Measure by Measure They Touched the Heaven
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hidden History of Women in Astronomy
The Hidden History of Women in Astronomy Michael McEllin 1 Introduction What is the Sun made of? One hundred years ago our physical samples consisted of the Earth itself and a few meteorites, mostly rocky, with a few metallic and some rare `carbonaceous' examples containing volatiles. Fur- thermore, spectral lines in the Sun's light showed that many of the chemical elements discovered on the Earth were indeed also present on the Sun. Why would you believe that its composition was radically different to the Earth's, especially when the prevailing theories of Solar System origin had them be- ing formed from the same primeval stuff? There was even a just about tenable theory that the steady accretion of meteorites onto the Solar surface might release enough gravitational energy to keep it hot. What alternative was there? Sir Arthur Eddington had indeed speculated that Einstein's E = MC2 hinted at the possibility of extraordinary energy sources that might power the sun but we were still a decade away from understanding nuclear fusion reactions: Eddington's speculation may have been inspired but it was still vague speculation. Spectral lines were, in fact, still something of a mystery. We did not know why some spectral lines were so much more prominent than others or why some expected lines failed to appear at all. Until Bohr's model of the atom in 1913 we had no understanding at all of the origin of spectral lines, and there were clearly many missing bits of the puzzle. If you do not fully understand why lines look the way they do line how can you be certain you understand the conditions in which they form and relatively abundances of the contributing chemical elements? Atomic spectra began to be really understood only after 1925, when the new `Quantum Mechanics', in the form of Schr¨odinger'sequation, Heisen- berg's Matrix Mechanics and Dirac's relativistic theory of the electron re- placed the `Old Quantum Theory'. -
Maria Mitchell's Legacy to Vassar College: Then And
Library and Information Services in Astronomy IV July 2-5, 2002, Prague, Czech Republic B. Corbin, E. Bryson, and M. Wolf (eds) Maria Mitchell's Legacy to Vassar College: Then and Now Flora Grabowska Vassar College Libraries, Poughkeepsie, NY 12604, USA fl[email protected] Abstract. Maria Mitchell became Vassar's first Astronomy Professor and Observatory Director in 1865. Her teaching emphasis on students learning by direct observation and analysis is continued today at Vassar College. Several of her students went on to prominence in astronomy, two of them succeeding her at Vassar. Astronomy majors today, both male and female, consistently achieve success after Vassar, in astronomy as well as in other fields. She encouraged her students to present their findings at scientific meetings and in scientific journals, also encouraged today as undergraduates co-author research papers with faculty members. She insisted on excellent facilities and built up the library collection, maintained today to a standard remarkable for a college of just under 2,500 undergraduate students. 1. Great Beginnings Matthew Vassar was keen to have female teachers at Vassar College (Haight 1916). Maria Mitchell had achieved world fame with her 1847 telescopic discov- ery of a comet and was an excellent choice, becoming Vassar's first astronomy professor in 1865. In a eulogy at her funeral in 1889, Vassar College President Taylor concluded, \She has been an impressive figure in our time, and one whose influence lives." (Taylor 1889) Henry Albers, Vassar's fifth Observatory director (the first male!), referring to our fine facilities today, wrote, \In keeping with the legacy of Maria Mitchell, these facilities enable today's students to learn and apply the most modern astronomical techniques." (Albers 2001, 329) This presentation aims to confirm that the legacy has been self-perpetuating and lives on. -
Women Who Read the Stars Sue Nelson Delights in Dava Sobel’S Account of a Rare Band of Human Computers
