Spectroscopy: History 1885-1927
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transactions 1905
THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. The Royal Astronomical Society of Canada. THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. TABLE OF CONTENTS. The Dominion Observatory, Ottawa (Frontispiece) List of Officers, Fellows and A ssociates..................... - - 3 Treasurer’s R eport.....................--------- 12 President’s Address and Summary of Work ------ 13 List of Papers and Lectures, 1905 - - - - ..................... 26 The Dominion Observatory at Ottawa - - W. F. King 27 Solar Spots and Magnetic Storms for 1904 Arthur Harvey 35 Stellar Legends of American Indians - - J. C. Hamilton 47 Personal Profit from Astronomical Study - R. Atkinson 51 The Eclipse Expedition to Labrador, August, 1905 A. T. DeLury 57 Gravity Determinations in Labrador - - Louis B. Stewart 70 Magnetic and Meteorological Observations at North-West River, Labrador - - - - R. F. Stupart 97 Plates and Filters for Monochromatic and Three-Color Photography of the Corona J. S. Plaskett 89 Photographing the Sun and Moon with a 5-inch Refracting Telescope . .......................... D. B. Marsh 108 The Astronomy of Tennyson - - - - John A. Paterson 112 Achievements of Nineteenth Century Astronomy , L. H. Graham 125 A Lunar Tide on Lake Huron - - - - W. J. Loudon 131 Contributions...............................................J. Miller Barr I. New Variable Stars - - - - - - - - - - - 141 II. The Variable Star ξ Bootis -------- 143 III. The Colors of Helium Stars - - - ..................... 144 IV. A New Problem in Solar Physics ------ 146 Stellar Classification ------ W. Balfour Musson 151 On the Possibility of Fife in Other Worlds A. -
Maria Mitchell's Legacy to Vassar College: Then And
Library and Information Services in Astronomy IV July 2-5, 2002, Prague, Czech Republic B. Corbin, E. Bryson, and M. Wolf (eds) Maria Mitchell's Legacy to Vassar College: Then and Now Flora Grabowska Vassar College Libraries, Poughkeepsie, NY 12604, USA fl[email protected] Abstract. Maria Mitchell became Vassar's first Astronomy Professor and Observatory Director in 1865. Her teaching emphasis on students learning by direct observation and analysis is continued today at Vassar College. Several of her students went on to prominence in astronomy, two of them succeeding her at Vassar. Astronomy majors today, both male and female, consistently achieve success after Vassar, in astronomy as well as in other fields. She encouraged her students to present their findings at scientific meetings and in scientific journals, also encouraged today as undergraduates co-author research papers with faculty members. She insisted on excellent facilities and built up the library collection, maintained today to a standard remarkable for a college of just under 2,500 undergraduate students. 1. Great Beginnings Matthew Vassar was keen to have female teachers at Vassar College (Haight 1916). Maria Mitchell had achieved world fame with her 1847 telescopic discov- ery of a comet and was an excellent choice, becoming Vassar's first astronomy professor in 1865. In a eulogy at her funeral in 1889, Vassar College President Taylor concluded, \She has been an impressive figure in our time, and one whose influence lives." (Taylor 1889) Henry Albers, Vassar's fifth Observatory director (the first male!), referring to our fine facilities today, wrote, \In keeping with the legacy of Maria Mitchell, these facilities enable today's students to learn and apply the most modern astronomical techniques." (Albers 2001, 329) This presentation aims to confirm that the legacy has been self-perpetuating and lives on. -
Antonia Maury, Clasificadora De Estrellas (1866-1952, Estados Unidos)
Antonia Maury, clasificadora de estrellas (1866-1952, Estados Unidos) Antonia Maury fue una astrónoma importante de finales del siglo XIX. Fue una de las primeras mujeres en publicar un trabajo sobre estrellas con su propio nombre. Sus estudios sirvieron para crear el diagrama HR, el diagrama más importante de la astrofísica estelar. Nació en 1866 en Cold Spring, Nueva York, dentro de una familia acomodada de origen portugués. Su abuelo y su tío materno eran dos astrónomos muy reputados: John William Draper y Henry Draper. Así, Maury y sus hermanos crecieron muy familiarizados con la ciencia desde pequeños. Antonia aspiró a ser astrónoma, y se graduó del Vassar College con una matrícula de honor en astronomía, física y filosofía en 1887. Su mentora fue otra astrónoma importante de la época: Maria Mitchell. En 1887 comenzó a trabajar en el Observatorio de Harvard, y entró a formar parte del grupo de mujeres computadoras de Harvard, un grupo de astrónomas encargadas de la clasificación de las estrellas bajo la dirección de Edward Pickering. Allí se encontró con otros astrónomas importantes de la época: Henrietta Swan Leavitt, Annie Jump Cannon y Williamina Fleming. Maury comenzó determinando el periodo orbital de varias estrellas binarias que giran la una alrededor de la otra, y luego se puso a clasificar estrellas según su espectro. Ahora bien, muy pronto comenzó a tener discrepancias con Pickering, tanto por el sistema de trabajo como el de clasificación estelar. Debido a estas discrepancias con el director, en 1896 dejó el observatorio y fue a trabajar a la escuela Miss Masson de Nueva York dando clases de astronomía y también se encargó de la gestión del Draper Park Museum. -
