 26 The Dominion Observatory at Ottawa - - W. F. King 27 Solar Spots and Magnetic Storms for 1904 Arthur Harvey 35 Stellar Legends of American Indians - - J. C. Hamilton 47 Personal Profit from Astronomical Study - R. Atkinson 51 The Eclipse Expedition to Labrador, August, 1905 A. T. DeLury 57 Gravity Determinations in Labrador - - Louis B. Stewart 70 Magnetic and Meteorological Observations at North-West River, Labrador - - - - R. F. Stupart 97 Plates and Filters for Monochromatic and Three-Color Photography of the Corona J. S. Plaskett 89 Photographing the Sun and Moon with a 5-inch Refracting Telescope . .......................... D. B. Marsh 108 The Astronomy of Tennyson - - - - John A. Paterson 112 Achievements of Nineteenth Century Astronomy , L. H. Graham 125 A Lunar Tide on Lake Huron - - - - W. J. Loudon 131 Contributions...............................................J. Miller Barr I. New Variable Stars - - - - - - - - - - - 141 II. The Variable Star ξ Bootis -------- 143 III. The Colors of Helium Stars - - - ..................... 144 IV. A New Problem in Solar Physics ------ 146 Stellar Classification ------ W. Balfour Musson 151 On the Possibility of Fife in Other Worlds A.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Astronomy Targets: September 2018 Unless Stated Otherwise, All Times Are for Mid-Month, for Birmingham UK and Are GMT+1
    Astronomy targets: September 2018 Unless stated otherwise, all times are for mid-month, for Birmingham UK and are GMT+1. Rise & set times are for 20 degrees above horizon. Dark & light times are nautical twilight times (Sun 12 degrees below horizon) and astronomical darkness (Sun 18 degrees below horizon). © Andrew Butler, 2018. Sun and Moon data sourced from US Naval Observatory. Sun times Monday date Sunset Naut Astro Astro Naut Sunrise Moon Moon % Dark Dark Light Light 03/09/18 1951 2110 2158 0416 0504 0623 2353 → 40% 10/09/18 1935 2052 2137 0433 0518 0635 2% 17/09/18 1918 2033 2117 0448 0531 0647 ← 2346 60% 24/09/18 1902 2016 2057 0502 0544 0658 1916 → 100% Calendar 9 Sep New Moon 24 Sep Full Moon Planets Cygnus Sunset-0300, best 2210 Mars (low at Sunset) Emmission nebulae: Jupiter (low at Sunset) NGC6888 Crescent Nebula Saturn (low at Sunset) NGC6960 Veil Nebula Uranus (2230-Sunrise) IC5070 Pelican Nebula Neptune (2130-0330) IC7000 (C20) North American Nebula Planetary nebulae: Ursa Major Sunset-0150 IC5146 (C19) Cocoon Nebula Planetary nebula: M97 Owl Nebula NGC6826 Blinking Nebula Galaxies: NGC7008 Fetus Nebula M81 Bode’s Galaxy & M82 Cigar Galaxy Open clusters: M101 Pinwheel Galaxy M29 M108 M39 M109 NGC6871 Multiple star: Mizar & Alcor ζ-UMa (zeta-UMa) 3 white NGC6883 NGC6910 Rocking Horse Cluster Canes Venatici Sunset-2130 Galaxy: NGC6946 (C12) Fireworks Galaxy Globular cluster: M3 Multiple stars: Galaxies: Albireo β-Cyg (beta-Cyg) gold & blue M51 Whirlpool Galaxy 61-Cyg orange & red M63 Sunflower Galaxy M94 Delphinus Sunset-0240,
    [Show full text]
  • Hardy 1 Williamina Fleming
    Hardy 1 Williamina Fleming: Breaking Barriers with A Universe of Glass Isabella L. Hardy Junior Division Individual Performance paper 500 words In the past, women in the sciences were often overlooked, so for National History Day, I chose to focus on an under-recognized female scientist. Early in my research, I found Williamina Paton Fleming. I was surprised I had never encountered her although I had heard of her colleagues, Annie Jump Cannon and Henrietta Leavitt. I have always loved studying the stars and am fascinated by the role of women in astronomy whose important contributions are sometimes forgotten. Williamina Fleming’s unique ability to interpret astronomical photographs changed astronomy in nineteenth- century America and beyond, breaking barriers for scientists and for women. In preliminary research, I located Harvard’s digital scans of Fleming's diary and excellent period photographs, as well as many academic articles about her and other women at the Harvard Observatory. I was also privileged to interview Dr. Lindsay Smith, current Curator of Astronomical Photographs at Harvard. She was extremely helpful in suggesting sources and later reviewed the performance script. Not much is known about Fleming’s early years in Scotland. After her husband abandoned her, she worked for Harvard Observatory Director Edward Pickering, who hired her for the new project to map the night sky. The process involved taking images though telescopes, then mapping all the stars in that small section of sky. Using this process, Fleming discovered stars, novae, and nebulae and encouraged the work of other astronomers, while facilitating many important discoveries. I chose performance to give a voice to a person who has been largely unnoticed.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]