Some of the Harvard Observatory ‘computers’ in 1925. Annie Jump Cannon is seated fifth from left; Cecilia Payne is at the drafting table. HISTORY Women who read the stars Sue Nelson delights in Dava Sobel’s account of a rare band of human computers. here are half a million photographic magnitude, on the as computers at Harvard, a practice unique plates in the Harvard College Observa- photographic plates to the university. Within five years, the num- tory collection, all unique. They date to and computing its ber of paid female computers, from a range Tthe mid-1880s, and each can display the light location in the sky. of backgrounds, had risen to 14. Their efforts from 50,000 stars. These fragments of the Pickering was espe- would be boosted by philanthropist Cath- cosmos furthered our understanding of the cially interested in erine Wolfe Bruce, who in 1889 donated Universe. They also reflect the dedication and variable stars, whose US$50,000 to the observatory, convinced intelligence of extraordinary women whose light would brighten that the introduction of photography and stories are more than astronomical history: and fade over a spe- spectroscopy would advance the field. ARCHIVES UNIV. HARVARD COURTESY they reveal lives of ambition, aspiration and cific period. These The Glass The Glass Universe concentrates on a few of brilliance. It takes a talented writer to inter- fluctuations, captured Universe: How the Harvard computers. Williamina Fleming, weave professional achievement with per- on the plates, required the Ladies of a Scottish school teacher, arrived at the obser- sonal insight. By the time I finished The Glass constant observation, the Harvard vatory in 1879, pregnant and abandoned by Universe, Dava Sobel’s wonderful, meticulous but he couldn’t afford Observatory Took her husband. -
Antonia Maury, Clasificadora De Estrellas (1866-1952, Estados Unidos)
Antonia Maury, clasificadora de estrellas (1866-1952, Estados Unidos) Antonia Maury fue una astrónoma importante de finales del siglo XIX. Fue una de las primeras mujeres en publicar un trabajo sobre estrellas con su propio nombre. Sus estudios sirvieron para crear el diagrama HR, el diagrama más importante de la astrofísica estelar. Nació en 1866 en Cold Spring, Nueva York, dentro de una familia acomodada de origen portugués. Su abuelo y su tío materno eran dos astrónomos muy reputados: John William Draper y Henry Draper. Así, Maury y sus hermanos crecieron muy familiarizados con la ciencia desde pequeños. Antonia aspiró a ser astrónoma, y se graduó del Vassar College con una matrícula de honor en astronomía, física y filosofía en 1887. Su mentora fue otra astrónoma importante de la época: Maria Mitchell. En 1887 comenzó a trabajar en el Observatorio de Harvard, y entró a formar parte del grupo de mujeres computadoras de Harvard, un grupo de astrónomas encargadas de la clasificación de las estrellas bajo la dirección de Edward Pickering. Allí se encontró con otros astrónomas importantes de la época: Henrietta Swan Leavitt, Annie Jump Cannon y Williamina Fleming. Maury comenzó determinando el periodo orbital de varias estrellas binarias que giran la una alrededor de la otra, y luego se puso a clasificar estrellas según su espectro. Ahora bien, muy pronto comenzó a tener discrepancias con Pickering, tanto por el sistema de trabajo como el de clasificación estelar. Debido a estas discrepancias con el director, en 1896 dejó el observatorio y fue a trabajar a la escuela Miss Masson de Nueva York dando clases de astronomía y también se encargó de la gestión del Draper Park Museum. -
Hardy 1 Williamina Fleming
Hardy 1 Williamina Fleming: Breaking Barriers with A Universe of Glass Isabella L. Hardy Junior Division Individual Performance paper 500 words In the past, women in the sciences were often overlooked, so for National History Day, I chose to focus on an under-recognized female scientist. Early in my research, I found Williamina Paton Fleming. I was surprised I had never encountered her although I had heard of her colleagues, Annie Jump Cannon and Henrietta Leavitt. I have always loved studying the stars and am fascinated by the role of women in astronomy whose important contributions are sometimes forgotten. Williamina Fleming’s unique ability to interpret astronomical photographs changed astronomy in nineteenth- century America and beyond, breaking barriers for scientists and for women. In preliminary research, I located Harvard’s digital scans of Fleming's diary and excellent period photographs, as well as many academic articles about her and other women at the Harvard Observatory. I was also privileged to interview