Hardy 1 Williamina Fleming
Hardy 1 Williamina Fleming: Breaking Barriers with A Universe of Glass Isabella L. Hardy Junior Division Individual Performance paper 500 words In the past, women in the sciences were often overlooked, so for National History Day, I chose to focus on an under-recognized female scientist. Early in my research, I found Williamina Paton Fleming. I was surprised I had never encountered her although I had heard of her colleagues, Annie Jump Cannon and Henrietta Leavitt. I have always loved studying the stars and am fascinated by the role of women in astronomy whose important contributions are sometimes forgotten. Williamina Fleming’s unique ability to interpret astronomical photographs changed astronomy in nineteenth- century America and beyond, breaking barriers for scientists and for women. In preliminary research, I located Harvard’s digital scans of Fleming's diary and excellent period photographs, as well as many academic articles about her and other women at the Harvard Observatory. I was also privileged to interview Dr. Lindsay Smith, current Curator of Astronomical Photographs at Harvard. She was extremely helpful in suggesting sources and later reviewed the performance script. Not much is known about Fleming’s early years in Scotland. After her husband abandoned her, she worked for Harvard Observatory Director Edward Pickering, who hired her for the new project to map the night sky. The process involved taking images though telescopes, then mapping all the stars in that small section of sky. Using this process, Fleming discovered stars, novae, and nebulae and encouraged the work of other astronomers, while facilitating many important discoveries. I chose performance to give a voice to a person who has been largely unnoticed. -
Women in Astronomy: an Introductory Resource Guide
Women in Astronomy: An Introductory Resource Guide by Andrew Fraknoi (Fromm Institute, University of San Francisco) [April 2019] © copyright 2019 by Andrew Fraknoi. All rights reserved. For permission to use, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This guide to non-technical English-language materials is not meant to be a comprehensive or scholarly introduction to the complex topic of the role of women in astronomy. It is simply a resource for educators and students who wish to begin exploring the challenges and triumphs of women of the past and present. It’s also an opportunity to get to know the lives and work of some of the key women who have overcome prejudice and exclusion to make significant contributions to our field. We only include a representative selection of living women astronomers about whom non-technical material at the level of beginning astronomy students is easily available. Lack of inclusion in this introductory list is not meant to suggest any less importance. We also don’t include Wikipedia articles, although those are sometimes a good place for students to begin. Suggestions for additional non-technical listings are most welcome. Vera Rubin Annie Cannon & Henrietta Leavitt Maria Mitchell Cecilia Payne ______________________________________________________________________________ Table of Contents: 1. Written Resources on the History of Women in Astronomy 2. Written Resources on Issues Women Face 3. Web Resources on the History of Women in Astronomy 4. Web Resources on Issues Women Face 5. Material on Some Specific Women Astronomers of the Past: Annie Cannon Margaret Huggins Nancy Roman Agnes Clerke Henrietta Leavitt Vera Rubin Williamina Fleming Antonia Maury Charlotte Moore Sitterly Caroline Herschel Maria Mitchell Mary Somerville Dorrit Hoffleit Cecilia Payne-Gaposchkin Beatrice Tinsley Helen Sawyer Hogg Dorothea Klumpke Roberts 6. -
Women of Astronomy
WOMEN OF ASTRONOMY AND A TIMELINE OF EVENTS… Time line of Astronomy • 2350 B.C. – EnHeduanna (ornament of heaven) – • Chief Astronomer Priestess of the Moon Goddess of the City in Babylonia. • Movement of the Stars were used to create Calendars • 2000 B.C. - According to legend, two Chinese astronomers are executed for not predicting an eclipse. • 129 B.C. - Hipparchos completes the first catalog of the stars, and invented stellar magnitude (still in use today!) • 150 A.D. - Claudius Ptolemy publishes his theory of the Earth- centered universe. • 350 A.D – Hypatia of Alexandria – First woman Astronomer • Hypatia of Alexandria Born approximately in 350 A.D. • Accomplished mathematician, inventor, & philosopher of Plato and Aristotle • Designed astronomical instruments, such as the astrolabe and the planesphere. The first star chart to have the name An early astrolabe was invented in "planisphere" was made in 1624 by 150 BC and is often attributed to Jacob Bartsch. Son of Johannes Hipparchus Kepler, who solved planetary motion. Time line of Astronomy • 970 - al-Sufi, a Persian Astronomer prepares catalog of over 1,000 stars. • 1420 Ulugh-Beg, prince of Turkestan, builds a great observatory and prepares tables of planet and stars • 1543 While on his deathbed, Copernicus publishes his theory that planets orbit around the sun. • 1609 Galileo discovers craters on Earth’s moon, the moons of Jupiter, the turning of the sun, and the presence of innumerable stars in the Milky Way with a telescope that he built. • 1666 Isaac Newton begins his work on the theory of universal gravitation. • 1671 Newton demonstrates his invention, the reflecting telescope. -
Measure by Measure They Touched the Heaven
2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage Florence, Italy, December 4-6, 2019 Measure by Measure they touched the heaven Luisa Spairani – Gruppo Astrofili Eporediesi – C.so Vercelli 444 10015 Ivrea – [email protected] Abstract – The measure of distances is a recurring theme in astrophysics. The interpretation of the light Distances in astrophysics are notoriously difficult to coming from a luminous object in the sky can be very calculate. It is possible to use geometric methods to different depending on the distance of the object. Two determine the objects that are in the proximity of the solar stars or galaxies may have a different real brightness, system, we say within a distance of about 150 light-years although they may look similar. The correct measures from us. Beyond it is impossible to use any simple came by women computers a century ago. Special method to calculate distances. And this was the situation mention to Williamina Fleming who supervised an in astronomical research at the beginning of the last observatory for 30 years working on the first system to century. Many new objects had been discovered, but classify stars by spectrum. Antonia Maury helped locate without knowing their distances, it was impossible to put the first double star and developed her classification them in any stellar systems model. At that time, before system. Henrietta Leavitt found a law to determine 1900, it was not known that we live in a galaxy called the stellar distances. The most famous of the Harvard Milky Way, and there are other galaxies. -
Women in Astronomy at Harvard College Observatory
Discussion Question Answers Strategies and Compromises: Women in Astronomy at Harvard College Observatory 1. What were the differences between the roles of the four women mentioned in the article? - Williamina Fleming started out simply copying and computing, but worked her way up to supervising the other women and classifying solar spectra. - Antonia Maury also classified stellar spectra, but she did so with an advanced system of her own design. The director of the observatory, Pickering, did not like her system and so she left the observatory. - Annie Jump Cannon continued the spectra work of Maury, but used the standard system. She worked for 45 years doing classification work extremely quickly and consistently. - Henrietta Leavitt studied variable stars at first, identifying thousands of new ones. She also did the research assigned to her, which related to determining how stars appeared using different photographic techniques. 2. What are the differences between their attitudes towards the roles they were assigned? - Fleming accepted any work that was asked of her, but expanded the role of women’s work by her competence in accomplishing the tasks. She was privately bitter about the low pay and status of her work. - Maury thought that her intellectual contributions were worthy of credit and regard. She insisted on being recognized in the Observatory’s publications, and she fought for her system, which was based on star’s “natural relations” to be used. However, she did not succeed in getting the system used and so left the observatory. - Cannon did not mind the role she was assigned. She did it so quickly and well she eventually gained recognition and an honorary doctorate for he accomplishments. -
Knowledge Gain in the Age of Hpc and Big Data
KNOWLEDGE GAIN IN THE AGE OF HPC AND BIG DATA SUSANNEPFALZNER SECOND BIG DATA CHALLENGE Efficiency around 1% • Extremely high efficiency most of the photons lost! at redder wavebands -- almost 100%! • Limiting magnitudes increased by four to five magnitudes! Output is digital 2 DATAWORKFLOWS Combining different wavelength Final image Data e.g. Machine reduction Combining learning single Original telescopes Astrophysical data Object 3 DATA FLOOD Second data release of Gaia 0.9 billion individual CCD observations per day •celestial positions 1.3 billion sources •stellar effective temperature, extinction, reddening, and radius and luminosity for 161 million sources Each of these needs multiple data processing AIM: high-value knowledge out of data is 4 OBSERVER Photographer Data Scientist Theoretician ? 5 ASTROPHYSICAL SIMULATIONS Observations provide only snapshots at a certain moment in time Theory (simulation) must create time sequence Several theories – Which is the right one? Predictions from theory tested by observations 6 ASTROPHYSICAL SIMULATIONS Challenges • steep spatial gradients, complex geometries, etc. (1 AU – 20 000 000 AU) But also, • often very different time scales years – several million years (Myr) • No direct comparison with experiment 7 SIM AND DATA LAB ASTRO OBSERVATIONS VS. SIMULATIONS Comparison between TWO SIMULATIONS observational data theoretical models „It looks the same“, is not enough! 9 FIRST BIG DATA CHALLENGE Photographic plates Direct image First objective, permanent record of astronomical phenomena 10 FIRST COMPUTERS ...the amount of astronomical data was surpassing the capacity of the Observatories to process it Pickering and his Computers standing in front of Building C at the Harvard College Observatory, 13 May 1913 11 BEYOND PROCESSING DATA .. -