Dr. Lindsay Smith, current Curator of Astronomical Photographs at Harvard. She was extremely helpful in suggesting sources and later reviewed the performance script. Not much is known about Fleming’s early years in Scotland. After her husband abandoned her, she worked for Harvard Observatory Director Edward Pickering, who hired her for the new project to map the night sky. The process involved taking images though telescopes, then mapping all the stars in that small section of sky. Using this process, Fleming discovered stars, novae, and nebulae and encouraged the work of other astronomers, while facilitating many important discoveries. I chose performance to give a voice to a person who has been largely unnoticed. -
Women in Astronomy: an Introductory Resource Guide
Women in Astronomy: An Introductory Resource Guide by Andrew Fraknoi (Fromm Institute, University of San Francisco) [April 2019] © copyright 2019 by Andrew Fraknoi. All rights reserved. For permission to use, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This guide to non-technical English-language materials is not meant to be a comprehensive or scholarly introduction to the complex topic of the role of women in astronomy. It is simply a resource for educators and students who wish to begin exploring the challenges and triumphs of women of the past and present. It’s also an opportunity to get to know the lives and work of some of the key women who have overcome prejudice and exclusion to make significant contributions to our field. We only include a representative selection of living women astronomers about whom non-technical material at the level of beginning astronomy students is easily available. Lack of inclusion in this introductory list is not meant to suggest any less importance. We also don’t include Wikipedia articles, although those are sometimes a good place for students to begin. Suggestions for additional non-technical listings are most welcome. Vera Rubin Annie Cannon & Henrietta Leavitt Maria Mitchell Cecilia Payne ______________________________________________________________________________ Table of Contents: 1. Written Resources on the History of Women in Astronomy 2. Written Resources on Issues Women Face 3. Web Resources on the History of Women in Astronomy 4. Web Resources on Issues Women Face 5. Material on Some Specific Women Astronomers of the Past: Annie Cannon Margaret Huggins Nancy Roman Agnes Clerke Henrietta Leavitt Vera Rubin Williamina Fleming Antonia Maury Charlotte Moore Sitterly Caroline Herschel Maria Mitchell Mary Somerville Dorrit Hoffleit Cecilia Payne-Gaposchkin Beatrice Tinsley Helen Sawyer Hogg Dorothea Klumpke Roberts 6. -
Spectroscopy: History 1885-1927
SPECTROSCOPY: HISTORY 1885-1927 Harvard Observatory director Edward Charles Pickering hired over 80 women as technicians to perform scientific and mathematical calculations by hand. They became known as the “Harvard Computers”. This was more than 40 years before women gained the right to vote. They received global recognition for their contributions that changed the science of astronomy. Due to their accomplishments, they paved the way for other women to work in scientific and engineering careers. WHAT DID THEY DO: They studied glass photographic plates of stellar spectra created by using a spectroscope. Using a simple magnifying glass, they compared Credit: Secrets of the Universe: Space Pioneer, card 48 positions of stars between plates, calculating the temperature and motion of the stars. WHO WERE THEY: They measured the relative brightness of stars and analyzed spectra Some had college degrees, others received on-the job-training. to determine the properties of celestial objects. A few were permitted to receive graduate degrees for their accomplishments. These plates were gathered from observatories in Peru, South Africa, New Zealand, Chile and throughout the USA They worked for 25 cents an hour, six days a week in a small cramped library. Many of these women received numerous awards and honors for Harvard University Plates Stacks Digitization Project their contributions. Noteable among them were: Harvard College Observatory’s Plate Collection (also known as the Plate Stacks) is the world’s largest archive of stellar glass plate negatives. Taken between the mid 1880s and 1989 (with a gap 1953-68) the WILLIAMINA FLEMING (1857-1911) - developed the Pickering- collection grew to 500,000 and is currently being digitized. -