The Canadian Astronomical Handbook for 1908
T h e Ca n a d i a n A stronomical H a n d b o o k FOR 1908 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA E d i t e d b y C. A. CHANT SECOND YEAR OF PUBLICATION TORONTO 198 C o l l e g e S t r e e t P r i n t e d f o r t h e S o c i e t y 1907 T h e Ca n a d i a n A stronomical H a n d b o o k FOR 1908 T h e Ca n a d ia n A stronomical H a n d b o o k FOR 1908 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA E d i t e d b y C. A. CHANT SECOND YEAR OF PUBLICATION TORONTO 198 C o l l e g e S t r e e t P r i n t e d f o r t h e S o c i e t y 1907 CONTENTS Page Preface.......................................................................... 5 Symbols and Abbreviations ....................................... 7 Chronological Eras and Cycles.................................... 8 Fixed and Movable Festivals, Etc.............................. 8 Standard Time..................................................... 9 Calendar for the Year . 9 to 33 Geographical Positions of Points in Canada............. 34 Magnetic Elements for Toronto, 1901-1906............... 36 The Solar System : Eclipses of Sun and Moon................................... 37 Principal Elements of the Solar System............ 39 Satellites of the Solar System............................. 40 The Planets in 1908, with Maps......................... 41 Meridian Passage of Five Planets.............................. -
Benefits of Diversity
commentary Benefits of diversity Abraham Loeb Discoveries in astronomy — or, in fact, any branch of science — can only happen when people are open-minded and willing to take risks. ccording to Mark Twain, “It ain’t used it to discover the expansion of the weak, as most of the X-ray sources would what you don’t know that gets you Universe. It was surpassed in 1948 by the be flaring stars. The launch of an X-ray Ainto trouble. It’s what you know for 200 inch telescope at the Mount Palomar telescope by NASA was therefore delayed sure that just ain’t so.” This illustrates a very Observatory in California, which played a by half a decade, after which astronomers common flaw astronomers have, which is to key role in the discovery of radio galaxies discovered X-ray emission from numerous believe that they know the truth even when and quasars and in studies of the other sources, such as accreting black holes data are scarce. This fault is the trademark intergalactic medium2. Clearly, bigger and neutron stars, supernova remnants and of a data-starved science. It occasionally telescopes continued to benefit astronomy galaxy clusters. leads to major blunders by the scientific as technology improved. community causing the wrong strategic Dark matter. In the early 1970s decisions, and bringing about unnecessary Composition of the Sun. While Jerry Ostriker gave a talk at the California delays in finding the truth. Let me illustrate working on her PhD thesis in 1925, Institute of Technology describing the this phenomenon with ten examples, in Cecilia Payne-Gaposchkin (who became case — developed by him in collaboration chronological order. -
Chapter 9: the Life of a Star
Chapter 9: The Life of a Star Introduction Massive stars explode when they die, releasing as much light as an entire galaxy of stars. Such an explosion is called a supernova. It can catapult a star from obscurity to spectacular prominence in the night sky. A supernova that occurred in the year 1006 (SN 1006) shone so brightly that objects could be seen by its light for weeks. A Muslim astrologer, Ali ibn Ridwan of Cairo, recorded the event. So did a monk named Hepidannus, of St. Gall, Switzerland. The records of these two men locate SN 1006 in the direction of the constellation Lupus in the Southern Hemisphere. Japanese and Chinese sources more precisely locate the supernova near kappa Lupi and one degree west of beta Lupi. It was the The Crab Nebula and Pulsar Composite Image (Chandra, Hubble, Spitzer) brightest star observed in all of recorded history. It was probably visible for three months during daylight, and only after three years did it fade below naked-eye visibility at night. The remnant left behind from the explosion has a low luminosity and large size, and is the faintest remnant of the five well-established historical supernovae seen during the last one thousand years. The remnant emits in the radio and X-ray bands and is thought to be 2300 light-years away. On July 4, 1054, Chinese and Japanese astronomers recorded a bright star in the constellation Taurus which had not been visible before. At maximum brightness it was comparable to Jupiter, and remained visible to the unaided eye for 653 days in the night sky.