Women of Astronomy
WOMEN OF ASTRONOMY AND A TIMELINE OF EVENTS… Time line of Astronomy • 2350 B.C. – EnHeduanna (ornament of heaven) – • Chief Astronomer Priestess of the Moon Goddess of the City in Babylonia. • Movement of the Stars were used to create Calendars • 2000 B.C. - According to legend, two Chinese astronomers are executed for not predicting an eclipse. • 129 B.C. - Hipparchos completes the first catalog of the stars, and invented stellar magnitude (still in use today!) • 150 A.D. - Claudius Ptolemy publishes his theory of the Earth- centered universe. • 350 A.D – Hypatia of Alexandria – First woman Astronomer • Hypatia of Alexandria Born approximately in 350 A.D. • Accomplished mathematician, inventor, & philosopher of Plato and Aristotle • Designed astronomical instruments, such as the astrolabe and the planesphere. The first star chart to have the name An early astrolabe was invented in "planisphere" was made in 1624 by 150 BC and is often attributed to Jacob Bartsch. Son of Johannes Hipparchus Kepler, who solved planetary motion. Time line of Astronomy • 970 - al-Sufi, a Persian Astronomer prepares catalog of over 1,000 stars. • 1420 Ulugh-Beg, prince of Turkestan, builds a great observatory and prepares tables of planet and stars • 1543 While on his deathbed, Copernicus publishes his theory that planets orbit around the sun. • 1609 Galileo discovers craters on Earth’s moon, the moons of Jupiter, the turning of the sun, and the presence of innumerable stars in the Milky Way with a telescope that he built. • 1666 Isaac Newton begins his work on the theory of universal gravitation. • 1671 Newton demonstrates his invention, the reflecting telescope. -
Women in Astronomy at Harvard College Observatory
Discussion Question Answers Strategies and Compromises: Women in Astronomy at Harvard College Observatory 1. What were the differences between the roles of the four women mentioned in the article? - Williamina Fleming started out simply copying and computing, but worked her way up to supervising the other women and classifying solar spectra. - Antonia Maury also classified stellar spectra, but she did so with an advanced system of her own design. The director of the observatory, Pickering, did not like her system and so she left the observatory. - Annie Jump Cannon continued the spectra work of Maury, but used the standard system. She worked for 45 years doing classification work extremely quickly and consistently. - Henrietta Leavitt studied variable stars at first, identifying thousands of new ones. She also did the research assigned to her, which related to determining how stars appeared using different photographic techniques. 2. What are the differences between their attitudes towards the roles they were assigned? - Fleming accepted any work that was asked of her, but expanded the role of women’s work by her competence in accomplishing the tasks. She was privately bitter about the low pay and status of her work. - Maury thought that her intellectual contributions were worthy of credit and regard. She insisted on being recognized in the Observatory’s publications, and she fought for her system, which was based on star’s “natural relations” to be used. However, she did not succeed in getting the system used and so left the observatory. - Cannon did not mind the role she was assigned. She did it so quickly and well she eventually gained recognition and an honorary doctorate for he accomplishments. -
Knowledge Gain in the Age of Hpc and Big Data
KNOWLEDGE GAIN IN THE AGE OF HPC AND BIG DATA SUSANNEPFALZNER SECOND BIG DATA CHALLENGE Efficiency around 1% • Extremely high efficiency most of the photons lost! at redder wavebands -- almost 100%! • Limiting magnitudes increased by four to five magnitudes! Output is digital 2 DATAWORKFLOWS Combining different wavelength Final image Data e.g. Machine reduction Combining learning single Original telescopes Astrophysical data Object 3 DATA FLOOD Second data release of Gaia 0.9 billion individual CCD observations per day •celestial positions 1.3 billion sources •stellar effective temperature, extinction, reddening, and radius and luminosity for 161 million sources Each of these needs multiple data processing AIM: high-value knowledge out of data is 4 OBSERVER Photographer Data Scientist Theoretician ? 5 ASTROPHYSICAL SIMULATIONS Observations provide only snapshots at a certain moment in time Theory (simulation) must create time sequence Several theories – Which is the right one? Predictions from theory tested by observations 6 ASTROPHYSICAL SIMULATIONS Challenges • steep spatial gradients, complex geometries, etc. (1 AU – 20 000 000 AU) But also, • often very different time scales years – several million years (Myr) • No direct comparison with experiment 7 SIM AND DATA LAB ASTRO OBSERVATIONS VS. SIMULATIONS Comparison between TWO SIMULATIONS observational data theoretical models „It looks the same“, is not enough! 9 FIRST BIG DATA CHALLENGE Photographic plates Direct image First objective, permanent record of astronomical phenomena 10 FIRST COMPUTERS ...the amount of astronomical data was surpassing the capacity of the Observatories to process it Pickering and his Computers standing in front of Building C at the Harvard College Observatory, 13 May 1913 11 BEYOND PROCESSING DATA .. -
Atomic Spectra in Astrophysics
Atomic Spectra in Astrophysics Potsdam University : Wi 2014-15 : Drs. Lidia Oskinova/Helge Todt Stars have different colors (Why?): globular cluster M13 Stars are made of hot, dense gas Continuous spectrum from the ``photosphere'' Approximates a BB spectrum. Hot stars T>10000K Blue Solar-type: T ~ 6000K Yellow Cool: T ~ 3000 K Red 04 Stellar Spectra Above the hot and dence photosphere is a thin layer of cooler gas - atmosphere. Absorption lines are formed in the atmopshere Spectrum formation: chemical composition, element ionization and exitation, radiation field, fundamnetal stellar parameters Requerement: qunatum mechanics; radiative transfer 05 Stars Stellar photosphere is blackbody with Teff . Absorption lines formed in cooler atmosphere. 06 Astrophotogrpahy Henry Draper (1837-1882) made the first photograph of a star's (Vega) spectrum showing distinct spectral lines in 1872. Other works by HD (degree in medicine): Are there other inhabited worlds?, 1866; Delusions of Medicine, Charms, talismans, amulets, astrology, and mesmerism, 1873; The Discovery of Oxygen in the Sun by Photography, 1877. 07 Objective Prism Photography Henry Draper took hundreds photographs of stellar spectra before his death in 1882 (45yo). 1885 Edward Pickering began to supervise The objective prism method. photographic spectroscopy at Harvard Obtained spectra of >100,000 stars hired women to analyze spectra 1886 Draper's widow became interested in Pickering's research and funded it under the name Henry Draper Memorial 1890 Draper Catalogue of Stellar Spectra, 10 351 stars. 08 Hyades cluster 09 Objective prism spectra of Hyades cluster 10 Edward Pickering (director, Harvard Observatory, 1877 to 1919) Hired women as ``computers'' to systematically look at stellar spectra `Harvard computers' incl. -
Chapter 9: the Life of a Star
Chapter 9: The Life of a Star Introduction Massive stars explode when they die, releasing as much light as an entire galaxy of stars. Such an explosion is called a supernova. It can catapult a star from obscurity to spectacular prominence in the night sky. A supernova that occurred in the year 1006 (SN 1006) shone so brightly that objects could be seen by its light for weeks. A Muslim astrologer, Ali ibn Ridwan of Cairo, recorded the event. So did a monk named Hepidannus, of St. Gall, Switzerland. The records of these two men locate SN 1006 in the direction of the constellation Lupus in the Southern Hemisphere. Japanese and Chinese sources more precisely locate the supernova near kappa Lupi and one degree west of beta Lupi. It was the The Crab Nebula and Pulsar Composite Image (Chandra, Hubble, Spitzer) brightest star observed in all of recorded history. It was probably visible for three months during daylight, and only after three years did it fade below naked-eye visibility at night. The remnant left behind from the explosion has a low luminosity and large size, and is the faintest remnant of the five well-established historical supernovae seen during the last one thousand years. The remnant emits in the radio and X-ray bands and is thought to be 2300 light-years away. On July 4, 1054, Chinese and Japanese astronomers recorded a bright star in the constellation Taurus which had not been visible before. At maximum brightness it was comparable to Jupiter, and remained visible to the unaided eye for 653 days in the night sky.